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This paper investigates diagonally implicit Runge-Kutta methods in which the implicit relations
can be solved in parallel and are singly diagonally implicit on each processor. The algorithms are
based on diagonally implicit iteration of fully implicit Runge-Kutta methods. The iteration scheme
is chosen in such a way that the resulting algorithm is A(o)-stable or L{o)-stable with o. equal or
very close to /2. Because of the iterative nature of the methods, embedded formulas of lower
orders are antomatically available allowing a strategy for step and order variation.
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1. INTRODUCTION

In [8], predictor-corrector (PC) methods for solving the initial-value problem for the system of ordinary differential
equations (ODEs)

wy B0,

on parallel computers were developed. These methods are based on functional iteration (or Jacobi iteration) of implicit
Runge-Kutta (RK) methods. On sequential computers, implicit RK methods are seldom used as corrector equation,
because of the large number of implicit relations to be solved when using these correctors. However, matters are
different when parallel computers are used, since functional iteration possesses a high degree of parallelism. These
‘parallel, iterated’ RK methods (called PIRK methods in [8]) have the attractive feature that embedded formulas of lower
orders are automatically available allowing a strategy for step and order variation. On the other hand, due to their
explicit character, PIRK methods have rather limited regions of stability and are therefore not suitable for integrating
stiff systems. In this paper, we investigate the possibility of constructing highly stable methods by diagonally implicit
iteration of fully implicit RK methods. Such methods belong to the class of DIRK methods, but, when mn on a
parallel computer, they have the same reduced computational complexity as the singly diagonally implicit RK (SDIRK)
methods designed for sequential computers. Furthermore, like the PIRK methods, they possess embedded formulas of
lower order which make them an ideal starting point for developing variable order/variable step codes. We shall call the
'Parallel, Diagonal-implicitly Iterated’ RK methods PDIRK methods.

In the literature various embedded DIRK methods were published for the integration of stiff systems of ODEs on
one-processor computers. We mention the L-stable methods of orders 2 and 3 by Ngrsett [11], and the strongly S-stable
three-stage, third-order and five-stage, fourth-order methods by Cash [3] and by Cash and Liem [4]. In the present paper,
the main results are

(i) L-stable, stiffly accurate methods of orders p<8 and p=10 with embedded formulas of orders 1 up to p and
requiring p+1 sequential stages

(if) L-stable, stiffly accurate methods of orders p<6 and p=8 with embedded formulas of orders 1 up to p and
requiring p sequential stages (for p=7, we found an L(o)-stable method with o=7/2)

(iii) A(o)-stable (o=n/2), stiffly accurate methods of orders p=5 and 7 with embedded formulas of orders 2 up to p
and requiring p-1 sequential stages.

The number of sequential stages mentioned assumes the availability of [(p+1)/2}-processors, where [x] denotes the
integer part of x.

2. PDIRK METHODS

For notational convenience, we shall assume in the following that the equation (1.1) is a scalar equation.
However, all considerations below are straightforwardly extended to systems of ODEs, and therefore, also to
nonautonomous equations. Our starting point is the s-stage, implicit, one-step RK method

(2.12) Yn+1 = Yo + hbTrpeq,
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where rp1 is implicitly defined by the set of algebraic equations
(2.1b)  rpq1 = 1f(yne + hArg. ).

Here, h is the integration step, e is a column vector of dimension s with unit entries, b is an s-dimensional vector and
A is an s-by-s matrix. Furthermore, we use the convention that for any given vector v—(vJ) f(v) denotes the vector with
entries f(vJ)

By iterating, say m times, the equation for ry.1 by diagonally implicit iteration, we obtain the method
(2.2) r0) = f(ype + h{A - D] r(-D 4+ hiDr®), y® =y, + bbTr®, j=1,2,..,m,

where D is a diagonal matrix with free diagonal elements and r(®) denotes an initial approximation to the vector rp.1.
Notice that after each iteration the current approximation y{) to yn41 can be computed. As we shall see in Section 2.1,
the order of these approximations increases by 1 in each iteration. Therefore, the mth iterate will be used to continue the
integration process and the preceding iterates can be used for error control.

It is sometimes convenient to use an alternative representation of this iteration process. By writing rd=f(Y(®),
(2.2) takes the form

22) Y@ =yqe+h[A-D] f(YG-D) + hDf(YD), yO =y, + bbTEYD), j=1,2,..,m

where now Y(®) denotes an initial approximation to the solution of Y = yge + hAf(Y).

Since the matrix D is of diagonal form, the s components of each vector r® can be computed in parallel, provided
that s processors are available. Thus, effectively, we obtain a method which requires per integration step the
computational time needed for computing one component of the initial approximation r(®) and the successive solution
of m equations. In the following, we always assume that we have s processors at our disposal and we shall speak about
computational effort per step when we mean the computational time required per step if s processors are available. We
shall call the method providing r(%) the predictor method and (2.1) the corrector method.

In this paper, we restrict our considerations to the case where the predictor method is itself an RK-type method.
Hence, by performing m iterations with (2.2) and by accepting y(m) as the final approximation to yp41, we obtain an
RK method with a fixed number of stages. Furthermore, we assume that the predictor is explicit or at most diagonally

implicit. Then, the resulting parallel RK method belongs to the class of DIRK methods (Diagonally Implicit RK
methods), and will be briefly called PDIRK method.

2.1. Order of PDIRK Methods
Assuming that the iteration process (2.2) converges as m—eo, the values y(@ approximate the solution of the
corrector method (2.1), i.e., y(*)=yy, 1. The approximation yU) differs from y(>>) by the amount
¥ - ¥ = yO - yoy1 = BT - rpen].

