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For proving convergence of numerical methods for stiff initial value problems, not only stability is needed,
but also bounds for the local errors which are not affected by stiffness. In this paper global error bounds
are derived for multistep schemes applied to classes of arbitrarily stiff, nonlinear initial value problems. It will
be shown that stable one-leg methods are convergent for stiff problems with the same order as for nonstiff
problems, provided that the stepsize variation is sufficiently regular. Using a well known equivalence relation
between one-leg and linear multistep methods, convergence results for linear multistep methods on uniform

grids will also be obtained.
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1. INTRODUCTION
In this paper we shall discuss convergence of multistep methods applied to stiff nonlinear initial value

problems

u'(t) = f(tu(r) 0<t<T), u(0) given, (1.1

with 4 (0)eR™ and f:[0,T]XR™—R"™. Most attention will be given to k-step one-leg methods, where
successive approximations u, ., to the exact solution u(¢) at gridpoints ¢, ., =1, ., _;+h are com-

puted from
k k k
Dy ; = B (X Bitn+jy 2 Bjta+;) (1 =0,1,2,..). (1.2)
j=0 j=0 j=0
Compared with the corresponding linear multistep method

k k
Zajun +j = thj_f(tn +jsUn +j) (n=0,1,2,...), (1.3)
j=0 Jj=0
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the one-leg method (1.2) may have stronger nonlinear stability properties, such as G-stability, and a
more robust behaviour on nonuniform grids, see [4], [13]. On the other hand, it is known [5] that to
obtain a one-leg method of high order (i.e. order of consistency for nonstiff problems) the parameters
a;, B, have to satisfy more constraints than for linear multistep methods (see also Section 3).

We shall be concerned with bounds for the global errors u(#,) —u, that are not affected by stiffness.
Such bounds have been studied quite extensively for Runge-Kutta methods, see for example [8], [9]
and [10]. Most Runge-Kutta methods suffer from an order reduction in the presence of stiffness, i.e.,
the order of convergence for stiff problems may be considerably lower than for nonstiff problems,
even if the solution u(¢) is very smooth. As we shall see, such order reduction will not occur with
one-leg methods, provided that the grid is sufficiently regular.

Stiffness independent error bounds can be obtained for various classes of initial value problems.
The most general class that will be considered in this paper consists of the problems (1.1) where the

function f satisfies the monotonicity condition
(f@v)—f(@v), v—v)<O (forall #€[0,T] and v,y eR™) 1.9

with respect to some inner product (-,7) on R™. Although sufficient stability conditions for one-leg
methods are known, this does not lead to convergence results in a straightforward way, since the local
errors will depend on the stiffness (except for methods like BDF, which are at the same time one-leg
and linear multistep methods). A complete convergence analysis for the implicit midpoint rule and the
trapezoidal rule applied to problems of the above type can be found in [11]. Our approach is closely
related to this analysis. One of the main results in this paper is that 4-stable multistep methods (1.2)
or (1.3) applied with constant stepsizes to a problem satisfying (1.4) will be convergent, independently
of the stiiiness, with the same order as for nonstiff problems.

For the sake of simplicity we shall confine ourselves until Section 5 to uniform grids
t,=nh(n=0,1,2,..). After some preliminaries in Section 2, convergence of one-leg methods is dis-
cussed in Section 3. It will be shown that the local error, defined as the discretization error which is
introduced in one single step of the integration process, may slightly suffer from an order reduction:
its order will be in general one lower for stiff problems than for nonstiff problems. For stable
methods, however, this reduction will not be present in the global discretization errors, due to damp-
ing and cancellation effects. In Section 4 convergence results for linear multistep methods are
derived, by using the equivalence relation of [3] between the linear multistep method (1.3) and its
one-leg twin (1.2). Finally, in Section 5 it is indicated to what extent the results for one-leg methods

will carry over to variable stepsizes.



2. PRELIMINARIES

Consider the polynomials p and o containing the coefficients of the method
p(®) = Zajfj, o(§) = Z.ijj-
j=0 j=0

Let E stand for the forward shift operator and 7,,‘—‘0(E )¢, for n =0,1,...,N, with N being the number
of steps needed to cover the interval [0,T] at a given stepsize 4. It will be assumed that &, 50 and the
polynomials p, o have no common zeros (irreducibility), and that p(1)=0, a(1)=p'(1)=1 (consistency).
Further it will be assumed, for the one-leg methods, that z, <;,, <t, +4; otherwise some Z,—values
would be outside [0,7] and this would require certain modifications. The initial value problem (1.1)
under consideration is assumed to be such that all derivatives u?’(¢) of the exact solution that are
needed in the analysis do exist, and f:[0,7]X}XR™—R"™ is continuously differentiable. On the space
R™ we shall deal with a norm |v| =(v,v)""? generated by some inner product (v,w).

