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Abstract 

In this paper a direct combination of the ~-calculus with concepts from concurrency is introduced. 
Abstraction and (self)application from the ~-calculus are maintained as primitive constructs in 
the combined calculus, which incorporates also notions of (non)deterministic choice, concurrent 

and sequential composition, communication, encapsulation and hiding as in Process Algebra 
(CCS, etc.). In this setting ~ is just an arbitrary port name without any special role. We give 
an operational semantics to the combined calculus, where process application appears as a gen­
eralisation of function application. The combined calculus has great expressive power: recursive 
constructs appear through self application and data objects are just component processes in 
concurrent constructs. 

Key Words & Phrases: concurrent processes, process algebra, process calculus, ~-calculus, ab­

straction, communication, (self)application. 
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1 Introduction 

It is possible to introduce calculi of processes which are direct extensions of the A-calculus 
with several notions taken from theories of concurrency (Process Algebra, CCS, etc.). 

Such calculi combine notions of abstraction and (self) application taken from the A-calculus 
with notions of (non)deterministic choice, concurrent and sequential composition, commu­
nication, synchronisation, encapsulation and hiding taken from the theory of concurrent 
processes. 

In a recent paper (1] Gerard Boudol introduced such a A-calculus for concurrent and com­
municating processes, where application appears as (a special kind of) communication and 
where the fi-reduction rule appears as a (special kind of) communicative interaction law. 

A source of inspiration for his work was the striking, but of course intentional, similarity of 
terms of the form Ax.P representing the abstraction mechanism in the A-calculus and terms 
of the form ax.P representing synchronised input in CCS [2]. 
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2 2 SYNTAX 

In this short note we will introduce an even more direct combination of the A-calculus with 

concepts from concurrency, where application is not translated to other (new or existing) 

primitive constructs, but is itself maintained as a primitive construct in the combined calculus. 

We will first propose a possible syntax for such a calculus. Then we will define a possible 

operational s~mantics for it by means of a labelled transition system. Finally we will give 

several examples of process terms which may give some flavor of the expressive power of the 

calculus. 
Some useful comments were given by Frits Vaandrager on an early draft for this paper. 

2 Syntax 

Let x, y, z, ... denote arbitrary variables from a set V of variables given as an infinite sequence 

of distinct symbols vi, v2, . ... Let A,µ, a,{3, ... denote arbitrary port names from a set II of 

port names given as an infinite sequence of distinct symbols 7ri, 11"2, ••• , and let s denote an 

arbitrary port renaming, i.e. an element from [II-+ II]. In the following a finite port renaming 

b "t li"l ' ' ' may e wnt en exp c1t y as 0t1 1-+ a 1, 0t2 1-+ a2 , ••• , 0t1c 1-+ 0t1c. 

Now let P, Q, R, .. . denote arbitrary process terms from the set r of process terms induc­

tively defined with the syntax 
P,Q,R, ... 

x I (Ax.P) I (PQ) I (AP) I (P + Q) I (PIQ) I (P; Q) I (P\A) I (P[s]). 

(Ax.P) 
(PQ) 

is called abstraction or input on port A, 
is called application, 

(AP) is called output on port A, 
(P + Q) is called choice, 
(PIQ) is called parallel composition, 
(P; Q) is called sequential composition, 
(P\A) is called restriction, 
( P[ s]) is called port renaming. 

notation 

1. outer parentheses are not written; 

2. to avoid an excessive use of parentheses the following operator precedences are assumed: 

abstraction < choice < parallel composition < sequential composition < application < 
output < restriction < renaming; 

3. parentheses are also omitted as usual within a repeated abstraction and within a re­

peated left associative application; 

4. the symbol = denotes syntactical equality. 

We have chosen for sequential composition as in ACP and for concurrent composition, 

restriction and port renaming as in CCS. Of course, other possibilities could have been chosen 

here as well. 