If the right-hand side function is sufficiently smooth, then the iteration error r() - ry,1 satisfies the approximate
recursion

1af

() -rpe ~R[I- h D]' S [A-DI0D - rp] = hl([l h== Dll % [A-D])j[r<°>-rn+1],

so that
@3) ¥y =hmlpT(n D}l [A-D])m[r<°>—rn+1].

Let the predictor be of order q, i.e.,
@4 rO-rp =00 = yO -y, = 0@,
then
Y - ypy1 = 0T,

so that y(™) has (global) order g+m.



In this paper, we shall study PDIRK methods with predictors of the form
2.5) 19 = f(yne + hEf(yne) + hBr®)
or, using the representation (2.27,
25) YO :=yqe+ hEf(ype) + hBH(YO).
Because this predictor is implicit, we will choose the matrix B of diagonal form in order to exploit parallelism. Since

r® . .1 =f(yqe + hEf(yne) + hBf(yne + hEf(yne) + hBf(yne))) - f(yne + hAf(yne + hAf(yne))) + Oh3), -

it is easily verified that the predictor (2.5) is always first-order accurate; it becomes of order two if (E+B-A)e vanishes
and of order three if, in addition, (BA-AZ)e, vanishes.
By defining yn1 according to

26)  ynel =y™ = yg+ hbTr™ =y, 4 hHTEY(M),

the PDIRK method is completely determined. For this method, we summarize the above order considerations in the
following theorem:

Theorem 2.1. Let the corrector be of order p*, then the approximation yp41 generated by the PDIRK method
{(2.5),(2.2),(2.6)} has order min{p* m+1} for all matrices B and E, order min{p*,m+2} if (E+B)e=Ae, and order
min{p*m+3) if, in addition, BAe=AZe.

We remark that correctors of any order are explicitly available. Correctors of any even order p* are provided by the p*/2-
stage Gauss-Legendre methods and correctors of any odd order p* are provided by the (p*+1)/2-stage Radau methods.

2.2, Stiffly Accurate PDIRK Methods

As was discussed by Alexander [1], when integrating stiff equations it may be advantageous to use RK methods
{A,b} of which b equals the last row of A, i.e., bT=esTA, where s is the number of stages of the RK method. Such RK
methods were termed stiffly accurate in [1]. Therefore, it is of interest to look for PDIRK methods possessing the
property of stiff accuracy. Formally, we can associate with any PDIRK method a new PDIRK method possessing the
property of stiff accuracy, simply by replacing (2.6) with

Q7 yn+1=esd YO

Of course, this only yields a feasible method if the last component of the vector Y{m) provides an approximation to
yn+1. For example, this is true if the corrector itself is stiffly accurate, i.e., bT=e,TA. We shall call the two versions

corresponding to (2.6) and (2.7) PDIRK methods of Type I and 11, and denote them by PDIRK! and PDIRK!,
respectively. Thus,

Typel :PDIRK method {(2.57.(2.2).(2.6)}
Type I : PDIRK method {(2.5%,(2.2).(2.7)].

The following theorem is the analogue of Theorem 2.1:

Theorem 2.2. Let the corrector be stiffly accurate (bT=esTA) and be of order p*, then the approximation yp1 generated
by the PDIRKY method is also stiffly accurate, and has order min{p*,m} for all matrices B and E, order min{p*,m+1}
if (E+B)e=Ae, and order min{p*,m+2} if, in addition, BAe=AZe. []

2.3. Various Types of PDIRK Methods and Their Butcher Arrays

Given the generating RK method (corrector) {A,b} defined by (2.1), we shall investigate three special families of
PDIRK methods, either of Type I or of Type II, which differ from each other by the way in which the predictor is
defined, i.e., in choosing the matrices B and E. Let O denote the s-by-s matrix with zero entries, then we distinguish:



Type A : Last-step-value predictor  (E=B=0) YO0 = yoe
Type B : Backward Euler predictor  (E=0, B=D) Y@ = yoe + hD(Y O
Type C : Theta method predictor  (B=D) Y(® := yoe + hEf(ype) + hDI(Y (D).

Notice that the matrix B either vanishes or is chosen equal to D. Although, in general, B and D may be different
{diagonal) matrices, the particular choice B=D has advantages with respect to the implementation of the method.
Typically for stiff equations, the implicit relations in which the matrix D=diag(d,,d,.....dg) is involved, will be solved
by some form of Newton iteration, which requires (in the case of systems of ODEs) the LU-decomposition of the
matrices [ - d; haf/dy. Clearly, if B=D then these decompositions can also be used in solving the predictor {see also the
discussion below). In the remainder of this paper, the analysis is performed in terms of a general matrix B and concrete
results are only specified for B=0 or B=D.