The one-leg scheme (1.2) can be written as
P(EYty = hf (1, Up),  Up = O(E)thy. @D
For the exact solution u of (1.1) we have
p(EYu(ty) = hf by u(t) + 1, ut) = oE)u(ty) + gy @2

where r,,q, are discretization errors due to differentiation and interpolation, respectively. These
errors, which only depend on the smoothness of u, will be considered more closely in Section 3 (cf.
also [5], [6]).

Let €,=u(t,)—u, denote the global discretization errors of the one-leg scheme, and put

€, =u(?,,)—§,,. By subtraction of (2.1) from (2.2) it follows that

o(E)e, = Z,6, + ry,, € = o(E)e, + g, 2.3)

where the m Xm matrix Z, is given by
l — -—
Z, = h[J (ty, Qu(t,) + (1—0)u,)dé (2.4
0

with J (¢,v) standing for the Jacobian [0f (¢,v)/dv]. Elimination of ¢, in (2.3) leads to
p(E)en = Z,o(E)e, + 1y + Z,q (2.5

This recursion for the global errors can be written in the somewhat more transparant form



k
€tk — E\Pj(zn)fn +hk—j T 5, (2.6)
j=1

where 8, =(a] —BZ,) "' (ry+Z4q,) and Y(Z,)=—(oxI —BxZ,) "(ax ;I —Bi—;Z,) with I the
m X m identity matrix. Note that, due to p(1)=0,0(1)=1, we have

k
Z‘P](Zn) - 1= (akI_Ban)—]Zm (2'7)
j=1

a relation which will be useful in the next section.
In order to facilitate the analysis, (2.6) will be formulated as a one-step recursion in

—¢(.T T T km
en_(€n+k—]’€n+k—2v"’€n) eR )

€n+1 — R(Zn)en + dn (n :0,1,...,N) (28)
where
"pl(zn) T ‘I’k(zn) 8n
I 0 0
R(Zn) = . . - . ) dn =
I 0 0

To ensure stability of the one-leg scheme - which is, as we see from the above, governed by the

matrices R(Z,) - appropriate assumptions on the method and the class of stiff initial value problems

are needed. Using the given norm |-| on R™ we can define the norm || - || on R*" as
iwll = max wi| for w = w{,w], ..., whHTeR"
We shall use |-| and ||| also to denote the induced matrix norms for m Xm and km X km matrices,

respectively. It will be assumed in the following sections that there exists a constant S>>0 such that
IR(Z)R(Z,_)..R(Z)II<S 29

for all possible Z,,, . . ., Z, given by (2.4) and 0<</<n<XN. This stability assumption does not depend
on our special choice of norm [|-|| which is merely taken for convenience; since k is fixed, all norms

on R*" of the form
iwll” = 1wl w2, - - -, |wkDT1’, ||’ an absolute norm on RX,

are equivalent, so that using [|]|” in (2.9) would only alter the constant S. Sufficient conditions for

(2.9) have been extensively studied, see [5], [13] and [15] (cf. also [12] for results with norms |-| on R™



not generated by an inner product). Here we shall give two examples for implicit methods where
h>0 is allowed to be arbitrary.

First, assume f satisfies the monotonicity condition (1.4). As this condition implies that the
difference |u()—u(?)| between any two solutions w, u of the differential equation in (1.1) is nonin-
creasing with ¢, the initial value problem (1.1) itself is stable. In [5] it was shown that for any A-stable
one-leg method (1.2) a norm |-|" on R* can be found such that ||R(Z,)|'<\1 whenever Z, is given by
(2.4) with A >0. This norm |- |’ (the G-norm [5]) is determined by the coefficients a;, B;. So, A4-stability
and (1.4) are sufficient for (2.9) with a stabi]ity constant S determined by the method (and thus
independent of the specific problem and its dimension).

