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Belief Networks in Plausible Reasoning 

L.C. van der Gaag 
Centre for Mathematics and Computer Science 

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

After the introduction of the (theoretically) disappointing quasi-probabilistic models for handling uncertainty 
in knowledge-based systems, the attention for probability theory as a mathematical foundation for dealing 
with uncertain information in an artificial intelligence context diminished. Recently however, a new proba­
bilistic trend in reasoning with uncertainty in knowledge-based systems is dlscernable: several models have 
been proposed departing from S<rcalled belief networks. Informally speaking, a belief network is a 
representation of a problem domain, consisting of a graphical model of the statistical variables and their 
causal interrelationships, and an associated joint probability distribution. In this paper we introduce the 
notion of a belief network in general and discuss several schemes for updating the joint probability distribu­
tion of the network as evidence becomes available. 
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I. INTRODUCTION 
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In the seventies several quasi-probabilistic models for dealing with uncertain information in ruJe-based 
expert systems were proposed, such as the well-known certainty factor model. The incorrectness of 
these models from a mathematical point of view and an analysis of the problems the researchers were 
confronted with, led to a world-wide discussion concerning the appropriateness of probability theory 
for handling uncertainty in a knowledge-based context, [1,2). Although this discussion has not yet 
subdued, in the mid-eighties a new trend in probabilistic reasoning in knowledge-based systems is 
di~rnable: several (mathematically correct) probabilistic models for handling uncertainty have been 
proposed, each departing from a graphical representation of a knowledge base, e.g. [3,4,5). Hereafter 
such a graphical representation will be called a belief network. InformalJy speaking, a belief network 
is a map of the statistical variables discerned in the problem domain and their causal 
intdrrelationships. The causal relationships between the statistical variables are quantified by means 
of 'local' probabilities, together defining a joint probability distribution. The belief network serves as 
an architecture for performing certain local probabilistic computations during an actual consultation 
of the knowledge-based system. The phrase belief network has been adopted from J. Pearl, [4). 
Several other phrases are used to denote the same concept: D.J. Spiegelhalter uses the phrase causal 
graph [3], and the phrase influence diagram is used by R.D. Shachter [5). Statisticians often use the 
phrltse recursive model to denote similar graphical representations of a problem domain, see for 
example [ 6, 7). · 

As reasoning with uncertain information is concerned, not only researchers who have chosen 
probability theory as the mathematical foundation have turned their attention to belief networks; 
researchers departing from Dempster-Shafer theory have begun to investigate the use of graphical 
representations of a problem domain as well, see for example [8,9). 
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This paper is a theoretical introduction to belief networks. In Section 2 some preliminaries are 
provided. Section 3 discusses the representation of a problem domain in a belief network in gen,eral. 
In literature, several schemes have been proposed for updating the joint probability distribution (Of a 
belief network as evidence becomes available, in which the network serves as a 'computati_onal 
architecture'; in Section 4 two such schemes are discussed. 

2. PRELIMINARIES 

In this section we introduce several notions from probability theory and graph theory, that will play a 
central role in the remainder of this paper. 

2.1. Probability Theory 

In an expert system, knowledge concerning the problem domain usually is represented in a special 
knowledge representation formalism such as production rules or frames. In this paper we do not 
consider these knowledge representation schemes nor do we discuss the reasoning methods that have 
been associated with these formalisms. Here, we assume that knowledge is simply represented in the 
form of statistical variables and their probabilistic interrelationships. We assume that these variables 
can only take one of two states at a time, thus allowing to view them as logical, propositional 
variables. 

In the following definition the notion of a Boolean algebra of propositions is introduced. 

DEFINITION 2.1. Let~ denote a finite set of atomic propositions: ~ = {a 1, ... , an}, n ;;;;;;.. 1. Let !B be 
the free Boolean algebra generated by JI( that is, 

( l) for all x E JI( x E ~ 
(2) for all x I> x 2 E ~ x 1 /\ x 2 E &B and x 1 v x 2 E ~ and 
(3) for all x E ~ ...,x E !JI. 

&B is called the set of Boolean combinations of atomic propositions. 

On &B we define a partial order ~: for any X1>X 2 E ~ we say x, < X2 if x 2 = x 1 V X2 or 
(equivalently) x 1 = x 1 /\ x 2· 

According to the convention in logic we denote the universal lower bound in the algebra &B by false anti the 
universal upper bound by true. 

Since the set &B of Boolean combinations of atomic propositions is a Boolean algebra we have equhlity 
according to logical truth tables. It will be obvious that a universal lower bound and upper bound 
exist. Furthermore, since &B is a free Boolean algebra we have that the atomic propositions a; 'e ~ 

n 
are algebraically independent, meaning that each of the 2n conjunctions of the form _/\ A;, where for 

1=1 

i = 1, ... ,n, either A; = a; or A; =-.a;, is different fromfalse. In the sequel, we will use lowercase 
symbols to denote elements of &B. An uppercase symbol A; is used to denote a logical variable taking 
one of the values a; and -.a;. In the sequel, we will often view the Boolean algebra &B as being 
'spanned' by a set of logical variables. , 

In the following definition we introduce the notion of a probability distribution on our Boolean 
algebra &B. For a more general introduction, any introductory textbook on probability theory will 
suffice. 

DEFINITION 2.2. Let &B be the Boolean algebra defined as above. Let Pr be a function Pr : &B __,. (0, 1] 
such that 

( 1) Pr is positive, that is, for all x E ~ Pr (x) ;;;;;;.. 0, and furthermore Pr (false) = 0, 
(2) Pr is normed, that is, Pr(true) = l, and 
(3) Pr is additive, that is, for all x I> x 2 E ~ if x 1 /\ x 2 = false then 



3 

Pr(x 1 V x 2) = Pr(x 1) + Pr(x2). 

Then, Pr is called a probability distribution on~ The pair (~,Pr) is called a probability algebra. 

In probability theory we are used to associate probabilities with sets instead of logical propositions. 
However, it can easily be shown that the probability of an event is equivalent to the probability of the 
truth1 of the proposition asserting the occurrence of the event. A probability distribution Pr on the 
Boolean algebra defined above therefore has the usual properties. 

When ~ is viewed as being spanned by a set A = {A 1, • • • , An} of logical variables, we will speak 
of a joint probability distribution; a joint probability distribution on the algebra ~' ~ ~ spanned by 
A' ~ A will be called a marginal distribution. 

The notion of a conditional probability distribution on the Boolean algebra ~ is defined in the 
following definition. 

DEF~ITION 2.3. Let (~,Pr) be the probability algebra from Definition 2.2. For each x, y E ~with 
Pr (y,) > 0, the conditional probability of x given y , notation: Pr(x I y), is defined as 

P ( I ) = Pr(x /\ y) . 
r x y Pr(y) 

It can easily be proven that the conditional probabilities given a specific element y E ~ different 
fromfalse define a probability distribution, i.e. the axioms (1), (2) and (3) from Definition 2.2 hold. 
w~ conclude this subsection with two well-known theorems. 

THEqREM 2.4. Let (~,Pr) be the probability algebra from Definition 2.2. Let X; E ~for i = l, ... , n. 
Then, Pr(xi /\ · · · /\ Xn) = Pr(x n jx, /\ · · · /\ Xn-il · · · Pr(x2 lx1) · Pr(xi). 

Theo~em 2.4 is called the chain rule. The following theorem is known as Bayes' Theorem. 

THEOREM 2.5. Let (~,Pr) be the probability algebra from Definition 2.2. Let x,y E ~ such that 
Pr(x) > 0 and Pr(y) > 0. Then, 

Pr(x jy) = Pr(y jx)Pr(x ) 
Pr(y) 

2.2. (Jraph Theory 

In this section we review some basic notions from graph theory. For further information on graph 
theory the reader is referred to [10,11]. 

Generally, two types of graphs are discerned: undirected graphs and directed ones. 

DEF~ITION 2.6. An undirected graph G is an ordered pair G = (V(G),E(G)), where 
V(G)~ ={VI> . .. , Vn}, n;;;;:.. l, is a.finite set a/vertices and E(G) is a set of unordered pairs (V;,Vj), 
V; =:/= Vj, V;, Vj E V(G), called edges. Two vertices V; and Vj are called adjacent or neighbouring 
vertices in G if (V;, Vj) E E(Gi The set of all neighbours of vertex V; in G is denoted by PG(V;). 

