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The minimum weighted flow time scheduling problem is studied from a probabilistic point of view. A proba­
bility distribution is specified over its problem instances, and the asymptotics of the optimal solution value 
are derived. Rewriting this value as a U-statistic perturbed by a small term allows us to use results from the 
well-established theory on these statistics. We derive a law of large numbers, a law of the iterated logarithm 
and a central limit theorem. As a byproduct we obtain a proof of asymptotic optimality almost surely of a 
greedy heuristic (the shortest weighted processing time first rule) for the solution of the NP-complete prob­
lem with more than one machine. 
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INTRODUCTION 
In this paper we derive convergence properties of the optimal solution value of the scheduling problem 
with a minimum weighted f/owtime objective. For this problem we are given n jobs with processing 
times PJ and weights w1, j = l , ... ,n, that are to be scheduled on m identical parallel machines. Let c1 
be the completion time of job j , j = 1, ... , n, under a feasible schedule. Then the weighted flow time of 
this schedule is "'2:.J = 1 w1C1. 

This problem, in scheduling standard notation mll"'2:.J= 1w1c1, is NP-hard for m~2 (see [GAREY & 
JOHNSON 1979, p. 240]). For the single machine version (m = 1) an optimal schedule is obtained by 
the (polynomial) shortest weighted processing time first rule (SWPT) [SMITH 1956]: the jobs are 
scheduled on the machine in order of increasingp/wJ - ratio. 

In Section 2 we assume a probability distribution over the class of problem instances and analyse 
the asymptotic behaviour of the optimal solution value of the single machine problem. More 
specifically, we derive a strong law of large numbers which shows that the optimal solution value of 
problem instances with a growing number of jobs converges with probability I (wp 1) to a constant, if 
properly normalized. Moreover we present a rate of convergence in the form of a law of the iterated 
logarithm, and a central limit theorem. The derivation of these results rely heavily on the transcription 
of the optimal solution value as a U-statistic perturbed by a term that is asymptotically negligible. 
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The results follow then easily from the well-established theory on these statistics. 
In Section 3 we consider the m-machine problem. We derive upper and lower bounds on the 

optimal solution value. For the upper bound we use the SWPT-rule as an approximation algorithm. 
Once established these bounds, the asymptotics of the optimal solution value of the m-machine prob­
lem appear to come straightforward from those of the single machine problem. As a byproduct we 
obtain a proof of asymptotic optimality (wp 1) of the SWPT-rule. 

Some concluding remarks follow in Section 4. Throughout the paper random variables are indicated 
by boldface characters. 

2. THE SINGLE MACHINE PROBLEM 

Let us assume that the processing times of the jobs p1 ,P2,··· are positive, independent and identically 
distributed (i.i.d.) random variables and that the weights w1, w2, . .. are positive i.i.d. random variables. 
The optimal solution value of a minimum weighted flowtime problem is then a random variable 
denoted by z;,,n. 

In this section we study convergence properties of z;,n, the optimal value of the single machine 
problem. This value can be characterized through the SWPT-rule (see Section 1). Let 
(w(J), P(J)), (w<2), P(2)), .... ,(w(n),P(n)) be order statistics of n observations of the weight-processing time 
pair, where the order is dictated by increasing p/w1 - ratio's, i.e., 

P(J) ,s::: P(2) ,s::: ,s::: P(n) 
--..::::: --::: ... --...:::: . 

w(I) w(2) W(n) 

The completion time of the j-th job in this sequence is equal to l:i=IP(k), and the optimal value is 
given by 

(2.1) 

To avoid analytical difficulties we assume that the ratio p/w has a continuous distribution. In Section 
2.1 we show that the behaviour of z;,n, properly normalized, is essentially that of a so-called U­
statistic. Given this knowledge, in Section 2.2 asymptotic properties of z ;,n are derived almost 
straightforwardly from the theory on U-statistics. 

2.1. Towards a U-statistic 
Leth (x 1 , ... ,x1) be a symmetric real-valued function, called a kernel. Its domain is the /-fold Cartesian 
product of the spaces where the x;'s live on. For any such a kernel, the corresponding U-statistic, 
based on a sample of n independent observations Xi, .. . ,Xn on some distribution, with n ;;,:/, is 
obtained by averaging the kernel h over the observations: 

1 
Vn = - ~ h(X; , ... ,X; ), n . . I / <,> ,,, ... ,,, 

n 
where the summation is over all the ( 1) possible combinations of / out of n observations. For a survey 

of the theory on U-statistics we refer to [SERFLING 1980, Chapter 5]. 
In our specific situation we define the kernel function h :R2 X R 2-+R as 

{

wp'/2 

h ((w,p ), (w', p')) = w~/2 

The corresponding U-statistic is given by 

2 

ifplw>p'w' 

ifplw<p'w' 

if plw = p' lw'. 