For future reference, we specify the various PDIRK! families of methods in terms of their Butcher arrays and give
the corresponding orders of accuracy p':

TypelA =0} O

j=§ A(-)D DD 1. D=O: p! = min{p*,m+1)}
= AD D
=31 0 OADD

=m| O . . . O AD D

oT . . . of of »T

TypeIB j=0| D
=] AD D 1. D 20: p! = min{p*m+1)}
=21 O AD D 2. D= diag(Ae): p! = min{p* .m+2)
=3 O OADD

j=m{ O . . . O AD D

oT . . . o oT »T

TypelC 0

=0l E D 1. D20O,EzO: p! = min{p*m+1}
j=1{ O ADD 2. D:=diag(Ae-Ee),E# O: p! = min{p* m+2}
2] O O AD D 3. D:= diag(Ae-Ee), DAe = AZe: pl = min{p*,m+3}
j=m| O . . . O AD D

oT . . . oT oT »T

In these arrays, 0 denotes the s-dimensional nullvector. Type 11 versions are obtained by defining yn+1 by means
of (2.7) instead of by (2.6), and, if the weights of the corrector satisfy bT=esT A, then by virtue of Theorem 2.2, we may
replace p! by p!! and m by m-1. Notice that the b-vector is not actually needed if the algorithm is based on Type I
methods. Furthermore, we remark that methods of Type B.2 are completely determined by the generating corrector, and
that those of Type C.3 prescribe the matrix D and the row sums of the matrix E.

As already observed, PDIRK methods all belong to the class of DIRK methods (since the name DIRK is not
consistently used in the literature, we remark that we shall call an RK method of DIRK type if the strict upper
triangular part of its Butcher tableau vanishes). Moreover, the ith processor (i=1,2....,s) is faced with solving a sequence
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of implicit relations in each of which the decomposition of the matrix I-d; hof/dy is required (in case of systems of
ODESs). Since this decomposition can be used in all m iterations in (2.2), we shall say that PDIRK methods are singly
diagonally implicit RK methods (SDIRK methods). Here we remark that this terminology is often reserved for methods
in which all stages are implicit with the same diagonal entry in their Butcher array. However, the zero diagonal entries
in PDIRK methods of the Types A and C (originating from B=0) do not exclude these methods from the class of
SDIRK methods, since these zeros mean that f(yp) has to be evaluated prior to the iteration process. Because the bulk of
the computational effort per step consists in solving the implicit relations, the costs of this explicit stage are relatively
negligible.

Therefore, taking parallelism into account, we shall say that PDIRK methods require k sequential stages if each
processor has to solve k implicit relations per step. Thus, Type A methods require m sequential stages, whereas for
Type B and Type C methods this number is given by m+1.

Finally, we observe that if the diagonal matrix D has equal diagonal entries, then all processors need the same LU-
decomposed matrix in their solution processes. In such cases, this decomposition, as well as the evaluation of the
Jacobian matrix of/dy, may be performed by an additional processor, providing a ‘fresh’® decomposition for all
processors as soon as it is available.

3. STABILITY
Applying the PDIRK method to the test equation

31 YyO=xO.
yields a relation of the form

Yn+1 = Rm(Z)yn,
where z:=Ah and “ﬁz) is a rational function, the so—called stabzlzty function. The stability functions corresponding to
PDIRK! and PDIRKU methods will be denoted by Rl (z) and RI(z), respectively. They can be directly derived from
the Butcher arrays by using the familiar ‘determinant formula’ (cf., e.g., [6, p.72]). However, the dimension of these
arrays is usually so high that the evaluation of the determinants is rather tedious, even for small values of the number
of iterations m. Therefore, we shall derive alternative formulas.

From (2.6) and (2.7) we see that the stability functions are respectively determined by

B2 Ynr1=yn+bTY®=Rly@yn and  yne1=e" YO = R @)yy,
In order to derive an expression for Y™ we write

Y® = [I - zDI'Qjyne,
where the matrix Q; follows from
Y® = [1 - 2D} [yne + z(A - D)YG-D] = [ - 2D] [ yne + z(A - D){I - 2D]1Qj.1y5e].
Introducing the matrix function
Z =Z(z) = 2(A - D)(I - D)L,
we find that Q; satisfies the recursion
Qo= (1-zDI(I - zBJ"}[I + zE], Qj=1+ ZQj.1.
Hence, the stability functions
Rl (2) = 1 +2bT[I - zDI'Qpy(z)e, RU(z) = ¢TI - ZD)'Qu(De,
e Qm=Qm@ :=1+Z+22+..+2Z™1 +Zm[ - zD][I - zB}'1{I + zE].

We shall separately consider the case where the diagonal matrices B and D have constant diagonal elements, and
the case where the matrices B and D are arbitrary diagonal matrices.
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3.1. PDIRK Methods with Constant Diagonal Elements
If B=bl and D=dI, then the matrix Q,(z) can be written as

Nm(2)
(1-b2)Q1 - dz)ym-1 °

Qm(@) =

where N, (z) is a polynomial in z with matrix-valued coefficients. Thus, (3.3) becomes

bTZN,(z)e RIL_ ) = es TN (z)e

Lo __eNp@e
BG4 Rm@=1+ G (1-bz)(1-dzy™

This representation shows that both stability functions are of the form

I
(3.52)  R(2):=(1-d2y9P(dz), P(dz):= Y, cj (dz),
j=0
where the coefficients ¢; depend on q and d (vecall that either b=0 or b=d). For future reference, it is convenient to specify
the values of r and q for the various types of methods. In Table 3.1 these values are listed for general values of d.

Table 3.1. Values of r and q in the stability function (3.5a).

Type IA B IC A 1B c

r= m+l m+l m+2 m m m+1
q= m m+l m+l m m+l m+l

For an arbitrary given value of d the order of consistency of the stability function (3.5a) cannot exceed r, hence, by
choosing m such that the order p of the PDIRK method equals r, we achieve that the number of sequential stages is
minimal with respect to the order p.

3.1.1. Derivation of A-acceptable and L-acceptable stability functions. The following theorem defines an explicit
representation of the stability function.