A ~ected graph (or digraph, for short) G is an ordered pair G = (V(G),A (G)), where 
V(G): = { V., . .. , Vn}, n ;;;;:.. l, is a finite set of vertices and A (G) is a set of ordered pairs (V;, Vj), 
V; =:/=! Vj, V;, Vj E V(G), called arcs. Vertex Vj is called a successor of vertex V; if there is an arc 
(V;, V:;) EA (G). The set of all successors of vertex V; in the digraph G is denoted as oG(V;i Similarly, 
vertex V; is called a predecessor of vertex Vj if there is an arc (V;, Vj) E A (G). The set of all 
prederressors of vertex V; is denoted by PG(V;). The set of all neighbours of vertex V; is defined as 
PG(V;) = oG(V;) U PG(V;). 
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DEFINITION 2.7. Let G = (V(G),A (G)) be a digraph with vertices V(G) = {VI> ... , Vn}, n ;;;a,: I. G 

is called a simple digraph if for each V; E V(G). V; f£ aG(aG(V;)). 

Let G = (V(G),A (G)) be a simple digraph. The underlying graph G' of G is the undirected graph 

G' = (V(G'),E(G')) where V(G') = V(G) and E(G') is obtained from A (G) by replacing each arc 

(V;, Vj) E A (G) by its corresponding edge (V;, Vj). 

In the following Definition 2.8 some notions are introduced concerning undirected graphs. these 

notions however can easily be extended to directed graphs by taking the directions of the arcs into 

account. 

DEFINITION 2.8. Let G = (V(G),E(G)) be an undirected graph. A path of length k from vertex V 0 to 

vertex Vk is a sequence of vertices V 0 , VJ. ... , Vk in V(G) such that (V; - 1> V;) E E(G). i = l,. , . ,k. 

A cycle is a path V 0 , VI> . . . , Vk with V 0 = Vk. An elementary cycle is a cycle 

V 0, V 1' . . . , Vk = V 0 such that V; -=I= Vj, i -=I= j, i,j = l , . . . , k. that is, an elementary cycle is a cycle 

in which each node except V 0 appears only once. A chord or shortcut of an elementary cycle 

Vo, Vi. ... , Vk = V 0 is an edge (V;, Vj}, i-=/= j -+- l(mod k +I). 

If for each pair of distinct vertices V;, Vj E V(G) there is a path from V; to Vj in G, then G is called a 

connected graph; otherwise G is disconnected. G is called a cyclic graph if it contains at least one '.cycle; 

a graph without any cycles is called acyclic. 

We conclude this section with two more definitions. 

DEFINITION 2.9. Let G = (V(G),E(G)) be an undirected graph with vertices 

V(G) = {VJ. ... , Vn}, n ;;;a,: I. A graph G' = (V(G'},E(G')) is a subgraph of G if V(G') C V(G) 

and E(G') C E(G). A subgraph G' = (V(G'),E(G')) is a full subgraph of G if for each 

(V;, Vj) E E(G) such that V;, Vj E V(G') we have (V;, Vj) E E(G'). We say that the full subgraph G' 

is induced by V(G'). 

The order of G is the number of vertices in G, i.e. I V(G)I. The size of G is the number of edges in G, 

i.e. I E ( G) I· G is a complete n-graph if it has order n and size ( i). that is, a graph is complete ;j there 

exists an edge between each pair of nodes. 

A clique in G is a full subgraph G' = (V(G'),E(G')) of G such that G' is complete. G' is c<il/ed a 

maximal clique if there does not exist a clique G" in G with G" -=I= G', such that G' is a full subgraph of 

G". 

In this paper, we will use the word clique to mean a maximal clique. 

DEFINITION 2.10. A tree is an undirected graph T = (V(T),E(T)) which is connected and has no 

cycles. 

Let G = (V(G),E(G)) be an undirected connected graph. Let T = (V(T),E(T)) with V(T) = V(G) 

and E (T) C E ( G) be a subgraph of G such that T is a tree. Then, T is called a spanning tree of G. 

3. KNOWLEGE REPRESENTATION IN A BELIEF NE1WORK 

In Section 2.1 we have remarked that in this paper we do not depart from the knowledge 

representation schemes generally employed in knowledge-based systems; we assume that knowledge is 

represented in statistical variables (taken as propositional variables) and their causal 

interrelationships. In this section we discuss this representation scheme in further detail. We 

introduce the notion of a belief network informally before giving a formal definition. 

Belief networks provide a formalism for representing a problem domain. A belief network 

comprises two parts: a qualitative representation of the problem domain and an associated quaniilative 
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representation. The qualitative part takes the form of an acyclic directed graph G = (V(G),A (G)) 
with vertices V(G) = (V., ... , Vn} and arcs A(G). Each vertex V; in V(G) represents a statistical 
variable that can take one of a set of values. In this paper we assume that the statistical variables can 
take only one of the truth values true or false. We will adhere to the following notational convention: 
the variable V; taking the truth value true will be denoted by v;; V; = false will be denoted by -.v;. 
We, take an arc (V;, Vj) EA (G) to represent a direct 'causal' relationship between the variables V; 
an4 Vj: the arc (V; , Vj) is interpreted as stating that 'V; directly causes Vj'· Absence of an arc 
between two vertices means that the corresponding variables do not influence each other directly. We 
take the digraph to be configured by human judgment; hence the phrase belief network. Note that 
indirect influences can be read from the figure. 

Associated with the digraph is a numerical assessment of the strengths of the represented 
relationships: with each vertex is associated a set of (conditional) probabilities describing the influence 
of ihe values of the predecessors of the vertex, on the value of the vertex itself. So, with a vertex V; 
wi~ m predecessors are associated 2m (conditional) probabilities of the form P(v1 I c) for all possible 
combinations c of values of the predecessors of V; in the digraph. These 'local' probabilities are 
assumed to contain all information necessary for defining a unique joint probability distribution on 
the variables. 

The following example illustrates these notions. Whenever possible, this example will be used 
throughout this paper as the running example; it has been taken from Lauritzen and Spiegelhalter, 
[12). 

~LE 3.1. Consider the acyclic digraph G shown in Figure 3.1. We assume that this graph has 
beep configured by an expert who for example observed that the value of the variable V 2 is only 
dependent directly upon the value of the variable V 1• 

FIGURE 3.1. An acyclic digraph G. ' 

From the figure we for example read that the value of the variable V 1 does not influence the value of 
the variable V6 directly, but only through the value of V 2• 

Gorresponding with this digraph G the expert has assessed eighteen probabilities: 
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: -:- : '.:----= ~--- -

Pr(v 1) 

Pr(v2Iv1) and Pr(v2l-.v1) 

Pr(v3) 

Pr(v4 I v3) and Pr(v4 l-.v3) 

Pr(vs lv3) and Pr(vs l-.v3) 

Pr(v 61 v2 /\ v 4), Pr(v 61 V2 /\ -.v 4), Pr(v 6 l-.v2 /\ v 4) and Pr(v6 l-.v2 /\ -,v 4) 

Pr(v1 I Vs /\ v6), Pr(v1 I Vs /\ -.v6), Pr(v1 l-.vs /\ v6) and Pr(v1 l-.vs /\ -.v6) 

Pr(vs I v6) and Pr(vs l-.v6) 

Note that from these probabilities we can uniquely compute the complementary probabilities; for 
exa.mplePr(-,v4lv3)iscomputedusingPr(-,v4lv3) = l - Pr(v4lv3). 

The graph is assumed to represent all dependencies between the statistical variables, so that the 
joint probability distribution Pr(V1 /\ • • • /\ V8) can be expressed as the product 

Pr(V1 I\ · · · I\ Va)= Pr(V8 IV1 I\ · · · I\ V7 )-Pr(V7 IV1 I\ · · · I\ V6)- Pr(V6 I V1 I\ · · · I\ V5)- • • • • Pr(V1) = 

= Pr(V8 I V6) · Pr(V1 I Vs I\ V6 )- Pr(V6 I V2 I\ V4)- Pr(Vs I V3)- Pr(V4 I V3) • Pr(V3) • Pr(V2 I Vi) · Pr(V1,). 