(2.2) 



3 

It is not hard to see that z i n in (2.1) can be rewritten as . 
ZJ ,n = U ~j=JWjPj 

n(n-1) n+ n(n-1) . (2-3) 

We observe that zi,n normalized by n(n -1) is a U-statistic perturbed by a normalized sum of i.i.d. 
random variables. The influence of the latter term on the asymptotic behaviour of z i,n will turn out 
to be negligible. 

2.2. Convergence properties of zi,n 
As a prerequisite for convergence theorems on U-statistics that we shall use, the variance of the condi­
tional expectation E(h((w,p), (w', p'))l(w,p)) should not be equal to zero. Let us denote this condi­
tional expectation by h 1 (w,p). Under this condition the theory of U-statistics resembles strongly that 
of sums of i.i.d. random variables. The condition is easily verified in our case if we assume that (w,p) 
has a distribution whose support contains a two dimensional convex set. 

LEMMA 2.1. Under the above assumption and Ew1 < oo, Ep1 < oo, we have Var(h 1 (w,p))>O. 

PROOF. If the lemma were not true, then there exists a constant c such that h 1(w,p)=c (wpl). Now 
take any (w,p) and (aw, ap) from the convex set in the support of the distribution of (w,p), with 
a>0, a=#:1. Thus, we have h 1(w,p)=h 1(aw,ap)=c. However, from definition (2.2) of h((w,p), (w' ,p')) 
it is easy to see that h 1(aw, ap) = ah 1(w,p) a contradiction if O<c<oo . But h 1(w,p)=O (wp 1) can 
only occur if the distribution of p/w is concentrated on only one point, which we excluded by our 
assumptions. Obviously, the assumptions Ew<oo, Ep<oo imply h 1(w,p)<oo (wp 1). □ 

Now we are ready to apply directly theorems from [SERFLING 1980, Chapter 5) to establish, respec­
tively, a law of large numbers, a law of the iterated logarithm, and a central limit theorem for 
z i nl(n (n - 1 )). Let fJ = Eh ((w,p), (w',p')). 

THEOREM 2.2. Law of large numbers. If Ew1 < oo , Ep1 < oo and Ew1 p1 < oo, then . 
limn-+oo ZJ ,n = (J (w 1). 

n(n-1) 'P 

PROOF. Recall formula (2.3). Using the independence of (w,p) and (w',p') we have 
I 

(J = E(h((w,p), (w',p'))~2 E(wp' +w'p) 

I I ~ 2 EwEp' + 2 Ew'Ep<oo 

by the assumptions. Hence Theorem A from [SERFLING 1980, p. 190) can be applied to prove that 

Iimn _.00 Vn = fJ (wp 1). (2.4) 

Since Ew1p1 <oo, the usual strong law of large numbers implies that 

. ~j= JWjPj - 0 
Iimn -+oo n(n - I) - (wp 1). (2.5) 

Together (2.4) and (2.5) imply the theorem . □ 

THEOREM 2.3. Law of the iterated logarithm. Let a2 = Var(h 1 (w,p)). Assume that a2 >0, Ewy< oo and 
Epy<oo. Then 

Yn(zi nl(n(n -1)) - fJ) 
lim SUPn-+oo 1/2 

2a(2loglogn) 
1 (wp 1). 
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PRooF. Recall formula (2.3). By independence of (w,p) and (w',p') we have 

E(h 2(w,p), (w'p')) ,s;;;; ! E(w2p'2 + w'2p2)<oo. 

Therefore, we may apply Theorem C from [SERFLING 1980, p. 191] to obtain 

. Yn(Un-(J) 
lim SUPn-+oo 112 1 (wp 1). 

2o(2loglog n) 

By Cauchy-Schwartz' inequality we have 

Ew1p1 ,s;;;; (EwyEpt)112 <oo, 

so that the strong law of large numbers implies that for every 8>0 

. ~j=,1WJPJ _ 
limn-+oo IH - 0 (wp 1). 

n 

Together (2.7) and (2.8) imply the theorem. □ 

(2.6) 

(2.7) 

(2.8) 

THEOREM 2.4. Central limit theorem. Let a2=Var(h 1(w,p)). Assume that o2 >0, Ewt<oo, Epy<oo. 
Then 

Vn • 
-(z1 nl(n(n -1))-fJ),_,..N(0, I). 

2o ' 

PROOF. Since we have the same assumptions here as in Theorem 2.3, (2.6) holds. Therefore we may 
apply Theorem A from [SERFLING 1980 p. 192) to obtain 

'{; (Un -tl),_,..N(0, I). (2.9) 

This together with (2.8), which holds here too, implies the theorem. □ 

3. THE m-MACHINE PROBLEM 

The stochastic assumptions and the notation of the previous section are maintained here. In addition, 
we assume that the number of machines is fixed. 