Under more restrictive assumptions on f stability can also be guaranteed for methods which are not
necessarily A-stable. We consider, as an example, one-leg methods which are A4 ,-contractive (in the
maximum norm). This concept was introduced in [13]. For such methods we have, by definition,
IRE)II<1 if zeR(m =1),z<0. By a spectral decomposition of Z, it is then easy to show that
IR(Z)II<1 whenever Z, is given by (2.4) with #>0 and the Jacobian J of fis such that

J(t,v) is self-adjoint (w.r.t.(,-)) and all eigenvalues are nonpositive, (2.10)

for any 1€[0,T], veR™. In case we are dealing with the Euclidian inner product v’w on R™, condi-
tion (2.10) means that f is a gradient mapping, f(¢,v)= —[dg(t,v)/ ov]?, for some convex functional
g:RXR"—>R"™, see[14].

3. CONVERGENCE OF ONE-LEG METHODS

3.1. Local error bounds

Considering (2.6) we see that 8, =(ax/ —BeZ,) ! (ra+Z,q,) is a local discretization error, in the
sense that if €,=¢, ;= - =¢,,,_1=0 then ¢, ,,=8,. (In other words, 8, is the error, due to
discretization, which is introduced in one single step of the integration process.) For a p-th order
method we expect that |8,|=O(h? *1).

Note that 8, is different from the usual discretization error that is obtained by substituting the
exact solution directly into (1.2). This error, which is approximately given by r,+Z,q,, is not
bounded uniformly in the stiffness and therefore inappropriate for stiff systems. This was observed
already in [6], where also an alternative error was proposed for stepsize control (for our purpose,
proving convergence for stiff problems, the §, seem more suitable).

Let y; be such that ¢, ; =7n+yjh (j =0,1,...,k). By a Taylor series expansion of u, and the con-
sistency conditions p(1)=0, o(1)=p’(1)=1, it follows that



— — k X
e = ash?u"(t) + ash3u@) + -0 a4 = —'_1' S o, (.1a)
2

M=

— -—_ 1 i
gn = bah*u"(t,) + b3h*u"'(t,) + -+ b = =7 2 By (3.1b)

0

J
Now, for nonstiff problems, where f satisfies a Lipschitz condition with a moderate constant, we have

|Z,|=O(h), and consequently
8, = (ax '+ OM)(r,+ O(h)g,).
In order to have |8,|=0(h” *') it is then necessary and sufficient that
g = 0Q@2=<i<sp)and b, = 0 2<i<p—1), (3.2

which are the usual order conditions for one-leg methods (cf. [5], [6]). The order conditions for the
linear multistep method (1.3), which read a;+b; _; =0(2<<i<p), are the same if p =2, but for p=3
the one-leg method has to satisfy more constraints.

For stiff problems the order conditions (3.2) are not sufficient to have |8,|<<Ch”*! for some
moderately seized C>0. From (2.7), (2.9) it can be concluded that there are constants S;, S,>0,

only depending on S and the coefficients ay, B, such that
(ot = BiZ) "' Z,|<S1, (eI —BiZy) "' |<So,

but §,70(h) (for example if Z,=hA, A— —c0). Consequently, (3.2) implies for stiff problems only
|6,|=O(h”). This local order reduction occurs with the implicit midpoint rule [11] and most other

one-leg methods.

ExaMPLE 3.1. Consider the second order method CA2, introduced in [13],
3 3 1
Up+2 " Up+1 — hf(tn + Eh’ 4 Un+2 + Tun)-

This method is A-stable and A y-contractive (in the maximum norm). Consider further the model

problem
w'(t) = Nu@)—g] + g'(1), u(0) = g(0), (3.3)

with solution u(¢)=g(¢) for any A<<0. Take g(¢)= %tz. Application of the above method with exact

starting values uo=u(0), u; =u(r;), gives

u(ty))—u; = -—%hz(l—%z)"lz , z = h\
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If the problem is nonstiff, |A\|<1 say, then |u(12)—u2|<%h3 + O(h*), as we would expect after one
step with a second order method. For A— — oo, however, we only have |u(t2)—u2|=%h2. Thus, due

to stiffness one order of 4 is lost. O

The local order reduction is absent with methods that satisfy, in addition to (3.2), the extra order

condition
b, = 0. (3.9

This is satisfied, for instance, by the BDF methods (where all b; are zero). It can also be shown that
the local order reduction will not occur in case the initial value problem (1.1) is such that all partial
derivatives [8' "/ (¢,v)/0t'9v/] with i, j=0, (i,j)7(0, 1) are bounded by a moderate constant (cf. [9] for
a related result with Runge-Kutta methods). Note that the partial derivative with (i,j)=(0,1), the
Jacobian, is always large for stiff systems since its norm is proportional to the Lipschitz constant. For
general stiff systems where other partial derivatives may also be large there will be a local order
reduction if (3.4) is not satisfied, as can be seen by considering problems of the type (3.3) with A<<<0

and g a smooth function.