This equation is a kind of template: an actual probability can be obtained by filling in values for the 
statistical variables V1 through V8• So, for example Pr(v 1 /\ · · · /\ v8) may be obtained by 
substituting the value v; for each variable V;, and then computing the resulting product on the right­
hand side from the initially assessed probabilities. Note that only eighteen probabilities suffice for 
specifying a joint probability distribution over eight variables. • 

Definition 3.3 provides a formal definition of a belief network. Some preliminary notions are 
introduced in Definition 3.2. 

DEFINITION 3.2. Let G = (V(G),A (G)) be an acyclic directed graph with veriices 

V(G) = {Vi. ... , Vn}, n ~ 1, and arcs A (G). Let each V; E V(G) have associated a state space 
nv = {v;,-.V;}. A cony"unction c.,. = /\ Cv., cv E Ov, V' ~ V(G), is called a con.figuration or V'. 

I Y,E Y' ' ' ~ 'J 

In the seque~ we use Cv· to denote the conjunction Cr = /\ V;; Cv· is called a con.figuration 
V,EV' 

template. 

Note that from a configuration template c.,. we may obtain any actual configuration c.,. of V' by 
filling in an appropriate value from the state space for each variable mentioned in the template. 

DEFINITION 3.3. A belief network is a tuple B = ( G, r) such that 

(1) G = (V(G),A (G)) is an acyclic digraph with vertices V(G) = {Vi. ... , Vn }, n ~ 1, and arcs 

A (G), representing directed conditional dependency relationships, and 

(2) f = {Yv, IV; E V(G)} is a set of conditional probability vectors Yv,. where each Yv, is a real­

valued vector with 2lll(V.)I +I components Yv,(v;j cp(v,» and Yv,hv;j cp(v.»• such that 

Yv,(v;j cp(v.»• Yv,hv;i cp(v,» ~ 0, and Yv,hv;i cp(v,» = 1 - Yv,(v;j Cp(v,)), for each V; E Vr(G) 

and each configuration cp(V,) of p(V;). 

The following lemma states that under the independency assumptions represented in the graphical 
part of the belief network, the initially assessed conditional probability vectors define a unique joint 
probability distribution. 
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LEMMA 3.4. Let B = ( G, T) be a belief network defined as above, where G is an acyclic digraph with n 
vertices, n ;;;;;;, 1. Then, 

i=l, ... ,n 

constitutes a joint probability distribution on V(G). 

PRooF. A digraph without directed cycles allows at least one ordering of its vertices such that any 
successor of a vertex in the graph follows it in the ordering. It follows that there is an ordering of the 
statistical variables such that in applying the chain rule each variable is conditioned only on the 
varia~les preceding it in the ordering. Choosing an appropriate ordering of V(G), ~e conditional 
indeJ?endency relationships represented in G can be exploited. By taking 
Pr(V; I CP<v.» = 'Yv,(V; I CP<v.» for each V; E V(G), the property stated in the lemma follows 
immediately. For further details, see [7]. B 

Note1 that the representation of uncertainty in factors which are local to expressions gtvmg a 
quali~ative description of the domain, closely resembles the approach followed in the quasi­
prob~bilistic models for dealing with uncertainty in rule-based systems, in which the production rules 
constitute the qualitative representation of the domain. 

4. EVIDENCE PROPAGATION IN A BELIEF NE1WORK 

In the preceding section we have introduced the notion of a belief network, consisting of a qualitative 
representation of the problem domain and a quantitative one. We have seen that the quantitative 
part bf such a belief network is a representation of a joint probability distribution in terms of 'local' 
factors: the initially given conditional probability vectors describe the joint probability distribution 
locally for each vertex and its predecessors in the digraph, that is, locally in terms of the qualitative 
repr~tation of the problem domain. 
S~ce a joint probability distribution on the variables is uniquely defined by the conditional 

prob~bility vectors, the impact of a value of a specific variable becoming known, on each of the other 
varial:>les can be computed from these local factors. Calculation of an updated probability from the 
joint probability distribution in a straightforward manner however, will generally not be restricted to 
perfohning computations which are local in terms of the causal graph. In ~terature therefore, several 
less Jaive schemes for updating a joint probability distribution as evidence becomes available have . 
been proposed. Although all schemes proposed for evidence propagation are based on (Bayesian) 
prob~bility theory, they differ considerably in concept and in computational efficiency. It should be 
not~ that in general probabilistic inference in belief networks without any restrictions is NP-hard, 
[13]. 

R.D. Shachter has presented a method for propagating the impact of a specified set of observed 
variables to a set of variables of interest. The general idea of his method is to eliminate vertices from 
the original graph without changing the (updated) joint probability distribution; the topology of the 
graplt is modified using a sequence of arc reversals, and vertex removals and additions, [5]. For each 
subsequent propagation of evidence again such a sequence of graph modifications has to be 
performed. The problem of optimizing a sequence of graph modifications has been further 
invesµgated, see for example [14]. 

J. ~earl and J.H. Kim in [15] depart from a singly connected digraph, which is a restricted type of 
acyc~c digraph. Their method for propagating evidence leaves the original graphical representation of 
the problem domain unchanged. Updating the joint probability distribution essentially entails each 
variable, that is, each vertex, updating the joint probability distribution locally from messages it 
recei~es from its neighbours in the digraph, that is, from its predecessors as well as its successors, and 
then in turn sending new, updated messages to them. In his later work [4], Pearl proposes additional 
schemes for coping with (undirected) cycles. 

D.J. Spiegelhalter and S.L. Lauritzen have presented another, elegant scheme for evidence 
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propagation, [3, 12]. They have observed that updating the joint probability distribution as evi~ence 
becomes available will entail going against the 'directed' conditional probabilities. They concluded 
that the directed graphical representation of a belief network is not suitable as an architecture for 
propagating evidence. This observation amongst other ones motivated an initial transformation of the 
belief network into an undirected graphical and probabilistic representation of the problem doµiain. 
This new representation allows for an efficient scheme for evidence propagation in whic~ the 
computations to be performed are local to small sets of variables. For this purpose, Spiegelhalter and 
Lauritzen make use of the existing statistical theory of Markov random fields, [16]. 

In this paper we do not discuss Shachter's work. The work of Pearl and Kim will be dealt. with 
briefly in Subsection 4.1. The work of Spiegelhalter and Lauritzen will be treated in some detail in 
Subsection 4.2. 

4.1. The Scheme For Evidence Propagation Proposed by Pearl and Kim 

One of the earliest schemes for propagating evidence in a belief network was proposed by J. Pearl and 
J.H. Kim. Their method as presented in (15], however, is not able to deal with belief networks as 
general as defined in the preceding section: Pearl and Kim depart from a restricted type of belief 
network in which the graphical part is a singly connected digraph. · 

DEFINITION 4.1. A directed graph G is called singly connected if the underlying graph of G is acyclic. 

A singly connected digraph sometimes is called a generalized Chow tree, [15], or a causal polytree, [4]. 
Note that the digraph shown in Figure 3.1 is not singly connected. 

For evidence propagation in such a restricted type of belief network, Pearl and Kim have expjoited 
the following topological property of a singly connected digraph explicitly: the removal of any arc 
from a singly connected digraph G splits it up into two separate components. This property is stated 
more formally in the following lemma. 

LEMMA 4.2. Let G be a singly connected digraph. Any graph G' obtained by deleting an arbitrary arc 
from G is disconnected 

From this lemma we have that in a singly connected digraph G we can identify for a vertex V with m 

neighbours, m connected subgraphs of G each containing a neighbour of V such that after removal of 
V from G there does not exist a path from one such subgraph to another one. 

DEFINmON 4.3. Let G = (V(G),A (G)) be a singly connected digraph. Let V E V(G). For each 
V; E p(V), let G'v, = (V(G~),A(G*v,)) such that V(G~) = V(G) and A(G*v,) = A(G)\{(V;,V)}. 

The component of G~ containing V;, denoted by G(v,, JI)> is called an upper graph of V. 