- -- - ~-::.~.:_... 
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3 Semantics 

Let a denote an arbitrary action from the set of actions A, where A = { o.? P, o.!P, r I a. E 

II, P E r}. These actions are used as labels in a labelled transition system in r x A x r, 
generated by the following rules. The rules use also transitions in r x Ax {nil}. 
Please note that nil does not belong to r. It should be considered as a virtual process, only 

used within the transition rules to facilitate the derivations of the real process transitions. 

transition rules 

l. I-
o.?Q 

o.x.P ~ P[x := Q] 

2. P -2..+ P' I- o.x.P -2..+ o.x.P' 

3. P ~ P' I- PQ -2..+ P' 

4. P -2..+ P' I- PQ -2..+ P'Q 

5. P -2..+ P' I- QP -2..+ QP' 

6 I- P o.!P ·1 
. 0. --+"' 

7. P -2..+ P' I- o.P -2..+ o.P' 

8. P --!:... nil I- P + Q --!:... nil 

9. P --!:... nil I- Q + P --!:... nil 

10. P --!:... P' I- P + Q --!:... P' 

11. P --!:... P' I- Q + P --!:... P' 

12. P --!:... nil I- PIQ --!:... Q 

13. P --!:... nil I- QIP --!:... Q 

14. P~P', Q~nil 

15. P o.?R P' Q o.!R ·1 --+ , --+ n1 

16. 

17. 

I- PIQ -2..+ P' 

t- QIP -2..+ P' 

I- PIQ -2..+ P'IQ' 

I- QIP ...2:.... Q'IP' 

18. p --!:... P' I- PIQ --!:... P'IQ 

19. p --!:... P' I- QIP --!:... QIP' 

20. P --!:... nil I- P; Q --!:... Q 

21. P--!:... P' I- P; Q --!:... P'; Q 
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22. P~P' I-

23. p a!Q ·1 
- ni I-

24. P~P' I-

25. P~P' I-

26. p a!Q P' I-

27. p a!Q ·1 
-ni I-

28. P~P' I-

29. P~P' I-

30. P~P' I-

Q;P~Q;P' 

P\{3 ~nil 

P\{3 ~ P'\{3 

P\{3 ~ P'\{3 

P\{3 ~ P'\{3 

P[s] a~Q nil 

P[s] ~ P'[s] 

P[s] "<.~p P'[s] 

P[s] a~Q P'[s] 

(a-#{3) 

(a -I {3) 

(a -I {3) 

3 SEMANTICS 

We will omit here a definition of the substitution construct P[x := Q]. This construct 
should be defined in the usual way where clashes of free and bound occurrences of variables 
are avoided by means of a suitable renaming of bound variables (a-reduction). 

Of course, several rules above may have quite different alternatives, with very natural moti­
vations. It all depends on the desired algebraic properties one may want for the operations on 
the set of process terms modulo an appropriate observational equivalence, much like the one 
defined in Boudol's paper [1]. Such an equivalence relation should also justify the equality 
symbol as used in the next section. 

Note especially how the application of a process term P to a process term Qin the proposal 
above has the effect of making process P behave as a scheduler: it sends process Q to one of 
its possible subterms which is an abstraction ready to accept input for P. 
Process application is thus indeed a generalisation of function application! 



4 Examples of process terms 

1. Let D = µ z .ax.f3(Qx); z z 
and 0 = DD = ax.f3(Qx) ;O . 
The process 0 represents an object: 
it answers QR on port f3 for any request R on port a. 

2. Let D = µz.({3.1. + ax.f3x); zz 
and K = DD = ({3.1. + ax.f3x); K. 
The process K represents a channel with default output .1.. 

3. Let D = µz.>..y.f3y; zzy + ax.zzx 
and R = DD = >..y.f3y; Ry + ax.Rx 
then RP = f3P ; RP+ ax.Rx. 
The process RP represents a register with initial content P. 
Note that ax.Rx represents a register without initial content. 

4. Let D = µz.ax.f3x + zz; f3x 
and S = DD = ax.f3x + S;f3x. 

5 

The process S represents a stack of process terms to be pushed on S at port a, popped 
from S at port f3. 

5. Let C = >..x.>..y.( x(a 1-+ -y] I y[f3 1-+ -y] )\1. 
The process C represents a chaining operator. 

Such terms can be used in a very useful way as component process terms in a parallel 
composition. 

Note especially how the usual dichotomy between data objects and program structures is 
totally absent in our combined calculus: data objects are themselves just component pro­
cesses. 
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