
Cent rum
voor

Wiskunde
en

lnformatica. ·
Centre tor Mathematics and Computer Science

H.J.M. Goeman

Towards a theory of (self) applicative communicating processes: a short note

Computer Science/Department of Software Technology Report CS-R8924 June

1989

Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

H.J.M. Goeman

Towards a theory of (self) applicative communicating processes: a short note

Computer Science/Department of Software Technology Report CS-R8924 June

"-l -?'";c2=:::._:=---- - - - -· · -

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
1946, as a nonprofit institution aiming at the promotion of mathematics, com­
puter science, and their applications. It is sponsored by the Dutch Govern­
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Towards a Theory of (Self) Applicative Communicating
Processes: a Short Note

Henk Goeman
Centre for Mathematics and Computer Science

P. 0. Box 4079, 1009 AB Amsterdam, The Netherlands

Current address: Dept. of Computer Science, Leiden University

P.O. Box 9512, 2300 RA Leiden, The Netherlands

Abstract

In this paper a direct combination of the ~-calculus with concepts from concurrency is introduced.
Abstraction and (self)application from the ~-calculus are maintained as primitive constructs in
the combined calculus, which incorporates also notions of (non)deterministic choice, concurrent

and sequential composition, communication, encapsulation and hiding as in Process Algebra
(CCS, etc.). In this setting ~ is just an arbitrary port name without any special role. We give
an operational semantics to the combined calculus, where process application appears as a gen­
eralisation of function application. The combined calculus has great expressive power: recursive
constructs appear through self application and data objects are just component processes in
concurrent constructs.

Key Words & Phrases: concurrent processes, process algebra, process calculus, ~-calculus, ab­

straction, communication, (self)application.
1985 Mathematics Subject Classification: 03B40, 68Q05, 68Q10.
1987 CR Categories: D.3.1, F.1.1, F.1.2, F.4.1.

1 Introduction

It is possible to introduce calculi of processes which are direct extensions of the A-calculus
with several notions taken from theories of concurrency (Process Algebra, CCS, etc.).

Such calculi combine notions of abstraction and (self) application taken from the A-calculus
with notions of (non)deterministic choice, concurrent and sequential composition, commu­
nication, synchronisation, encapsulation and hiding taken from the theory of concurrent
processes.

In a recent paper (1] Gerard Boudol introduced such a A-calculus for concurrent and com­
municating processes, where application appears as (a special kind of) communication and
where the fi-reduction rule appears as a (special kind of) communicative interaction law.

A source of inspiration for his work was the striking, but of course intentional, similarity of
terms of the form Ax.P representing the abstraction mechanism in the A-calculus and terms
of the form ax.P representing synchronised input in CCS [2].

Report CS-R8924
Centre for Mathematics and Computer Science 1
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

_ _;.,; _--~~ = -:.-

2 2 SYNTAX

In this short note we will introduce an even more direct combination of the A-calculus with

concepts from concurrency, where application is not translated to other (new or existing)

primitive constructs, but is itself maintained as a primitive construct in the combined calculus.

We will first propose a possible syntax for such a calculus. Then we will define a possible

operational s~mantics for it by means of a labelled transition system. Finally we will give

several examples of process terms which may give some flavor of the expressive power of the

calculus.
Some useful comments were given by Frits Vaandrager on an early draft for this paper.

2 Syntax

Let x, y, z, ... denote arbitrary variables from a set V of variables given as an infinite sequence

of distinct symbols vi, v2, Let A,µ, a,{3, ... denote arbitrary port names from a set II of

port names given as an infinite sequence of distinct symbols 7ri, 11"2, ••• , and let s denote an

arbitrary port renaming, i.e. an element from [II-+ II]. In the following a finite port renaming

b "t li"l ' ' ' may e wnt en exp c1t y as 0t1 1-+ a 1, 0t2 1-+ a2 , ••• , 0t1c 1-+ 0t1c.

Now let P, Q, R, .. . denote arbitrary process terms from the set r of process terms induc­

tively defined with the syntax
P,Q,R, ...

x I (Ax.P) I (PQ) I (AP) I (P + Q) I (PIQ) I (P; Q) I (P\A) I (P[s]).

(Ax.P)
(PQ)

is called abstraction or input on port A,
is called application,

(AP) is called output on port A,
(P + Q) is called choice,
(PIQ) is called parallel composition,
(P; Q) is called sequential composition,
(P\A) is called restriction,
(P[s]) is called port renaming.

notation

1. outer parentheses are not written;

2. to avoid an excessive use of parentheses the following operator precedences are assumed:

abstraction < choice < parallel composition < sequential composition < application <
output < restriction < renaming;

3. parentheses are also omitted as usual within a repeated abstraction and within a re­

peated left associative application;

4. the symbol = denotes syntactical equality.