For each v1. E a(V), let G'V = (V(G'V ),A (G'V)) such that V(Gv) = V(G) and 
I I I I 

A ( Gf.J) = A ( G) \ { ( V, Vi)}. The component of G'r,,
1 

containing Vi, denoted by G(v, v,» is called a lower 

graph of V. · 

We say that v partitions G into { G(t,, J') I V; E p(V)} u { G(V, v,) I vj E a( V) }. 

The following example illustrates the idea; the example has been taken from [15] and adapted to our 
notational convention. 

EXAMPLE 4.4. Consider Figure 4.1 showing a part of a singly connected dj.graph G. The vertex V0 

has four neighbours V1, ••• , V4• V0 therefore partitions G into four subgraphs: the two upper 

graphs G(V,.v.> and G(V,,v.» and the two lower graphs G(V •. v.> and G(V •. v,)· • 
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.· · . 

G(V •. Y,) 
. · 

FIGURE 4.1. V 0 partitioning the singly connected digraph G. 

In general we have at any time during a consultation in which evidence becomes available, that the 
actpa.I probabilities of the values of a vertex V in a singly connected digraph G are dependent upon 
thej information from its upper and lower graphs, that is, upon all data observed so far. Before 
~ing this in detail, we introduce some new notations. 

In the remainder of this subsection, we will frequently encounter the situation in which some of the 
statistical variables in the digraph are known to have a specific value. In these situations we 
(ambiguously) use the notation Cv to denote a partial configuration of a set V. In such a partial 
cotifigw::ation, some variables have been 'instantiated' with a value and some have not, that is, we take 

C = [ /\ c ] /\ [ /\ V ·] V' n V" = 0 V' U V" = V· we define [C ] by [C ] = c if V V.EY' V, YEY'' l' ' ' y y Y' 

V' ?/= 0,' and [Cv] = ~rue otherwise. Furthermore, we will frequently identify upper and lower 
graphs with their vertex sets, as long as ambiguity cannot occur. 

It will be evident that at any time during a consultation the probability distribution for the values 
of an 'interior' uninstantiated vertex V E V(G) equals the conditional probability distribution 
Pr(Vl[Co• /\ Co-D where Co• = /\ CG• and C0 - = /\ C0 - • From Bayes' Theorem 

Y
1 

Ep(Y) IVJ-1? V, Ea(Y) iv.vii 

and the independence relationships represented in G we have 

_--_---::--;;. -; . 
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'" - --"~ - =- --- =-

Pr(Vl[CG• A CG- ]) =a· Pr([CG- JI V) · Pr(Vl[CG• ]) = 

= a· II Pr([CG~v,,JI V) · Pr(Vl[CG+]) = 
Jl,Eo(V) 

=a· II Pr([CG;;.,v,,JIV)· [~Pr(Vlcp(V)) · Pr(cp(V)l[CG·])l = 
V, Eo(V) c11., 

=a· II Pr([CG,-;.,v,,llV)· [~ Pr(Vlcp(V))· II Pr(cv,UCG,4;.,,..,DJ. 
JI, Ea(V) c11., Cv1 in c,.,., 

where a is a normalization constant. The last two equalities are obtained by first conditioning on all 
configurations of the set p(V) of predecessors of V and then using the independency relationships 
shown in the graph. 

Recall that the values Pr(V I c p(V)) have been specified initially in the conditional probability vector 

'YV· So, if V obtains the probabilities Pr([CG,-;.,v,,l IV) from its successors V;, and the probability 

Pr(cv, l[CG,4;.,,.,D from each of its predecessors Vj, then the vertex Vis able to locally compute the 

probability distribution for its values. 

DEFINITION 4.5. Let G = (V(G),A (G)) be a singly connected digraph. Let Pr be a joint probability 
distribution on V ( G). 

Let V E V(G) such that p(V) =I= 0. Furthermore, let G<tJ,V), Vj E p(V). be an upper graph of V. 

Then, we define '1Tv(Vj) = Pr(Vj I [CG,4;., . .,D· '1Tv(Vj) is called the causal evidence parameter from Vj 1to 

v. 
Now let V E V(G) such that a(V) =I= 0. Let G(V,v,)> V; E a(V). be a lower graph of V. Then, we 

define Av,(V) = Pr([CG,-;.,v,,11 V). Av,(V) is called the diagnostic evidence parameter.from V; to V. 

Note that before any evidence has been propagated, the causal evidence parameter that a vertex 
having no predecessors sends to its successors, equals the prior probability distribution for its values; 
furthermore, the diagnostic evidence parameter that a vertex having no successors sends to its 
predecessors, is a constant function yielding the function value 1 for all arguments. 

The 'IT and A parameters can be viewed as being associated with the arcs in the singly connected 
digraph; Figure 4.2 for example shows the parameters which are associated with the digraph from 
Figure 4.1. 

Lemma 4.6 now follows from our observations and the preceding definition. 

LEMMA 4.6. Let B = (G,I') be a belief network defined as in Definition 3.3, such that 
G = (V(G),A (G)) is a singly connected digraph. Let the 'IT and A parameters be defined according Ito 
Definition 4.5. Now, let V E V(G) be an uninstantiated vertex partitioning G into 

{G{tr,,V) I vj E p(V)} u {Gcv.V,) IV; E a(V)}. Then, 

Pr(Vl[CG• A CG- ]) = a· II Av,(V) · [~ yv(VI cp(V)) · :n '1Tv(cv)] • 
V, Eo(JI) c11., cv

1 
in c11., 

where a is a normalization constant. 

Consider the statement from Lemma 4.6 once more. If the vertex V has no upper graphs, then it Will 

be evident that the probability distribution for the values of V does not involve the 'IT parameters; for 
a vertex V having no lower graphs the probability distribution for its values does not involve the A 
parameters. 

Now suppose that evidence becomes available that a certain variable V E V(G) has a certain 
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FIGURE 4.2. The .,, - ~ parameters associated with the singly connected digraph G. 

valu~. This evidence causes that variable V to update the joint probability distribution for its values 
locaµy. From its new knowledge about the joint probability distribution, V computes the proper .,, 
and ~ parameters to be sent to its neighbours. V 's neighbours subsequently are forced to update 
their; knowledge about the joint probability distribution and to send new parameters to their 
neig!ibours in turn. After the initial updating of the joint probability distribution by V, the updating 
of al). parameters is governed by the properties stated in Lemma 4. 7. 

LEMMA 4.7. Let B = (G, r) be a belief network such that G = (V(G),A (G)) is a singly connected 
digraph. Let the.,, and~ parameters be defined according to Definition 4.5. Let V E V(G). Then, the 
following properties hold: 

(1) "v. (V) = a · IT ~v,(V) · [ ~ yv(V I c p(V)) • IT 'ITv(cv)J. 
V,Eo(V) c,,_.,= ./;~.,c.1 cr1 inc,,_., 

i=l=k 

for each Vk E a(V). where a is a normalization constant. 
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(2) Av(Vk) = a · ~ [ II Av,(cv) · [ ~ yv(cv I er A Vk) · II 'ITv(cv)]] • 
c,. V, Ea( V) . c.-= ,.1 ~,.,C,.1 c,.1 Irr c.-

h'4 

for each Vi E p(V), where a is a normalization constant. 

PROOF. The lemma can easily be proven using Definition 4.5, the topological properties of the singly 
connected digraph G and the independency relationships between the statistical variables represented 
in G. For a more detailed discussion of the properties stated in the lemma, see (4). • 

Lemma 4. 7 shows how evidence, once entered, is propagated through the belief network. The 
properties mentioned in the lemma show that any change in the causal parameter 'IT associated with a 
specific arc of the digraph does not affect the diagnostic parameter A on the same arc, and vice versa. 
Pearl argues (4), that any perturbation in the joint probability distribution in response to hew 
evidence spreads through the digraph in a single pass, since the perturbation is absorbed witliout 
reflection at the 'boundary' vertices with either one outgoing or one incoming arc (note that every 
singly connected digraph must have at least two such vertices). 

It remains to be discussed how a piece of evidence may be en~ered into the network. In (4), Pearl 
suggests an elegant way for entering evidence: if evidence has become available that the variable V 
has the value v (or ...,v alternatively), then a dummy successor W of Vis temporarily added to the 
digraph sending a diagnostic parameter Aw(V) to V such that Aw(v) = I and Aw(...,v) = 0 (or Vice 
versa if the value ...,v has been observed). 