Theorem 3.1. Let p be the order of the method and let m be such that r=p, then the coefficients of (3.5a) are given by

V= T )i .
3.5b)  ¢= i (fi)% L i=01,,q  cj= i (?)a{)—%]—l . i=a+l,a#2, .., p,
i=0 ' i=0 '

where O! := 1.

Proof. Since it is assumed that the method is of order p we necessarily have R(z)=exp(z)+O(zP*1). By expanding the
function (1 - dz)q exp(z) in a Taylor series at z=0 and by equating corresponding coefficients in this expansion and in the
polynomial P(z), defined in (3.5a), we can find the first p+1 coefficients of P. Hence, all coefficients of P are uniquely
determined and are given by (3.5b) (see also Ngrsett {11] and Butcher {2, p. 246] for expressions in terms of derivatives
of Laguerre polynomials). 11

Notice that the condition r=p excludes methods of Type C.1, because for Type I and Type II variants the maximal
order is m+1 and m, respectively, which is one lower than the corresponding value of r. As a consequence, for methods
of Type C with stability functions of the form (3.5) the order should be increased by one, which is obtained by
requiring the matrix E to satisfy the condition Ee=Ae-de.

By means of Theorem 3.1 the stability analysis is now rather straightforward. Following Ngrsett [12] and Butcher
[2], we write u=yZ and define the so-called E-polynomial

B =11 -ipdl2[1 - Ray/?] =11 - iy)4l? - Ipay)l?



=1 +uwd-[cog-cou+ C4u2 - . ]2 -ufey -c3u+ C5u2 - ]2.

From the condition R(2)=exp(z)+O(zP*1) it follows that IR(iy/d)I2=1+O(yP*1), so that E(y2)=O(yP*1). Hence, all terms
of E(y2) of degree less than p+1 in y vanish, so that

q .
E() = 2 ejw, = ej(d) = (;1) - Cj2 -2 2 (-1)'¢jiCj+i, ¢j=0ifj>porj<O.
j=lp/2]+1 i=1

Because of the maximum principle, we have A-stability if [R(iy)! is bounded by 1 for all real y, so that the method is
A-stable if, and only if, E{u) is nonnegative for u=0. :

Values of d for which R(z) is A-acceptable will be called A-acceptable. Let the range of d-values which are A-
acceptable be denoted by Ipg, i.e., Ipg:={d: E(w)20 for all u=0}, then the following survey is easily obtained by using
Table 3.1 and the order results obtained for the various types of methods (p* denotes the order of the corrector {A,b}):

Table 3.2. Survey of properties of PDIRK methods with constant diagonal elements.

Type Condition  Order Sequential stages  A-acceptable d-values

IAl m<p*-1 m+1 m Im+im
IB.1 m<p*-1 m-+1 m+l En+1,m+1
IC2 m<p*-2 m+2 m+1 Im+2,m+1
IA.1  m<p* m m Imm
0B.1 m<p* m m+1 Imm+1
[IC2  m<p*-1 m+1 m+1 Im+1,m+1

Notice that R(z) is L-acceptable if R(z) is A-acceptable and if g>p. From Table 3.2 we see that the methods of
Type IIB.1 possess L-acceptable stability functions. Since L-stable methods are usually more suitable for integrating
stiff equations than A-stable methods, the methods of Type IIB.1 are of interest in spite of the additional sequential
stage when compared with the other methods. However, just as in the case of SDIRK methods, it is possible that an
A-stable method can be made L-stable if the interval of A-acceptable d-values contains a value for which cp, vanishes.
For g=p<15, this has been investigated by Wolfbrandt [13] and it was found that such values of d exist for p<6 and p=8.
This information is summarized in Table 3.3a.

In a similar way, L-acceptable ranges of d-values can be found in the case g=p+1. These ranges turn out to be
nonempty for p<8 and for p=10, and are given in Table 3.3b. Moreover, we list the values of dp p+1, which are inside
these L-acceptable ranges and cause ¢ to vanish, resulting in even stronger damping at ‘infinity’. »

Finally, we considered the case g=p-1, resulting from IA.1 and IC.2 type methods. Since now the degree of the
numerator in R(z) is larger than that of the denominator, a necessary condition for this case to yield A-stability, is that
¢p vanishes. For p=23,...,10 we determined the zeros of cp(d) and checked the resulting stability function on A-
acceptability. Only for p=2 (d=1/2), p=3 (d=(3+V3)/6) and p=4 (d=1.0685790213) A-stability can be obtained. Hence, in
this way we have found A-stable methods of orders p up to 4 requiring p-1 sequential stages. This result is similar to
what is possible in the case of RK methods for sequential computers (cf. [1]); however, the present methods contain
embedded formulas of lower order.

Table 3.3a. A-acceptable and L-acceptable values of d for p=q.

p=q Range Ipp dpp
1 [1/2, e°] 1
2 [1/4, o] 1£V1/2
3 [1/3, 1.068] 0.43586650
4 [0.395, 1.280] 0.5728160625
5 [0.247, 0.361] + [0.421,0473]  0.2780538410
6 [0.285, 0.54] 0.3341423671
7 empty
8 [0.218, 0.264] 0.2343731596
9 empty
10 empty




Table 3.3b. Ranges of L-acceptable values of d for p=g-1.

p=q-1 Range Ipp+1 dp,p+1
1 (17172, 14V1/2] 0.5
2 [0.181, 2.185] 0.5xV1/12
3 [0.224, 0.572] 0.3025345782
4 [0.248, 0.676] 0.3888576711
5 [0.184, 0.334] 0.2168805435
6 [0.205, 0.378] 0.2579552416
7 [0.157, 0.2029]+[0.2052, 0.234]  0.1690246379
8 [0.171, 0.259] 0.1929778040
9 empty
10 [0.147, 0.165]+[0.1938, 0.1961]  0.1541460739

Notice that any s-stage, pth-order corrector (even explicit corrector methods) can be used for generating A-stable
methods of Type IB, and any pth-order corrector satisfying the condition bT=esTA for generating the A-stable methods of
Type IIA and IIC, or the L-stable methods of Type IIB.