We have chosen for sequential composition as in ACP and for concurrent composition,

restriction and port renaming as in CCS. Of course, other possibilities could have been chosen

here as well.

- -- - ~-::.~.:_...

3

3 Semantics

Let a denote an arbitrary action from the set of actions A, where A = { o.? P, o.!P, r I a. E

II, P E r}. These actions are used as labels in a labelled transition system in r x A x r,
generated by the following rules. The rules use also transitions in r x Ax {nil}.
Please note that nil does not belong to r. It should be considered as a virtual process, only

used within the transition rules to facilitate the derivations of the real process transitions.

transition rules

l. I-
o.?Q

o.x.P ~ P[x := Q]

2. P -2..+ P' I- o.x.P -2..+ o.x.P'

3. P ~ P' I- PQ -2..+ P'

4. P -2..+ P' I- PQ -2..+ P'Q

5. P -2..+ P' I- QP -2..+ QP'

6 I- P o.!P ·1
. 0. --+"'

7. P -2..+ P' I- o.P -2..+ o.P'

8. P --!:... nil I- P + Q --!:... nil

9. P --!:... nil I- Q + P --!:... nil

10. P --!:... P' I- P + Q --!:... P'

11. P --!:... P' I- Q + P --!:... P'

12. P --!:... nil I- PIQ --!:... Q

13. P --!:... nil I- QIP --!:... Q

14. P~P', Q~nil

15. P o.?R P' Q o.!R ·1 --+ , --+ n1

16.

17.

I- PIQ -2..+ P'

t- QIP -2..+ P'

I- PIQ -2..+ P'IQ'

I- QIP ...2:.... Q'IP'

18. p --!:... P' I- PIQ --!:... P'IQ

19. p --!:... P' I- QIP --!:... QIP'

20. P --!:... nil I- P; Q --!:... Q

21. P--!:... P' I- P; Q --!:... P'; Q

4

22. P~P' I-

23. p a!Q ·1
- ni I-

24. P~P' I-

25. P~P' I-

26. p a!Q P' I-

27. p a!Q ·1
-ni I-

28. P~P' I-

29. P~P' I-

30. P~P' I-

Q;P~Q;P'

P\{3 ~nil

P\{3 ~ P'\{3

P\{3 ~ P'\{3

P\{3 ~ P'\{3

P[s] a~Q nil

P[s] ~ P'[s]

P[s] "<.~p P'[s]

P[s] a~Q P'[s]

(a-#{3)

(a -I {3)

(a -I {3)

3 SEMANTICS

We will omit here a definition of the substitution construct P[x := Q]. This construct
should be defined in the usual way where clashes of free and bound occurrences of variables
are avoided by means of a suitable renaming of bound variables (a-reduction).

Of course, several rules above may have quite different alternatives, with very natural moti­
vations. It all depends on the desired algebraic properties one may want for the operations on
the set of process terms modulo an appropriate observational equivalence, much like the one
defined in Boudol's paper [1]. Such an equivalence relation should also justify the equality
symbol as used in the next section.

Note especially how the application of a process term P to a process term Qin the proposal
above has the effect of making process P behave as a scheduler: it sends process Q to one of
its possible subterms which is an abstraction ready to accept input for P.
Process application is thus indeed a generalisation of function application!

4 Examples of process terms

1. Let D = µ z .ax.f3(Qx); z z
and 0 = DD = ax.f3(Qx) ;O .
The process 0 represents an object:
it answers QR on port f3 for any request R on port a.

2. Let D = µz.({3.1. + ax.f3x); zz
and K = DD = ({3.1. + ax.f3x); K.
The process K represents a channel with default output .1..

3. Let D = µz.>..y.f3y; zzy + ax.zzx
and R = DD = >..y.f3y; Ry + ax.Rx
then RP = f3P ; RP+ ax.Rx.
The process RP represents a register with initial content P.
Note that ax.Rx represents a register without initial content.

4. Let D = µz.ax.f3x + zz; f3x
and S = DD = ax.f3x + S;f3x.

5

The process S represents a stack of process terms to be pushed on S at port a, popped
from S at port f3.

5. Let C = >..x.>..y.(x(a 1-+ -y] I y[f3 1-+ -y])\1.
The process C represents a chaining operator.

Such terms can be used in a very useful way as component process terms in a parallel
composition.

Note especially how the usual dichotomy between data objects and program structures is
totally absent in our combined calculus: data objects are themselves just component pro­
cesses.

References

[1) Gerard Boudol, Towards a Lambda-Calculus for Concurrent and Communicating Sys­
tems.
In: Proc. TAPSOFT'89, vol 1: CAAP (J.Dfaz,F.Orejas{Eds.)),
pp 149-161, LNCS 351 {1989).

[2] Robin Milner, A Calculus of Communicating Systems.
LNCS 92 (1980) .

•