We have mentioned before that the method for reasoning with belief networks presented by Pearl 
and Kim is not as general as the one presented by Spiegelhalter and Lauritzen which is to be 
discussed in the following subsection; the method is not able to deal with loops (cycles in the 
underlying graph of the acyclic digraph of the belief network). For a non-trivial application however, 
one may expect that the digraph contains one or more such loops. In fact, Jensen et al. (17) have 
encountered this problem in developing the MUNIN system (a medical expert system for 
electromyography), in which the method of Pearl and Kim is employed: the originally as~sed 
digraph contained loops. Jensen et al. solved the problem by transforming the original graph into a 
singly connected digraph by combining several vertices into compound vertices, a method known as 
clustering, and by removing 'weak' arcs. Pearl also suggests clustering as a method of handling lo0ps; 
he further introduces the method of conditioning on value combinations of vertices that decomposes 
the digraph into a singly connected digraph and then averaging over the results obtained. For further 
details the reader is referred once more to [4]. 

4.2. The Scheme Presented by Spiegelhalter and l.Auritzen 

The scheme for evidence propagation presented by Spiegelhalter and Lauritzen departs from an 
undirected graphical and probabilistic representation of the problem domain. Their scheme has been 
inspired by the existing statistical theory of Markov random fields, and more in specific, by the theory 
of graphical models (i.e. probabilistic models that can be represented by an undirected graph) in 
contingency tables, see for example [16). To be able to exploit this theory, the original directed bClief 
network (or recursive model as probabilistic models that can be rep~esented by a directed graph are 
generally called in statistics) is transformed initially into an undirected so-called decomposable b~lief 
network, consisting of a decomposable graph and a set of marginal distributions on the cliques of I this 
graph. In Definition 4.8 we introduce the notion of a decomposable graph; a decomposable b~lief 
network is defined in Definition 4.9. 

DEFINmON 4.8. Let G be an undirected graph. G is a decomposable graph· if all elementary cycles of 

length k ;;i. 4 possess a chord The set of all cliques in G, denoted by Cl ( G), is called the clique set of G. 

Decomposable graphs are also called triangulated graphs, (11,12). The term decomposable has been 
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adopted from [18]. In the sequel, we will identify a clique Cl; E C/(G) with its vertex set, and write 
c1; instead of V(CI;), as long as ambiguity cannot occur. 

DEFINmoN 4.9. A decomposable belief network is a tuple B = (G, M) such that 

( 1) G is a decomposable graph with a clique set Cl ( G) = { C/ 1, ••• , Clm }, m ;;;i. 1, and 
(2) M = {µq I Cl; E C/(G)} is a set of marginal distributions µq(Cq) on the cliques Cl; of G, such 

that/or each Cl;,CII E C/(G) with Cl; n Clj =I= 0 we have µq(Cqnc1) = l'c1,(Cqnc1) 

Consider the previous definition once more. Note that for each Cl;,Cli E C/(G) with 
Cl;, n Clj =I= 0, we may obtain l'ci,(Cqnci) from µq(Cq) by further marginalization, that is, by 
summing out the variables from Cl;\ (Cl; n C/j): l'c1,(Ce1,nc1) = ~ Pc1,(Cc1,nc1, /\ cc1, \(C1,nc1,»· 
D~och et al. [16] have proven that in a decomposable belief network, the set M of clique marginals 
un!quely defines a joint probability distribution. Here, we merely mention this property; in 
Su1>section 4.2.2 we will discuss the property in further detail. 

'fhe transformation of the originally assessed belief network into a decomposable belief network 
coQJprises several steps, as shown in Figure 4.3: the graphical representation of the belief network is 
transformed into a decomposable graph and from the probabilistic part of the network a new 
representation of the joint probability distribution in terms of marginal distributions on the cliques of 
th~ decomposable graph is obtained. The overall transformation essentially comprises two steps: 

(1)1 Transform the initial belief network into a moral belief network consisting of a moral graph and 
an associated local representation of the joint probability distribution in evidence potentials. 

(2)! Transform the moral belief network into a decomposable belief network consisting of a 
decomposable graph and an associated local representation of the joint probability distribution 
in clique marginals. 

These steps will be discussed in the Subsections 4.2.l and 4.2.2 respectively. Subsection 4.2.3 will deal 
with the actual scheme for evidence propagation. 

4.2.1. The moral belief network 

Sp!egelhalter has pointed out that 'the class of recursive models and the class of graphical models 
int~sect in the class of decomposable models, and a recursive model is a member of this intersection 
pr<?vided it does not have two non-adjacent vertices both preceding the same vertex', ([3], p. 51; the 
sta~ement has been proven in [6D, thus providing a motivation and means for the construction of the 
graphical part of the moral belief network. 

Consider a belief network B = (G, I) as defined in Section 3. Informally speaking, the moral graph 
GM of the digraph G is obtained by first adding arcs to G such that no vertex in V(G) has 
nonadjacent predecessors, and subsequently dropping the directions of the arcs. The moral graph of 
an acyclic digraph is defined formally in the following definition. 

DEFINITION 4.10. Let G = ( V ( G),A ( G)) be an acyclic directed graph with vertices 
Q 

V(~) = {V1t ... , Vn}, n ;;;a. I, and arcs A (G). Let G' be the simple digraph G' = (V(G'),A (G')) 
sucfr that V(G') = V(G) and A (G') =A (G) U {(V;, Vj) I there is an index k such 
thtl_t V;, Vi E p(Vk) and (V;, Vi), (Vi, V;) f£ A (G)}. The moral graph GM of G is defined as the 
underlying graph of G'. 

The construction of the moral graph for our running example is demonstrated below. 

Exi.MPLE 4.11. Consider the acyclic digraph G from Figure 3.1 once more. Upon successively 
examining the vertices V 1 through V 8 we find that the predecessors of vertex V 6, that is, the vertices 
V2 and V4 , are not adjacent, and that the same holds for the predecessors of vertex V7 • We 
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FIGURE 4.3. Transformation of the original belief network. 

therefore add the arcs (V2, V4) and (Vs, V6 ) to G. Note that the directions of these arcs are irrelevant 
since we will drop all directions subsequently. The construction of the moral graph GM of G is sho\vn 

in Figure 4.4. • 

LEMMA 4.12. Let G = (V(G),A (G)) be an acyclic directed graph with vertices 

V(G) = {V1, ••• , Vn} , n ;;i. I. Let V;P = V; U p(V;)for each V; E V(G). Furthermore, let GM 'be 

the moral graph of G as defined above. Then for each V; E V(G), the fall subgraph of GM induced by 

V;P is complete. 

For the qualitative part of the original belief network, we now have obtained an undirected 
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(a) (b) 

FIGURE 4.4. Construction of the moral graph GM. 

representation. This undirected graph again demonstrates certain independency relationships between 
the statistical variables. The following example shows that some of the initially assessed 
indq>endencies are no longer visible explicitly in the moral graph. The arcs that were added to the 
original graph therefore should be taken as a kind of 'dummy' relationships. 

~LE 4.13. Consider the graphs shown in Figure 4.5(a) - (d). The digraph (a) for example 
represents independency of the variables V1 and V 2 ; this independency however is no longer 
represented explicitly in the corresponding moral graph (d). The three digraphs (a) - (c) represent 
different probabilistic relationships between the variables v., V 2 and V3 : (b) for example shows 
independency of V 1 and V 3• All three digraphs nevertheless have the same moral graph. • 

For the moral graph, we now obtain an 'undirected' representation of the initially given joint 
propability distribution. This new representation is based on the notion of an evidence potential, a 
real~valued nonnegative function the values of which only depend on the configurations of small sets 
of ".ertices. 

Definition 4.14 introduces these evidence potentials and the resulting moral belief network. 

D~INITION 4.14. Let B = (G, r) be a belief network as defined in Definition 3.3. Let for each 
V; E V(G), V/ be defined as V/ = V; U P<.V;). The moral belief network BM derived from Bis the 
tuple BM = (GM, 'I') where 

(I) . GM is the moral graph of G as defined in Definition 4.10, and 
(2) 'I' = {1/lv,• IV; E V(G)} is the set of evidence potentials 1f!v,., where each "1vt is the real-valued 

non-negative .function defined by 1/lv,•(Cv,•) = 'Yv,(V; I Cp(v,». Cv,• = V; /\ Cp(v,)· 

An evidence potential can be viewed as the proportional contribution of the indicated set of variables 
to the joint probability distribution. 