3.2. Global error bounds

For nonstiff problems the local condition |5,|=0 (h” *!) is necessary to have |¢,| =0(k?), global con-
vergence of order p. For stiff problems there may be damping or cancellation of local errors, as a
result of which there can be convergence of order p while |8,|=O (h”) only. This was shown in [11] to
be the case for the implicit midpoint rule. Related results for Runge-Kutta methods can be found in
[1] and [2].

LeEMMA 3.2. Consider recursion (2.8). Assume the stability condition (2.9) holds with a constant S>0.

Assume further that there exists a constant D >0 and vectors x,, y, eR*™ such that

d, = (I —R(Z)x, + Vns (3.52)

n—1

lly;Il <DhP (3.5b)
i =0

n—1
lix,l|<Dh?, 3 llx;;—x;II<Dh?,
j=0 J

for all n =0,1,...,N. Then, for all n,

le,Il < S llegll + (3S + 1)Dh?.



PROOF. Let e, =e, —x,. These perturbed errors satisfy

A

én = R(Zn—l)én—l + dn—la dn—l =n-1 T Xy — Xy (n=l,2,...,N).

By writing out ¢, fully in terms of R(Z)), d (o< j<n —1) and ey, it easily follows from (2.9) that
n " n—1 L
lle,ll <S lleoll + 8 3 lid;ll.
j=o

Hence

n—1 n—1
lleall < S llegll + 8 3yl + 8 3 llxj—x;410l + S llxoll + lix,ll,
i =0

J Jj=0

which yields the proof of the lemma. O

THEOREM 3.3. Consider a one-leg method (1.2) satisfying the order conditions (3.2) with p=1. Assume
(2.9) holds with stability constant S>0. Then there is a constant C>0, only depending on S,T and
bounds for derivatives of u(t), such that

— < Y—u; P = <T.
lu(t)—u,| < S O%ngaz(_‘ [u@)—u;| + Ch for all n=k, nh<T.

PROOF. In order to apply Lemma 3.2 it has to be determined whether the vector 4, in (2.8) can be
decomposed as indicated. Let x,=(xT,, ...,x%)7 and y,=OT, ..., pE)7 with Xjn, Yjn €R™. These

vectors should satisfy

871 = (1_‘I/I(Zn))x ln_‘l’Z(Zn)xZIl_ o —‘1’k(zn)xkn + Yins
0= —xj_1n+ X + yjn (G=23,..k).
Taking x,,=x3,= =+ =Xpy =4y, yln:(akl_ﬂkzn)ﬁlrn and y,,= - - - =y,=0, it is easily seen

from (2.7) that (3.5a) is fulfilled and
X, 1 <D AP, llx, s — x|l <D3hP Y, lly,ll <Dzh? !
for all n, with D, D,, D5 determined by S and the solution u (see Section 3.1). Hence, Lemma 3.2

can be applied with D =max{D,, D,T, D;T} which leads to the error bound of the theorem. [

This convergence result shows that the order reduction is annihilated in the transition from local to

global error. For stable one-leg schemes the order of convergence for stiff problems will be the same

as in the nonstiff case.



4. CONVERGENCE OF LINEAR MULTISTEP METHODS
By using the equivalence relation, given in [3], between one-leg and linear multistep methods on uni-
form grids, the convergence result for one-leg methods can be used to prove convergence of linear
multistep methods applied to stiff nonlinear initial value problems.

Consider the linear multistep method (1.3), which can be written with the generating polynomials p

and o as
p(E)u, = ho(E)f(t,,u,) (n=0,1,..). @.1)

Let s, be shifted gridpoints such that o(E)s,=t,. Usually, some of the first shifted gridpoints
505 S1--58n,~1, say, will be negative. Assume for the moment that the solution u(¢) of (1.1) can be

continued in a smooth way for 7<<0. On the shifted grid we then consider one-leg approximations

v =U(sy),
p(E)v, = hf(t,,6(E),) (n=0,1,..). 4.2)

Since p(E) and o(E) commute, premultiplication of (4.2) with o(E) shows that the interpolated values
v,=0(E)v, satisfy the same recursion as the u,. Therefore, if v;=u; (0<<j<k —1) then v, =u, for all
n.