Furthermore, we have seen that the stability can be improved by selecting special d-values. Another possibility,
which might be useful in a variable-stepsize implementation, is to exploit the length of the A- and L-acceptable ranges:
for small changes in the stepsize h, the value of hd could be kept fixed (as long as the corresponding d-value is still in
the allowed range, of course), so that a new decomposition of I - h d of/dy can be avoided.

3.1.2. Comparison of diagonally implicit methods. It may be of interest to compare the characteristics of a number of
SDIRK methods from the literature with those of the PDIRK methods constructed in this section. In the comparison
presented by Table 3.4, DIRKII denote the Type II methods of Iserles and Ngrsett [9] which are, like all PDIRK
methods of this paper, effectively singly diagonally implicit on multi-processor computers. Furthermore, the order
range of the embedded methods, if any, is denoted by pemb-

Table 3.4. Comparison of DIRK methods of order p>3.

Method Order Stages Seq. stages Processors — Stability Pemb  Reference/Specification
SDIRK p=3 pl p-1 1 A-stable Ngrsett [11]

SDIRK p=4 p-1 p-1 1 A-stable Crouzeix [S], Alexander [1]
SDIRK p=3 P P 1 S-stable <p Cash [3], Cash & Liem [4)]
SDIRK p=4 p+l1 p+l 1 S-stable <p Cash [3], Cash & Liem [4]
DIRKII p=4 P p-2 2 L-stable p-1 Iserles & Ngrsett [9]
PDIRK p<4 {(p-1)s p-1 [+1)/2]  A-stable <p Type IA.1 & IC.2, D=dl
PDIRK p<6 ps P [@+1)/2]  L-stable <p Type [T1A.1, D=dl

PDIRK p=8 ps P [(p+1)/2] L-stable <p Type IIA.1, D=dI

PDIRK p<8 (p+l)s p+1 [(p+1)/2]  L-stable <p Type [IB.1, D=dI

PDIRK p=10 (p+D)s p+1 [(p+1)/2] L-stable <p Type IB.1, D=dI

3.1.3. Numerical experiment. It is well known [6] that, when integrating general stiff systems, the actually observed
order is usually much lower than the classical order p. In fact, the order behaviour is often dictated by the so-called stage
order 1 (for a definition of this notion and its consequences the reader is referred to [6]). Since most (P)DIRK methods
have stage order r=1, one might question the relevance of PDIRK methods possessing a high classical order. And indeed,
for a general stiff problem, this order reduction phenomenon has great impact on the accuracy of this type of methods.

However, in [7], Hairer et al. give a thorough analysis of the behaviour of RK methods when applied to a singular
perturbed problem of the form



d dyz .
36 eob=figLyd.  SE=hony), with e<<,

mnd show that for special RK methods the classical order may still dominate the global error, especially if stiffness
ncreases (i.e., if £—0). The motivation to consider this particular problem class is that it has practical significance and
1as been extensively studied in the literature (see the references cited in [7]). An important characteristic of problems of
he form (3.6) is that the eigenvalues of the Jacobian matrix can be clustered into two groups, and behave as O(1) and
O(e1), respectively. Here we summarize the main result of [7] (cf. Theorem 1 on p. 680) concerning the global error:

Let the RK method be A-stable and let e<Constant-h. Then the global error for the stiff component y; behaves as
O(gh") + O(hP) if bT=esTA and as O(h™+1) if IR(eo)l<1. For both cases, the global error for the nonstiff component v2
sehaves as O(eh™1) + O(hP).

Chis result indicates that Type Il methods are to be preferred if £¢—0, since then the global error is dominated by the
:1assical order, whereas methods of Type I will behave according to their (low) stage order.

To illustrate these properties, we applied the PDIRK methods listed in Table 3.4 to a problem of the form (3.6),
yroposed by Kaps [10]:

: d d
36) T=-@eelyi+ely F=yi-y+y) nO=y0=1 011,

with the smooth exact solution yy=exp(-2t) and yo=exp(-t) for all values of the parameter ¢.

Che methods we have used in our tests are based on correctors of different classical order (a specification of these
sorrectors can be found in the Appendix ). Moreover, all methods were equipped with the special dpp or dp p41 values
riven in the Tables 3.3 and, consequently, are L-stable.

For £=10-8 the absolute error for the stiff component y; at the end point t=1 is given in Table 3.5; here, the error
s written in the form 10-2 and the values of A are listed. Notice that the Type II methods require a stiffly accurate
sorrector (such as the Radau ITA formulas) and that L-stable, seventh-order PDIRK methods are only possible within the
‘amily of Type IIB.1 methods (cf. Tables 3.2 and 3.3b). This table clearly demonstrates the superiority of the stiffly
accurate Type II methods over the Type I methods, which show only a second-order behaviour for the global error (recall
hat r=1 for the Type IB.1 methods). However, the stiffly accurate methods demonstrate the classical order in the error
sehaviour and thus both results are in perfect agreement with the estimates in the theorem of Hairer et al.

From this experiment we may conclude that it is relevant indeed to have high-order PDIRK methods for
ntegrating stiff systems of the form (3.6}, in spite of their low stage order.