3.1. Upper and lower bounds on z:,n 
For a lower bound on z:,n we refer to [EASTMAN et al. 1964): for any schedule of the jobs, such that 
on each machine the jobs assigned to it are scheduled in order of increasing p/w-ratio, the sum of the 
weighted completion times is bounded from below by 

m -1 1 • 
-;;;- ~j=IWJPJ + -;;z1,n• 

Simple exchange arguments show that any optimal schedule must satisfy this property. Hence, 

• ::;;i, .!!!..=l.. ~ _!_ • 
Zm,n,,... "-' WJPJ + Z1,n 

m J=I m 
(3.1) 

For an upper bound we consider the before mentioned SWPT-rule as an approximation method for 
the solution of the m-machine problem. Every next job to be scheduled is assigned to the machine 
that is first available. Switching for once again to order statistics (see Section 2), we notice that the}­
th job to be scheduled will start no later than (l/m)~':{"~1iPck), j = 1, ... ,n. Hence, its weighted comple­
tion time is bounded from above by 

(l/m)wu>~{-:,11Pck) + wu>Pv>• j= l, .. . ,n. 

Summation over j yields the following upper bound on the value of the solution produced by the 
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SWPT-rule, denoted by z!~PT, which is on its turn an upper bound on z:i,n· 

• SWPT 1 "'n "'j-1 + "'n Zm,n ~Zm,n ~-;;;., j = I W(j).,7c = I P(k) ., j = I W(j)P(j) 

1 "'n .._,1 + m-l"'n = - ., J = 1 w(J)'"-7c = 1 P(k) --., J = 1 wu>Pv>· m m 

Since the first term on the right hand side is equal to (l/m)zi,n (see (2.1)), we may rewrite the above 
inequality as 

• SWPT 1 • m -1 
Zm n ~Zm n ~ -z I n + --~,~=I w,-P1·· (3.2) 

' ' m ' m 

We see that both the upper and the lower bound consist of a term (1/m)z;,n and a term including 
~J=1w1p1, which in Section 2.2 turned out to become negligible asymptotically. 

3.2. Convergence properties of z:i,n 
From the upper and lower bound (3.2) and (3.1) it is clear that the asymptotics of z:i,n follow those of 
(l/m)zi,n- Therefore we give the following convergence theorems for z:i,n without proof. 

THEOREM 3.1. Law of large numbers. If Ew1 <oo,Ep1 <oo and Ew1p1 <oo, then 

lim z:i,n = ..!!_ (wp l).D 
n-+oo n(n -1) m 

THEOREM 3.2. Law of the iterated logarithm. Let a2=Var(h 1(w,p)). If Ewy<oo, Epy<oo and a2>0, 
then 

m Yn(z:i,nl(n(n -1))-8/m) 
lim SUPn-+oo 1/2 

2a(2loglogn) 
1 (wp l). □ 

THEOREM3.3. Central limit theorem. Leta2=Var(h 1(w,p)). IfEwt<oo, Ept<oo anda2>0, then 

mYn • a -
2 

-(zmnl(n(n -1)) - u/m}·-N(O,l).D 
(J • 

All of the above holds if we substitute z~~PT for z:i,n· This implies among other things asymptotic 
optimality (wp 1) of the SWPT-rule for the minimum weighted flowtime scheduling problem: 

zSWPT -z· 
limn-+oo m,n • m,n = 0 (wp 1). 

Zm,n 

4. CONCLUDING REMARKS 
The results presented in this paper generalize and extend results on the unweighted rmrumum 
fl.owtime problem in [FRENK et al. 1984). We notice that it is also possible to obtain the results using 
the entropy approach to empirical process theory (cf. (cf. (POLLARD 1984)). The results in Section 3 
indicate nice behaviour of the SWPT-rule as an approximation method for the m-machine problem. 
It would be interesting to study the worst-case behaviour of this method. 

REFERENCES 

W.L. EASTMAN, S. EVEN, I.M. ISAACS, 1964. Bounds for the optimal scheduling of n jobs on m pro­
cessors. Management Science I 1, 268-279. 

J.B.G. FRENK, A.H.G. RINNooY KAN, L. STOUGIE, 1984. A hierarchical scheduling problem with a 



6 

well-solvable second stage. Annals of Operations Research 1, 43-58. 
M.R. GAREY, D.S. JOHNSON, 1979. Computers and Intractability: A guide to the theory of NP­

Completeness. Freeman, San Francisco. 
D. POLLARD, 1984. Convergence of stochastic processes. Springer Series in Statistics, Springer Verlag, 

New York. 
R.J. SERFLING, 1980. Approximation theorems of mathematical statistics. Wiley, New York. 
W.E. SMITH, 1956. Various optimizers for single-stage production. Naval Research on Logistics Quar­

terly 3, 59-66. 