ExAMPLE 4.15. Consider the acyclic digraph G from Figure 3.1 once more and its corresponding 
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(a) (b) (c) 

(d) 

FIGURE 4.5. Three digraphs having the same moral graph. 

moral graph GM as shown in Figure 4.4(b). We obtain the following representation of the joint 
probability distribution in terms of evidence potentials from the conditional probability vectors 
associated with G: 

1'i{V,)(V1) = Yv1(V1) 

1'i(V.,Vi)(V1 f\ V2) Yv2 (V2 I V1) 

1'i{V,)(V3) = Yv,(V3) 

1'i(V,.v.)(V3 f\ V4) = Yv.(V4 I V3} 
1'i(V,.V,)(V3 f\ Vs) = Yv,(Vs I V3) 

1'i(V.,v •• v,)(V2 f\ V4 f\ V6) = Yv,(V6 I V2 /\ V4) 

ili(V,.v,,v,)(Vs /\ v6 /\ V1) = Yv1 (V1 I Vs /\ V6) 

1'i(V,,V,)(V6 /\ Vs) = Yv,(Vs I V6) 

• 
LEMMA 4.16. Let B = ( G, f) be a belief network where G = ( V ( G),A ( G}) is an acyclic digraph with n 
vertices, n ;;;is 1. Let Pr(V1 /\ • • • /\ Vn) = II Yv,(V; I Cp(v,» constitute a joint probability 

i = I, ... ,n 

distribution on V(G). Furthermore, let BM = (GM, '1') be the moral belief network derived from B 
de.fined as above. Then. we have 
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Pr(V1 A · · • A V11) = II 1/1.-;(Cyi;). 
i=l; ... ,II 

PROOF. The property follows immediately from Definition 4.14 and Lemma 3.4. • 

From Lemma 4.16 we have that although some of the originally assessed independence relationships 
are'. no longer explicitly represented in the moral graph, they still are represented implicitly in the joint 
probability distribution. Note that the representation of the joint probability distribution in terms of 
evidence potentials again is a local representation of uncertainty. 

4.22. The Decomposable Belief Network 

We recall that the transformation of the initial belief network into a decomposable belief network 
comprises two steps, the first of which we have discussed in the preceding subsection. In this 
subsection we discuss the transformation of the moral belief network resulting from the first 
transformation step into a corresponding decomposable belief network. We first consider the 
trapsformation of the moral graph into a decomposable graph. 

'fhe moral graph can be made decomposable by filling-in, "that is, (again) by adding certain 
'dummy' edges. Lauritzen and Spiegelbalter use an efficient algorithm by R.E. Tarjan and 
M. Yannakakis [19), for doing so. Before discussing this algorithm we provide some preliminary 
definitions. 

DEFINmON 4.17. Let G = (V(G),E(G)) be an undirected graph with vertices 
V(G) = { V., ... , V11 }, n ;;;;;.. 1. Let i: V(G) ++ { l, ... , n} denote a total ordering of the vertices of G. 
Th'! ordering ' is called a perfect ordering of the vertices V(G) if for each number i = &(V1), 
iJ E {I, ... ,n}, the fall subgraph of G induced by the set of vertices 
vG(V1) n {VJ,, . .. , VJ, _,}, &(V1,) = k, k = I, ... , i - l, is complete. 

Note that an undirected graph may allow more than one perfect ordering. In the sequel, we will 
identify a vertex with its number according to an ordering ' as long as ambiguity cannot occur. The 
not;ion of a perfect ordering and its definition have been taken from [12]; in discussing the algorithm 
for filling-in by Tarjan and Yannakakis, Pearl uses a notion similar to the one defined above, [4]. 
Tarjan and Yannakakis themselves however define the notion of a zero fill-in numbering and show in a 
lenµna that an ordering is a zero fill-in numbering if and only if it has the property we have used for 
a definition, [19). 

The following lemma now is of major importance (for a proof of the lemma, see [19)). 

LEMMA 4.18. Let G be an undirected graph. G is decomposable if and only if it permits a perfect 
ordering of its vertices. 

Th~e are several ways to compute a perfect ordering of the vertices V(G) of a decomposable graph 
G, one of which is known as maximum cardinality search. 

.ALGORITHM 4.19. Let G = (V(G),E(G)) be an undirected graph. The maximum cardinality search 
algorithm for computing an ordering' of V(G) is the following: 

1. Assign the number I to an arbitrary vertex. 
2. Number the remaining vertices from 2 to I V(G) I in increasing order such that the next number is 

assigned to the vertex having the largest set of previously numbered neig~s. 

Note that in Algorithm 4.19 the next vertex to be numbered need not be a neighbour of the last 
numbered vertex. Furthermore, it will be evident that the algorithm is non-deterministic. 
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Tarjan and Y annakakis have proven that when applied to a decomposable graph, maximum 
cardinality search renders a perfect ordering: 

LEMMA 4.20. Let G be a decomposable graph. Any ordering ' of the vertices of G obtained from 
maximum cardinality search is perfect. 

The following algorithm is known as the fill-in algorithm for obtaining a decomposable graph from an 
arbitrary undirected graph. 

ALGORITHM 4.21. Let G = (V(G),E(G)) be an undirected graph. The.fill-in algorithm is_ the following: 

1. Compute an ordering 'for the vertices of G, using maximum cardinality search. 
2. From I V(G) I to 1, for each vertex numbered i add edges between any nonadjacent neighbours of i 

that are assigned a lower number than i in 1.. 

The set of edges added to G is called the fill-in. 

If by applying Algorithm 4.21 no edges are added to an undirected graph G, then G was airei1dy 
decomposable; the phrase 'zero fill-in numbering' used by Tarjan and Y annakakis instead of a 
'perfect ordering' emerges from this observation. Otherwise, the new graph obtained from applYmg 
the algorithm is decomposable. This property is stated in the following lemma. 

LEMMA 4.22. Let G be an undirected graph. Let G' be an undirected graph obtained from G using .the 
fill-in algorithm shown above. Then, G' is decomposable. 

ExAMPLE 4.23. Consider the moral graph GM from Figure 4.4(b). We use Algorithm 4.21 to 
transform GM into a decomposable graph GD· Using maximum cardinality search the vertices of GM 
may be numbered as shown in Figure 4.6(a). 

I I 

2 5 2 5 

8 8 

(a) (b) 

FIGURE 4.6. Construction of the decomposable graph GD· 

Examining the vertices from 8 to 1 we find that the vertex numbered 6 has two nonadja~nt 
neighbours that are assigned a lower number than 6 in the ordering: the full subgraph generated by 
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(3,5} n {l,2, ... ,5} = {3,5} is not complete. Therefore the edge (V4, Vs) is added to GM, yielding 
the decomposable graph GD shown in Figure 4.5(b). Note that the alternative addition of (V3, V6) 
would have yielded a decomposable graph as well. • 

In (l~], Spiegelhalter and Lauritzen point out that the fill-in should be computed very carefully, since 
the rilaxima1 order of the cliques of the decomposable graph resulting from the fill-in determines the 
computational complexity of their method. It should be noted that the problem of computing a fill-in 
cont¥ning a minimum number of edges is NP-complete, (20). 
~e graphical part of the original belief network has now been transformed into a decomposable 

graph. We have mentioned before that Darroch et al. (16) have shown that a joint probability 
distribution on a decomposable graph can be expressed in terms of marginal distrioutions on the 
cliques of the graph. Exploiting this property, Spiegelhalter and Lauritzen transform the 
representation of the joint probability distribution in terms of evidence potentials into such a 
representation in terms of clique marginals. 

Before discussing this transformation in detail, we introduce several new notions. 