Comparing the efficiency of the various parallel methods of Type I1, we observe that schemes of Type A and C are
>qually efficient, since they require the same number of sequential stages (cf. Table 3.2). The Type IIB.2 methods yield
slightly more accurate results, but need an additional stage to reach the same order (we remark that the seventh-order
xnethod of this type does not show full advantage, since the integration process was impeded by the machine precision
which is approximately 7-10-14 on our machine).

Table 3.5. Values of A at t=1 for the first component of problem (3.6") with e=10-8,

Type  Corrector Order h=1/4 h=1/8 h=1/16 h=1/32 h=1/64 Seq.Stages Numberof
per step Processors
B.1 Radau ITA 3 3.7 4.1 4.6 5.2 5.8 3 2
Gauss-Legendre 4 2.9 36 4.2 4.8 54 4 2
Explicit Runge-Kutta 4 3.0 3.7 43 4.9 5.5 4 4
Radau TA 5 3.6 43 49 5.5 6.1 5 3
Gauss-Legendre 6 3.1 3.7 44 5.0 5.6 6 3
IA.1  Radau[IA 3 4.0 49 5.8 6.7 7.6 3 2
Radau IIA 5 6.9 84 9.8 10.6 11.0 5 3
MB1 RadwIA 3 43 52 61 10 19 4 2
Radau ITA 5 7.2 8.7 10.3 11.8 11.8 6 3
Radau ITA 7 9.7 10.2 10.6 10.9 11.2 8 4
IIC.2 RadaullA ""-"“3 4.0 49 5.8 6.7 7.6 3 2
Radan [IA 5 6.9 84 9.8 10.6 11.0 5 3
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3.2. PDIRK Methods with Arbitrary Diagonal Matrices

In the case where B and D are allowed to be arbitrary diagonal matrices, it is convenient to express Qp(2) in the
form

Qm@) = [1-Z)11-Z™] + ZmQq = [I - Z]-1I - Z™] + Z™[I - zD][I - zB]-L{I + zE].
Since [I-zD] 1=[I-zA]"1[I-Z], we find
Qm(@) = [1 - zDII - zAJ 1 [X - ZM 4 (1 - Z]Z™{1 - ZD){1 - zB}- (I + zE}]
so that (3.3) yields
RiLZ) =1+2bT-zAl[I-Z™ + [1-Z)ZM( - zD]{I - zB]- 1[I + zE] Je,
e R (2) =esT(I-zA]![1-ZM + [I-Z]Z™([I - zD}[ - 2B} 1[I + zE] Je
=1+egT[I-zA] [ zA - ZM + [1 - Z)Z™[ - zD]{I - zB]-1[i + zE]Je.

In the following two subsections, a representation for the stability functions without inverses of matrices will be
given and stability characteristics of PDIRK methods of the Types IB.2, IIB.2 and 1IC.3 are presented.

3.2.1. Representation theorems. The following theorem gives a representation of the stability functions in terms of
determinants only containing inverses of diagonal matrices:

Theorem 3.2. The stability functions (3.3") can be represented by

det{I-zA + z[I1- 2™ + [1- Z)Z™[I - zD]{I - zBJ 1[I + zE]]ebT}

Rlm() = dot(1 - ZA] ;

(3.7)
det{I - zA + [zA - Z™ + [I - ZJZ™[I - zD](I - zB]}[I + 2zE] ] ee T}

a _
R%m(2) = Tot(I-zA)

Proof. Applying the identity

Tn-1. . det{N + yxT}
1+x'N-ty= &™) R

to the stability functions (3.3") straightforwardly leads to the representations (3.7). i1
The expressions (3.7) can be simplified for the respective Types A, B and C:

Corollary 3.1. Let the matrix Z be given by Z = z(A-D)(I-zD)'1, then the following assertions hold:
(a) The stability function of PDIRK methods of Type A.1 are given by

det{1-zA + z[I - ZZMA]ebT }
det{l - zA} ?

det{I-zA + z[I - ZM] Aee,T }

38 Rln@)= det{1-zA)

Rl (2) =

(b) The stability function of PDIRK methods of Type B are given by

det{I - zA + z[I - Zm+1]ebT }
det{I - zA} :

det{I- zA + [zA - Z™+1]ee T}
det{I - zA}

(380 Rl,z)= RI@) =

(c) The stability function of PDIRK methods of Type C.2 or Type C.3 are given by
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det{1-2zA +2[I- 2Zm+1A]ebT } I det{1-zA + z[I - Zm+1] Aee T}

1 _ —
(38) R'm( det{1 - zA} Rim(@) = det{I-zA}

Notice that these expressions do not explicitly depend on E and B anymore and are completely determined by the
corrector and the matrix Z.

3.2.2. Stability characteristics. In this subsection, we consider the stability of PDIRK methods. We shall distinguish
between methods based on Radau ITA correctors and on Gauss-Legendre correctors.

The Radau IIA correctors have order p=2s-1, where s is the number of stages, and satisfy the condition bT=e,TA
(their Butcher arrays for s=1....,4 are given in the Appendix). Due to this property, PDIRK methods of Type I and Type
I1 are both relevant. We confine our considerations to types which require (with respect to their order) less sequential
stages than the corresponding methods indicated in Table 3.2, that is, we consider methods of the Types IB.2, [IB.2 and
IIC.3. For these types of methods, the stability functions are completely determined. In Table 3.6, we present a survey
of the characteristics of these methods for several orders. Based on the stability functions (3.8), the stability region of
the methods was determined numerically. It turned out that some stability functions are only A(c)-acceptable. However,
in these cases o is very close to 90° (in the Appendix, a set of stability regions is given, including the regions of the
embedded lower order methods).