The condition v; =u; (0<j <k —1) will hold iff vg, vy, . . ., vor — satisfy
o(Ey; = u;, p(E)y; = hf(t, ;) (O<j<k —1). 4.3)

Note that the fact that p and ¢ have no common factors implies that this system of linear algebraic
equations has a unique solution (as can be seen from relation (1.11) in [3]). Now, let p be the order
of the one-leg scheme, and assume that the starting values for the linear multistep method are such

that

lu(t) —u;| <Coh? , |w'(t)—ft;, u)| <Coh?™' (0<j<k—1) @4
for some Cy=>0. The order conditions (3.2) imply that

ju(t) —o(E)u(sy)| <C AP, |u'(t)—h ™' p(E)u(s,)| <Cih?
for all n, with C;>>0 only depending on derivatives of u. Hence,

lp(ENy; —us))|<(Co+ Cihh?, |o(E)v;—uls)]|<(Co+Ch? O<j<k —1).
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It follows that there is a Cy’>0, determined by C, and the smoothness of u, such that the starting

values for the one-leg scheme (4.2) satisfy
[v,—u(s)| <Co'h? (0<j<k —1). 4.5)

Assuming the one-leg method to be stable, in the sense of (2.9), Theorem 3.3 shows that |v, —u(s,)|

can be bounded by (SCy’+ C)h? for all n. Since

u(ty)—u, = u(tn)_;n = [u(t,)—o(E)u(s,)] + o(E)u(s,)—vnl
we see that there is a C’>0, only depending on S, Cy, T and smoothness of u, such that
|u(t,)—u,| <C’h?  for all n=0, nh<T. (4.6)

There are situations where the assumption that # can be continued in a smooth way on a small
interval to the left of the origin is not realistic, for instance if (1.1) originates from discretization in
space of a parabolic partial differential equation with nonsmooth initial data. In such a situation the
above convergence proof can be modified. If ¢, =u(,)—u, are global errors of the linear multistep
scheme and Z, is defined, similarly as (2.4), such that Z,¢, =hf(t,, u(t,))—hf(t,, u,), then it follows
that

P(E)ey = O(E)Zuey + s Pn = P(E)U(ty)—ho(E)U'(2,). @7

This local error p,, is bounded in norm by C,49*!, where C;>0 and ¢ is the order of the linear mul-

tistep method (which is at least equal to p). Defining €, = (o, — B Z,)e,, We obtain

k
€tk — 2 \I/j(znw‘k*j)‘n +k—j + Pn- (48)
j=1

In view of (2.9) we have [{,(Z, . ; - ,)|<S, which shows that

e es] < kS | max len )| + lpul 4.9)

The condition (4.4) implies |€J| < (Jag| +|BxDCoh? (0<<j<<k —1). Although kS >1, in general, it can

be shown from (4.9) that after a fixed, finite number of steps, say n,, we still have
U+ )=t 1] SCo"HP, W (b1 )= [ty o Unys )] SCo"hP TV (0<j<k—1)  (4.10)

where Cy”">0 depends on ng, Cy, S and smoothness of u. Taking ng such that s, =0 we can now

proceed as before, using the equivalence relation between (4.1) and (4.2) for n=n,.

Summarizing, we have obtained the following result.
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THEOREM 4.1. Consider the linear multistep method (1.3) and let p be the order of the corresponding
one-leg method (1.2). Assume (2.9) and (4.4) hold. Then there is a constant C'>0, only depending on
Co, S, T and bounds for derivatives of u, such that

lu(t,) —u,| <C'h?  for all n=0, nh<T. O

For stiff problems the condition (44) is more difficult to fulfil than only
|u(t;)—uj| < Coh? (0<<j<k —1). By considering the model problems

u'() = MOu@®)—g®] +g'®), u0) = g(0)

with strongly varying A(r)<<0 and smooth g, it can be seen that (4.4) is necessary for Theorem 4.1.
The convergence result in Theorem 4.1 is completely satisfactory for linear multistep methods
whose order g is equal to the order p of their one-leg twin. As noted before, if g<<2 (A-stable
methods, for example) then g =p. In general, however, we may have ¢>p. The A,-contractive
Adams type methods CA/ of [13] all have p =2 while ¢ =/. For such methods Theorem 4.1 does not
seem to be optimal. In situations where the linear multistep scheme itself is known to be stable (Z,, is
constant) the detour along the one-leg methods is unnecessary and convergence with order g follows
in a straightforward way. It should be noted that in such a situation the results in Section 3 for the
one-leg methods are not optimal either, if we consider instead of e¢,=u(t,)—u, the errors

€, =u(t,)— o(E)u, at the collocation points 7, =6(E)t, (cf. [6]).