DEFINmON 4.24. Let G = (V(G),E(G)) be a decomposable graph with n vertices, n ;;;i. 1. Let 
i: V( G) ++ { 1, ... , n} be a perfect ordering of V ( G) obtained from maximum cardinality search. Let 
Cl(G) = {C/h ... ,Clm}, m ;;;. 1, be the clique set of G. We define the total ordering 
i': C/(G) ++ {l, ... ,m} of C/(G) such that for each C/1,Cli E C/(G) we have i'(C/1) < i'(C/j) if 
max~&(Vi) I Vi E C/1} < max{ &(Vi) I Vi E C/i }. 

Notei that in the ordering &' the cliques of the graph G are numbered in the order of their highest 
numbered vertex according to &. It will be evident that &' is uniquely determined by the ordering &. 

~LE 4.25. Consider the decomposable graph GD and the ordering' of its vertices as shown in 
Fi~e 4.6(b) once more. We number the six cliques in the order of their highest numbered vertex. 
Let C/1 be the clique assigned number i. Then, we have obtained the following ordering i': 

• 

C/1 = {V1> V2} 
C/2 = {V2, V4, V6} 
C/3 = {V4,Vs,V6} 
C/4 = {V3, V4, Vs} 
Cls = {Vs,V6,V1} 
C/6 = {V6, Va} 

The (allowing lemma states an important property of the ordering &' of the cliques of a decomposable 
grap}!. In (18,19) further details are provided. The lemma is known as the running intersection 
property. 

LEMMA 4.26. Let G be a decomposable graph. Let Cl(G) be the set of cliques of G numbered 
Cl 1, •.• , Clm, m ;;;. 1, according to the ordering &' from Definition 4.24. Then. &' has the following 
propef'Y: for all i ;;;i. 2 there is a j < i such that C/i :J C/1 n (C/1 U · · · U C/1_ 1). 

The previous lemma states, in other words, that the vertices a clique has in common with the lower 
numbered cliques are all contained in one such clique. 

DEFINmON 4.27. Let G be a decomposable graph. Let Cl ( G) be the set of cliques of G numbered 
Cl 1, ••• , C/m- m ;;;. 1, according to the ordering &' from Definition 4.24. From Lemma 4.26 we have 
that &' has the running intersection property. For each i =s;; m. we define 
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S; = Cl; n (C/1 U · · · U Cl; - 1) where S 1 = 0, and R; = Cl; \S;. S; is called the separat9r of 

clique Cl;; R1 is called the residue of clique Cl;. 

We recall that associated with the moral graph GM we departed from for constructing the 
decomposable belief network, we had a representation 'It of the joint probability distribution in t~rms 
of evidence potentials 1/lv. V ~ V(GM)· We now are interested in a representation of the ~oint 
probability distribution in terms of marginal distributions on the cliques of the decomposable graph 
GD obtained from GM. Since the evidence potentials "1v not necessarily are defined on cliqu~ or 
clique-intersections, they do not give rise to a representation of the joint probability distribution in 

clique marginals in a straightforward manner. In Lemma 4.28 we introduce an intermediary 
representation of the joint probability distribution in terms of so-called kernels; Lemma 4.30 give5 the 
representation in terms of clique marginals. 

LEMMA 4.28. Let BM = (GM, '1') be a moral belief network as defined in Definition 4.14, such that 

Pr(Cv(a,,» = II 1/lv(Cv) constitutes a joint probability distribution on V(GM)· Let GD be the 
"1vEi' 

decomposable graph obtained from GM by using Algorithm 4.21. Furthermore, let Cl(GD) be the set of 

cliques in GD, numbered Cl., ... , Cl,,,. m ;;;;is 1, according to the ordering i' from Definition 4.24. Let 

for each clique Cl;, the separator S; and the residue R; be defined according to Definition 4.27. Then, 

there exists a set K = {icq I Cl; E Cl(GD)} of functions icc1,(CR, I Cs,). called kernels, such that 

Pr(Cv(a0 » = II "c1,(CR, I Cs). 
i = l, . . . ,m 

PROOF. The lemma has been proven by Spiegelhalter and Lauritzen, [12). Since the proof gives a 
construction of K, we repeat their argument in the present paper. 

Let Dm+l = {VI V ~ V(GM), 1/lv E '1'} be the set of (initial) evidence potential domains. We have 
that Pr(Cv(a,,» = II 1/!v(Cv) is an evidence potential representation of the marginal distribution 

VED.+1 , 

on V(GM)· We recursively repeat the following computation for i = m, . .. , 1: 

Consider clique Cl; and its residue R;. Let V(Cl); = Cl1 U · · · U Cl1• Now assume that 

Pr(Cv<CJ)) = II 1/!v(Cv) is an evidence potential representation of the marginal distribution on 
VED1+1 

V(C/); (note that the assumption holds for i = m). We split the set D;+ 1 of evidence potential 

domains into two disjoint subsets: the set Di = {VI V E D; +I• V n R1 ¥=- 0 } consisting of those 
domains that contain variables from R; and the set D;- = D1 +1 \Di consisting of those domains 

that do not. We have 

Pr(Cv(Cl), \R,) = ~ Pr(Cv(Cf), \R, /\ cR,) = 

= II 1/lv(Cv) · ~ [ II 1/lv(Cv\R. /\ cR,)J. 
V ED,- c., V ED: 

Note that the first equality merely states that Pr(Cv(Cf), \R,) is obtained from Pr(Cv(cf),) by 

marginalization; the second equality follows from the earlier mentioned assumption 

Pr(Cv(cl),) = II 1/lv(Cv). 
VED1+1 

We now have obtained a re_eresentation of the marginal distribution on Cl 1 U ... U C/1_ 1• We 

define a new potential domain D; = U V\R;; we furthermore define the function 
veD: 
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It follows that 

Pr(Ce1,u ... uc1,) 
Pr( CR, I Cs,) = Pr(CR, I Cc1,u ... uc1,_1 ) = = 

Pr(Cc1,u ... uc1,_,) 

II 1/ly{Cy) 
YED,., 1/ly{Cy) -------=II II 1/ly{Cy) · f/>"D,(CD,) veD7 f/>"D,(CD,). 

YeD; 

W~ add the new evidence potential domain D; to D;- _as an initialization for the following 
computation step of the recursion. So, we let D; = Di U {D;}; note that the elements of D; do not 
contain variables from R;. We furthermore define a new set of evidence potentials 

- {1/l"jj(Cjj). f/>"D(CD) if D; ED;+) .l,-(Cli) - I I I I 

'YD, D, - .1..-(,.._) th . 
'l'D, '-D, o erwise 

and 

1/lv = 1/lv for all V E D; + 1> V =I= D;, 

res~ting in an evidence potential repr~tation of the marginal distribution on 
Cl 1 U · · · U Cl; - I· Subsequently, we rename 1/lv into 1/lv. and we repeat the computation for 
i - I. Note that we have established the property Pr(Cv(cl),_,) = II 1/ly{Cy). 

YED1 

T~g icq(CR, I Cs,) = Pr( CR, I Cs,), it will be evident that Pr(Cv(Go» = II icq(CR, I Cs)· • 
i=l, ... ,m 

' From the intermediary set of kernels introduced in the previous lemma, we obtain a set of clique 
marginals. Lemma 4.29 provides a means for constructing such a set. 

LEMMA 4.29. Let BM = (GM, '1') be a moral belief network as defined in Definition 4.14, such that 
Pr(Cv(G,,» = II 1/ly{Cy) constitutes a joint probability distribution on V(GM)· Let GD be the 

l/ivEi' 
dec,omposable graph obtained from GM by using Algorithm 4.21. Furthermore, let Cl(GD) be the set of 
cliques in GD, numbered Cl 1, .•• , Cl,,,, m ;;;a. l, according to the ordering i'. Let for each Cl;, the 
separator S; and the residue R; be defined according to Definition 4.27. Let 
K :;:= {icc1,(CR, I Cs,) I Cl; E Cl(GD)} be the set of kernels as constructed in the previous lemma. Now for 

each Cl;, i = 1, . . . , m. we recursively define 1-'<:1, ( Cq) = "c1, (CR, I Cs) · 1-'<:1
1 
(Cs,), where j is chosen 

such that Clj ::J Cl; n (Cl1 U · · · U Cl; - 1) and l-'ci
1
(Cs) is obtained by marginalization. Let 

M = {1-'<:1, I Cl; E Cl(G)}. Then, BD = (GD,M) is a decomposable belief network. 