Furthermore, we considered PDIRK methods based on Gauss-Legendre correctors. Such s-stage correctors have
order 2s, but are not stiffly accurate and hence, only Type I methods are relevant. In Table 3.6 we have included the
characteristics of fourth- and sixth-order methods of Type IB.2 (the generating correctors can be found in {2, p. 2191 ).

Table 3.6. Characteristics of PDIRK methods based on arbitrary B and D matrices

Type Corrector Order  Seq.Stages  Processors Stability
B2 Radau A 3 2 2 Strongly A-stable
Gauss-Legendre 4 3 2 Strongly A-stable
Radau IA 5 4 3 Strongly A-stable
Gauss-Legendre 6 5 3 Strongly A(or)-stable, 0=89.97°
Radau TA 7 6 4 Strongly A(cor)-stable, a=83.3°
B.2 Radau TA 3 3 L{o)-stable, 0=89.75°
Radau TA 5 5 3 L{or)-stable, 0=89.12°
Radau TA 7 7 4 L(o)-stable, 0=89.02°
IIc.3 Radau ITA 3 2 2 A-stable
Radau TA 5 4 3 A(o)-stable, 0=89.997°
Radau DA 7 6 4 A(o)-stable, 0=89.95°

In comparison with the PDIRK methods constructed in Section 3.1, we observe that the above PDIRK methods of
Type IB.2 and IIC.3 require one sequential stage less to obtain a given order of accuracy. Moreover, with the exception
of the 7th-order method of Type IB.2, these methods possess almost the same good stability properties.

For the methods of Type IIB.2 (for which the order equals the number of sequential stages), only the seventh-order
is relevant, since in Section 3.1 it turned out to be impossible to construct an L-stable method of order 7 with 7
sequential stages; the third- and fifth-order methods of Type 1IB.2 do not have an advantage over the L-stable methods
described in Section 3.1.

3.2.3. Numerical experiment. We conclude this section by applying the methods specified in the above table to the
problem (3.6"). Using the same notation as described in Section 3.1.3, the results are given in Table 3.7.

Again, the stiffly accurate Type II methods are much more efficient than the methods of Type 1. Moreover, the
order behaviour nicely illustrates the results of the theorem of Hairer et al. (cf. Section 3.1.2). Furthermore, within the
class of stiffly accurate methods, the C-variant is superior to the B-variant, since it is cheaper and yields, for this
example, more accuracy.
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Table 3.7. Values of A at t=1 for the first component of problem (3.6") with =108,

Type  Corrector Order h=1/4 h=1/8 h=1/16 h=1/32 h=1/64 Seq.Stages Numberof
per step Processors
B2 Radau ITA 3 2.8 38 4.1 4.7 53 2 2
Gauss-Legendre 4 2.7 34 4.0 4.6 5.3 3 2
Radau 1A 5 2.4 2.8 34 4.1 4.8 4 3
Gauss-Legendre 6 3.0 3.5 4.1 4.8 5.4 5 3
RadauTTA 7 4.2 4.6 52 5.8 6.4 6 4
B2 RadaullA 3 3.4 4.1 4.9 5.8 6.7 3 2
Radau ITA 5 4.9 6.1 7.5 9.0 104 5 3
Radau ITA 7 6.4 8.2 10.1 11.9 12.5 7 4
IIC.3 RadauTA 3 4.3 52 6.1 7.0 7.9 2 2
Radau A 5 6.6 8.0 9.4 10.8 11.6 4 3
Radau ITA 7 8.7 10.6 12.0 12.3 12.6 6 4

Acknowledgement. The authors like to thank dr. W. Hundsdorfer for the fruitful discussions on the order reduction
phenomenon.
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APPENDIX

1. RADAU IA CORRECTORS
First, we specify the A-matrices of the Radau IIA correctors underlying the Type II methods. For orders p*=3,5,7
and 9, the corresponding matrices are respectively given by

3 -1
12 12
an A=l
4 4
88 -7V6 296 -169V6 -2 +3V6
360 1800 225
296 +169V6 88+ 7V6 -2-3V6
. A:-_— Y
(A2) 1800 360 225
16 - V6 16 + V6 L
36 36 9
11299947932316 -.04030922072352 .02580237742034  -.0099046765073
23438399574740 .20689257393536 -.04785712804854 .01604742280652
(A3) A= 1668178462325 .40612326386737 .18903651817006 -.02418210489983 |

22046221117677 .38819346884317 .32884431998006 11_6

.07299886431790 -.02673533110795 .01867692976398 -.01287910609331 .00504283923388
.15377523147918  .14621486784749 -.03644456890513 .02123306311930 -.00793557990273
(A4d) A= .14006304568481 .29896712949128 .16758507013525 -.03396910168662 .01094428874419

.14489430810953 .27650006876016 .32579792291042 .12875675325491 -.01570891737881

.14371356079123 .28135601514946 .31182652297574 .22310390108357 51-5-

Recall that the weights of these RK methods are given by bT=e;TA.

2.  STABILITY PLOTS OF PDIRK METHODS.

Next, we give plots of the stability region of methods of Type IB.2, IIB.2 and IIC.3 based on Radau ITA correctors
up to order seven, and of methods of Type IB.2 based on Gauss-Legendre correctors of order four and six. In these plots,
the shaded area indicates the region where the method is stable.

