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This note deals with the numerical solution of one-space dimensional, time-dependent partial differential 
equations by means of a moving-grid method that is based on the Method of Lines. In this moving-grid 
method, the partial differential equation is discretized on grid lines that move continuously in the space-time 
domain. The grid movement is dictated by a space monitor through the standard equidistribution principle. 
Two monitors are discussed, viz. the arclength and the curvature monitor. The Method of Lines approach 
works well with the arclength monitor. This monitor, however, concentrates nodal points in steep fronts and 
neglects, to some ex)ent, sharp transition regions. In this respect, the curvature monitor is to be preferred. 
Unfortunately, the Curvature monitor turns out to be less attractive with regard to the time-stepping process. 
Specifically, the time-stepping process appears to be much more expensive than with the arclength moni
tor. This discrepancy is discussed through a number of numerical experiments. 
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l. INTRODUCTION 
In [5] three different moving-grid methods were evaluated to solve systems of one-space dimen

sional partial differential equations that have solutions with large space-time gradients. These three 
methods are all based on the Method of Lines approach. One method, first suggested by Dorfi & 
Drury[4], has been investigated further in [3, 6]. In this method, which we will describe in Section 2, 
the PDE is discretized on grid lines that are continuous in time and an extra set of equations to move 
the grid is simultaneously solved. These grid equations strive to equidistribute in space a monitor 
function that typically signals large spatial gradients. In [3, 5, 6] we successfully used the so-called 
arclength monitor but we suggested there that a grid equation equidistributing the curvature would be 
more appropriate. This was based on the oJ?servation that, generally spoken, the arclength monitor 
places too many points in steep fronts where they are not needed and neglects transition regions. Cur
vature monitors perform significantly better in this respect, as can be seen when comparing the results 
in [7], with those obtained with the arclength monitor in [5, 6). 

Experiments reveal however, that solving the ODE system arising from· the semi-discretization of 
the PDE and the moving-grid equations with the curvature monitor, is not only less robust, but also 
considerably more expensive than with the arclength monitor. The aim of this note is to illustrate this 
by discussing some of these experiments. In Section 3 we will show for two scalar problems that 
although the distribution of the grid points and the accuracy of the result is in general better for the 
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curvature monitor, the moving-grid method behaves with this monitor less satisfactorily with regard to 
efficiency and robustness. We therefore consider the curvature monitor less appropriate than the 
arclength monitor for use in the present straightforward Method of Lines approach. 

2. THE METHOD USED 

In this section we give a brief description of the moving-grid method and of the monitors used. We 
also discuss how we determine a starting grid in case the initial solution can not be represented well 
enough on a uniform grid. We formulate the method for a scalar PDE, but the extension to systems 
of equations is obvious and can be found in the cited literature. 

2.1. The moving-grid method 
The moving-grid technique that controls the grid movement in space and time is due to Dorfi & 

Drury[4] and is analyzed further in [6]. Here we will only enumerate the formulae involved. 
Given a PDE 

u1 = f (u,x,t), 

it is transformed to its Lagrangian form 

u - UxX = f (u,x,t), with u the total time-derivative, 
/ 

and discretized in space on N, time-dependent, grid points: 

xL = Xo < · · · < X;(t) < X;+1(t) < · · · < XN+1 = xR. 

We then have 

· (U;+1 - U;-1) · 
U; - _ x. ~) X; = F;, t > t 0 , 1 ~ i ~ N, 

(X;+1 1-1 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

where U; and F; represent the semi-discrete approximation to the exact PDE solution u, resp. the 
righthand-side function f (u,x,t), at the point (x,t) = (X;(t),t). In the examples discussed in this 
note, F; is based on the same standard 3-point difference formulas that were used in [5-7]. Also 
boundary conditions for (2.1) are implemented as in [ 5-7]. 

The additional equations for the time-dependent grid points X; are formulated in terms of the so
called point concentration of the grid, 

n; := (6.X;)- 1, liX; := X;+i - X;, 

and read 

with 

n;-1 + Tn;-1 

M;-1 

n; + -rn; 
---- = 0, 1 ~ i ~ N, 

M; 

n; := n; - K(K+l)(n;+I - 2n; + n;-1), 0 ~ i ~ N, 

(assuming n -1 : = no, nN =: nN + 1). 

(2.5) 

(2.6) 

M; is the monitor function which will be specified below, T ~ 0 is a temporal grid-smoothing parame
ter and " ~ 0 denotes a spatial grid-smoothing parameter. For the precise meaning of these parame
ters and the grid equation itself we refer to [6]. Here we note that the spatial grid smoothing, as 
introduced in (2.6), guarantees that the ratios of adjacent grid intervals satisfy the inequality 
1el(K+ 1) ~ b.X;I liX;+I ~ (K+ 1)11'. In applications," is normally set equal to 1or2. 