The following lemma states that the set of clique marginals as constructed in the previous lemma 
ag8.in defines a unique joint probability distribution. 

LEMMA 4.30. Let B = (G,M) be a decomposable belief network as defined in Definition 4.9. Let Cl(G) 
be the clique set of G, numbered Cl 1, •.• , Clm, m ;;;a. l, according to the ordering i'. Then, 

1-'<:1, ( Cq) 

Pr(Cv<G» = i=I~. ,m 1-'<:1,(Cs) 

co~titutes a joint probability distribution on V(G). 
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PROOF. The lemma has been proven in [16] for a general decomposable belief network. The validity 
of the statement for the decomposable belief network resulting from the transformation of the 
originally assessed belief network can be seen from the Lemmas 4.28 and 4.29, and the observation 

that for each Cl; ,Cl1· E Cl(G) such that Cl; n Cl1· *' 0, we have P.c1 (Cana) = P.c1 (Cc· net). • 
' ' J J '• J 

ExAMPLE 4.31. Consider the decomposable graph GD from Figure 4.6(b) once more. Associated With 
GD we obtain the set of clique marginals 

M = {P.cv,,vi}• P.cv,, v •. v,Jt P.cv •. v,,v,}t P.cv,,v •. v,Jt P.cv,,v,,v,}t P.cv,.v,J} 

giving rise to the following representation of the joint probability distribution: 

• 

Pr(V1 /\ · · · /\ V8) = 

V 
P.cv,,v •. v,}(V2 /\ V4 /\ V6) P.cv •. v,,v,}(V4 /\ Vs /\ V6) 

= P.(V,,V,}(V1 /\ 2) . (V) 

P.cv,,v •. v,}(V3 /\ V4 /\ Vs) 

P.cv,,v •. v,}(V4 /\ Vs) 

P.cv,,v •. v,} 2 P.cv •. v,,v,}(V4 /\ V6) 

P.(V,,v,,v,}(Vs /\ V6 /\ V7) P.cv,,v,}(V6 /\ Vs) 

P.(V,,v,,v,}(Vs /\ V6) P.(V,,V,}(V6) 

4.2.3. Propagation of Evidence in the Decomposable Belief Network 

In the previous two subsections we have discussed a transformation of the initially assessed belief 
network into a decomposable belief network. The scheme for evidence propagation proposed by 
Spiegelhalter and Lauritzen operates on this decomposable belief network. We emphasize that for a 

specific problem domain the transformation has to be performed only once: each consultation 
proceeds from the obtained decomposable belief network. In this subsection we discuss the 

propagation of a single piece of evidence through a decomposable belief network. 
Suppose that evidence becomes available that a statistical variable V has adopted a certain value. 

For ease of exposition, we assume that the variable V occurs in precisely one clique of '.the 
decomposable graph. Informally speaking, propagation of this evidence amounts to the following. 
The vertices and the cliques of the decomposable graph are ordered anew as described in Subsect.jon 
4.2.2, this time starting with the 'observed' vertex. The ordering of the cliques then is taken as lthe 
order in which the evidence is propagated through the cliques. For each subsequent clique, lthe 
updated marginal distribution is computed locally. Then, the observed vertex is removed from lthe 
graph, and the updated marginal distributions are taken as the marginal distributions on the cliques 
of the remaining graph. The process may then be repeated for a new piece of evidence. 

In the following definition we introduce the notions of an updated joint probability distribution 
and an updated graph. 

DEFINITION 4.32. Let B = (G, M) be a decomposable belief network as defined in Definition 4.9. Now, 

let the evidence V = v (or V = -,v alternatively) be observed for a vertex V E V(G). Let Pr(Cv<G>) be 

the joint probability distribution on V(G) defined by M. Now, we define the updated probability 

distribution Pr* by Pr*(Cv·) = Pr(Cv· Iv) for any V' C V(G). Furthermore, we define the updated 
graph G* of G by G* = (V(G*),E(G*)) where V(G*) = V(G) \ V and 

E(G*) = E(G)\ {(Vk,V)I Vk E V(G*)}. 

The following lemma will be evident. 

LEMMA 4.33. Let B = (G, M) be a decomposable belief network. Let the evidence V = v (or V = -,v 

alternatively) be observed for a vertex V E V(G). Furthermore, let G* be the updated graph of G 

defined as above. Then, G* is decomposable. 
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The following lemma provides a method for computing the updated joint probability distribution in 
which the probabilistic computations to be performed are restricted to the cliques of the 
decomposable graph only. The lemma has been proven in [12). 

LEMMA 4.34. Let B = (G, M) be a decomposable belief network. Let Cl(G) be the clique set of G. 
Now, let the evidence V = v (or V = -,v alternatively) be observed/or a vertex V E V(G). Let' be the 
ordering of V(G) obtained from maximum cardinality search starting with V, that is, &(V) = 1. Let 
Cl 1, ••• , Clm, m ;;;a. 1, be the ordering of Cl( G) according to &' obtained from the ordering ' as in 

. ~(~) . 

Definition 4.24. Let Pr(CvcG» = . II '(C ') be the joint probability distribution on V(G) 
, =I, ... ,m µet, s, 

defined by M. Let Pr* be the updated probability distribution. We define the following functions for the 
' cliques of G: 

(I) µ*c1,\v(Cc1,\v) = µc1,(Cc1,\vlv). and 

µ*q(Cs) . 
(2) µ*c1

1
(Ce1) = µc1,(Cct,) · (C ) for 1 = 2, ... ,m. 

µCl, S, 

Let M* = {µ*et, \ v} U {µ* q Ii = 2, ... , m }. Then, we have that M* defines Pr*, that is, we have 
µ*q(Cq) 

Pr*(CvcG»=µ*c1,\vCCc1,\v)· II • (C )" 
i=2, ... ,m µCl, S, 

COROLLARY 4.35. Let B = (G, M) be a decomposable belief network. Let the evidence V = v (or 
V = -,v alternatively) be observed for a vertex V E V(G). Let Pr* be the updated probability 
distribution and let the set M* from Lemma 4.34 be its marginal representation. Furthermore, let G* be 

I 

the updated graph of G. Then, B* = (G*, M*) is a decomposable belie/network. 

5. SlJMMARy AND. CoNCLUSION 

In $is paper we have introduced the notion of a belief network as a formalism for representing a 
protilem domain. Such a belief network consists of a qualitative part representing statistical variables 
and their probabilistic interrelationships, and a quantitative part representing a joint probability 
distribution on the problem domain. We have discussed two different schemes for reasoning with 
sucli a belief network in which the qualitative part acts as an architecture for propagating evidence. 
We conclude this paper with a comparison of these network models with the quasi-probabilisic 
mod~ls mentioned in the introduction, since both depart from probability theory. 

Ap apparent similarity between these types of models for reasoning with uncertain information in a 
kno~ledge-based system, is that both are local in their approach: uncertainty is represented in factors 
whiqh are local in terms of the knowledge representation formalism, and propagation of evidence 
entails only local updating of the joint probability distribution. 

One of the problems in applying probability theory in a model for handling uncertainty in a 
kno~ledge-based context frequently postulated by researchers in artificial intelligence, is the difficulty 
of obtaining a fully and consistently specified probability distribution on the problem domain: often 
onlyl a few probabilities can be obtained from an expert in the field. In such a case, we are 
confronted with the problem of calculating certain probabilities from a partially and often 
incohsistently specified probability distribution. The quasi-probabilistic models are able to deal with 
such; partially specified probability distributions, although not in a mathematically sound way. We 
have mentioned before that the quasi-probabilistic models are rather disappointing from a 
mathematical point of view: the schemes for propagating evidence employed in these models are 
incorrect and even as an approximation technique they are far from convincing. In contrast, the 
schemes for propagating evidence employed in the network models are mathematically sound. These 
models however, are not capable of dealing with partially and inconsistently specified probability 
distributions. In each of the network models the originally assessed belief network has to be fully and 

--- ---------- ----- --------------------------------------------- --- ---------------------------------
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consistently quantified: a joint probability distribution on the statistical variables has to be uniquely 
determined by the conditional probability vectors. In a subsequent paper we will address this 
problem, [21). 
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