For each method, we first made a plot using a rather coarse scale along the real and imaginary axis. Then, using a
much finer scale, a further inspection was made of several parts of the complex plane, with emphasis on the
neighbourhood of the origin and on points along the imaginary axis. Following this procedure, several methods were
found to be only A(a)- or L{a)-stable, however with o close to 90°. When this situation happened to be the case for a
particular method, we also provide a close-up, showing that part of the left half plane where the method is unstable.
Moreover, for each method of order<6, the plot of its stability region is preceded by plots of the stability regions of the
embedded formulas. Finally, since the stability regions are symmetric with respect to the real axis, we confine ourselves
to the upper halfplane.
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It turned out that all stability regions have one of the following three characteristic forms:

Y

|
I
I
|
|
{
|
|
|
|
|
i
Q
Situation 1 Situation 2 Situation 3

In these pictures some parameters have been introduced in order to adequately describe the size of the stability region:

in case of Situation 1 and 3, N, W and E can respectively be interpreted as the (projections of) the northern, western and
eastern point of the region where the method is unstable; in the case of Situation 2, N and W have the same
interpretation for the stability region.

I denotes the interval on the imaginary axis where the method is unstable (Situation 1 and 3) / stable (Situation 2).
Finally, Q is introduced to describe an asymptotic behaviour of the stability egion (cf. Situation 3).

In the plots, only the relevant parameters will be specified.

2.1. Third-Order Methods Based on the Radau ITA Corrector of Order 3.
For all methods described in this subsection, the corrector is given in (A.1)

2.1.1. Methods of Type IB.2. For methods of this type the order is given by p* = min{3,m+2}.

m=0, N=5.4, W=-11.0, I=[0,0] m=1, N=6.6, E=9.2, strongly A-stable

2.1.2. Methods of Type IIB.2. For methods of this type the order is given by pH = min{3,m+1}.

m=0, N=1.0, E=2.0, L-stable m=1, N=2.3, E=4.6, L-stable



m=2, N=3.0, E=5.6, W=-0.02, 1=(0,0.60) m=2, close-up
L{or)-stable, 0=89.75°

2.1.3. Methods of Type IIC.3. For methods of this type the order is given by pX = min{3,m+2}.

m=0, Q=0.0, A-stable m=1, Q=0.50, A-stable

2.2. Fifth-Order Methods Based on the Radau XA Corrector of Order 5.
For all methods described in this subsection, the corrector is given in (A.2)

2.2.1. Methods of Type IB.2. For methods of this type the order is given by p! = min{5,m+2}.

m=0, N=3.6, W=-6.8, I=[0,0] m=1, N=10, E=17, strongly A-stable

m=2, N=27, E=54, strongly A-stable m=3, N=44, E=60, strongly A-stable

15
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2.2.2. Methods of Type I1B.2. For methods of this type the order is given by p = min{5,m+1}.

m=2, N=3.1, E=7.9, W=-2.0104, [=(0,0.58) m=3, N=3.5, E=8.2, W=-0.008, 1=(0,0.94)
L(o)-stable, 0=89.98° L{or)-stable, 0=89.31°

.
it

m=4, N=4.5, E=8.8, W=-0.015, 1=(0.30,1.26) m=4, close-up
L{o)-stable, 0=89.12°

2.2.3. Methods of Type IIC.3. For methods of this type the order is given by pl! = min{5,m+2}.

Eapmary st g,
et

e
it
s e L
W:mmﬂﬁmw e

m=2, Q=2.1, A-stable m=3, Q=6.3, W=-3.510-5, 1=(0,0.82)

A{o)-stable, 0=89.997°



m=3, close-up

2.3. Seventh-Order Methods Based on the Radau IIA Corrector of Order 7.
For all methods described in this subsection, the corrector is given in (A.3)

2.3.1. Methods of Type IB.2. For methods of this type the order is given by p! = min{7,m+2}.

m=5, N=54, E=12.6, W=-0.21, 1=(1.0,3.0) m=5, close-up
strongly A(o)-stable, 0=83.3°

2.3.2. Methods of Type IIB.2. For methods of this type the order is given by pll = min{7,m+1}.

m=6, N=7.0, E=13.4, W=-0.022, 1=(0.68,1.68) m=6, close-up
L(o)-stable, 0=89.02°

2.3.3. Methods of Type IIC.3. For methods of this type the order is given by pII =min{7,m+2}.

m=5, Q=5.5, W=-0.0011, [=(0.48,1.8) m=5, close-up
A(o)-stable, 0=89.95°

17
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2.4. Fourth-Order Methods Based on the Gauss-Legendre Corrector of Order 4.
The two-stage, fourth-order corrector can be found in [2, p. 219]. Recall that only methods of Type I are relevant.

The order of this type of methods is given by p! = min(4,m+2).

m=0, N=3.8, W=-7.4, I=[0,0] m=1, N=5.8, E=7.8
strongly A-stable

m=2, N=7.6, E=15.0
strongly A-stable

2.5. Sixth-Order Methods Based on the Gauss-Legendre Corrector of Order 6.
The three-stage, sixth-order corrector can be found in [2, p. 220]. Recall that only methods of Type I are relevant.

The order of this type of methods is given by pI =min{6,m+2}.

m=0, N=3.2, W=-6.2, I=[0,0] m=1, N=21, E=40
strongly A-stable

m=2, N=55, W=-120, I=[0,8.6] m=3, N=110, W=-220, I=[0,0}[0.49,10.0]
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m=4, N=19, E=29, W=-3.310-4, 1=(0.16,0.84) m=4, close-up
strongly A(o)-stable, «=89.87°