5. VARIABLE STEPSIZES
Convergence results for one-leg methods applied to stiff systems on non-uniform grids can be derived
in a similar way as in Section 3. We shall indicate here how the convergence will be affected by vari-
able stepsizes. The result for linear multistep methods cannot be easily extended since there is, in gen-
eral, no equivalence between one-leg and linear multistep methods on non-uniform grids, see [5]. Con-
vergence results for the trapezoidal rule can be found in [11], where it was shown that in order to
have convergence, more restrictive assumptions on the stepsize variations are needed than for its one-
leg twin the implicit midpoint rule (cf. Example 5.1 below).

In the variable stepsize formulation of the one-leg scheme (1.2), A is replaced by

hp+k =1ty +k— 1ty +x -1 and the coefficients a;, B; are allowed to vary with n,
ajn = aj(“’n+2’ IR} wn+k)5 Bjn = :B_[(wn+2a LI wn+k) (51)

where w,=h,/h, . Let h be the maximal stepsize and assume that |w,| <@, |aj,|, |B;:| <& for
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certain ©, &'>0. Assume further that the scheme is stable in a similar way as in (2.9) (see [7], [13] for
some sufficient conditions).

As before, the global errors €, =u(t,) — u, satisfy a recursion (2.6) with local errors
8y = (@nl = BinZy) ' (rat+Z,,)
where r,,, g, can be written as
n = Pu(E)u(ty) = hn k' (0(ENty), G = u(0n(ENy) — 0,(E)u(ty)

with generating polynomials p,, 0, containing the coefficients a;, and Bj,, respectively. If p is the

order of the method for variable stepsizes, we have
rw=O0WE Y, gy = 6,u® () + OWE™

with
1 & :
Oy = —T{(Z Bnltnsj =) = 2 Bnltns; =tV }- ©-2)
P =0 Jj=0

Note that £, ;= = hy(@n 41T @p 410p 42T F W 11000 +;]) and 6,=O(hf). Stability thus implies
€| = O(r? 1) for all n.

If the grid is sufficiently regular, convergence with order p can also be proved. Proceeding as in the
proof of Theorem 3.3 we get |¢,|=O(h”) (independently of the stiffness) under the assumption that
there is a D >0 such that

N-1
2 |9n+1—ga| <Dh”.
n=0
This will hold for arbitrary, smooth solutions u iff
N-1
> 16,41—0,] <D'h? 5.3)
n=0

for some D’>0. If the functions B8; in (5.1) are Lipschitz continuous in a neighbourhood of

(wn+2, R +k):(1,1,..., 1) and
0, =1+ 0 (5.4)

for all n, it easily follows that |0, ., —6,|=h,0(h). Consequently, (5.3) is then satisfied and we have
order p convergence. For specific methods this can be proved under assumptions on the stepsizes less

restrictive than (5.4).



13

ExaMPLE 5.1. For the implicit midpoint rule

1 1 1
Up+1 Uy = hn+1f(tn+7hn+]a —2—un+l+_5un)’

we have p =2 and 6, = —%hﬁ +1. This method is stable for arbitrary problems (1.1) where f satisfies

(1.4). From (5.3) a result of [11] is reobtained: the method is convergent of order 2, independently of
the stiffness, provided that

N-1
> |hi+1—hi| = o). (5.5)
n=0

This condition is satisfied if the number of sign changes in the sequence {h, ., —h,} is bounded by a
fixed, finite number. This seems a reasonable assumption for numerical codes, where h, will be
somehow related to the smoothness of solutions near #,. It was also shown in [11] that (5.5) is neces-

. . 1
sary to guarantee second order convergence; for stepsize sequences like h,=~h (for n odd), h,=h

(for n even) the order will reduceto 1. 0O

ExaMPLE 5.2. The variable stepsize formulation of the Adams-type method CA2 of [13] (cf. Example
3.1) reads

1 24w, 42 1 Wn42

1
Up+2 —Up+1 — hn+lf(t"+1+2h"+2’ 2 14w, 12

This method is A4 y-contractive (in the maximum norm) for arbitrary stepsize sequences, and we have

order p =2 and §,= —%h,z, 432 —%h,,ﬂh,,u. Hence

1 1
10,0, 1] < glhri2—hr 1] + Fhasilbni2a—hy| <
3.2 2 1,2 2
< gihn+2_hn+1| + 4|hn+l_hnl'

Thus we see that this method is also convergent of order 2, independently of the stiffness, if the grid
refinement is such that (5.5) is satisfied. O
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