The temporal grid-smoothing introduces the derivative of the point concentration in the grid equa
tion. This serves to prevent the grid movement from adjusting solely to new monitor values. Instead, 
the introduction of -rn forces the grid to adjust over a time inter\ral of length T from old to new 
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monitor values, i.e. the parameter T acts as a delay factor. The aim here is to avoid temporal oscilla
tions and hence to obtain a smoother progression of X(t). These oscillations can arise in grids gen
erated via spatial equidistribution techniques, because when applied to solutions with extremely large 
gradients, the numerical monitor values are very sensitive to small perturbations in the grid and vice 
versa. With oscillatory trajectories it is certain that near steep fronts one or more components in the 
ODE system rapidly vary for evolving time. This is detrimental for the numerical time-stepping and 
also causes difficulty in the Newton solution of the sets of nonlinear algebraic equations that arise in 
the implicit time integration with the stiff solver. In contrast to the choice of ic, the choice of a good 
value for T is less simple. Increasing T too much results in a grid that lags too far behind any moving 
spatial transition. In fact, for sufficiently large values of T a non-moving grid results. In actual appli
cation T is chosen close to zero, depending on the time scale of the problem, such that,· over one or a 
few time levels, the influence of past monitor values is felt. 

Equations (2.4) and (2.5) are combined into the system of ODEs 
. . 
U - DX = F 

TBX = g 
(2.7) 

where D is a diagonal matrix and B a penta-diagonal matrix, both of dimension N X N. D and B 
are solution-dependen_ymatrices, and F and g solution-dependent vectors, containing all information 
about the monitor function and the righthand-side of the PDE itself, respectively. We note in passing 
that the grid equation (2.5) has now been formulated in terms of the nodal values. By way of illustra
tion we give its i-th component (2 .;;;; i .;;;; N -1) whereµ = ic(ic+ 1): 

- T [ M,_.(Ax,_ 2~2 ]x,_, + (2.8) 

+ [ + 1+2µ. + 2]X;-J + 
T M;(A.X;-1)2 M;-1(AX;-1)2 M;-1(A.X;-2) 

[ + 1+2µ. + 1+2µ. + ]x- + 
- 'T M;(AX;-1)2 M;(AX;)2 M;-1(.'.iX;-1)2 M;-1(LiX;)2 I 

+ [ + 1+2µ. + µ. Jx + 
T M;(AX;+ 1)2 M;(AX;)2 M;_ 1(AX;)2 ;-rt 

- T [ M;(ll.X;+1i ]X;+ 2 = 

- [ - µ. + .1.±11!: -
fl.X;+1 LiX; 

µ. l -[ --1!:_ 1 +2µ - µ. l .6.X; _ 1 IM; LiX; + LiX; _ 1 AX;_ 2 IM; - 1• 

The 1-st and N-th equation slightly differ due to the boundary conditions and are easily found. Note 
that, away from the b~:mndary, the. no.dal p~ints X;+ 2, X;+i. X;, X;-1> X;-z are coupled with the 
nodal point velocities X;+.2 , X;+i. X;, X;- 1, X;- 2 and the monitor values M;-i. M;. Needless to say 
that the grid equation TBX = g is very nonlinear. 

The linearly implicit ODE system (2.7) is solved by the BDF integrator SPGEAR of the SPRINT 
package[2] in the usual way. Note that for T = 0 this ODE system reduces to a DAE system. 
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2.2. The monitors 
The monitor function used in [3, 6], 

M; := [a+ (U;+1 - U;)2l(X;+1 - X;)2r, 
is the semi-discretization of the first derivative solution functional 

m(u) = (a+ (ux)2)Yz. 

In case one wants to equidistrit.>ute the curvature a second derivative solution functional like 

m(u) = (a + (uxx)2)V. 

has to be discretized. Here, we use the following, 

M; == [[a+ cuxx/r + [a+ (uxx, ... irJ 12, 

where Uxx, is the finite difference approximation of uxx(X;,t), i.e., 

U;+ 1 - U; 

X;+ 1 - X; X; - X;- 1 
(X;,,(1 - X;- 1)12 

for i = 1, · · · , N, 

and 

u = u xx ... : .... 1 XXN. 

(2.9) 

(2.10) 

(2.11) 

This curvature monitor naturally arises if the trapezium rule is applied for discretizing the equidistri
bution rule 

X.-+-1 

j m (u)dx = constant. (2.12) 
x, 

Instead of using the trapezium rule for discretizing (2.12) one can of course also apply the midpoint 
rule. It is our experience however, that (2.10) performs slightly better than its midpoint-rule counter
part. We have also considered a few other curvature type monitors (cf. Section 4). Among the curva
ture monitors we have experimented with, (2.10) seems to be the best possible. The monitors (2.9) and 
(2.10) will be compared in the next section. 

2.3. The initial grid 
In [3, 5, 6) a uniform distribution of the grid points has been used at the initial time, even when the 

solution is not flat. This means that the grid equation (2.5) with r = 0 is normally not satisfied at the 
initial time. It can be seen from the pictures of the grid trajectories in the above mentioned papers 
that in these cases the grid is adapting very fast to the solution (hence the use of a uniform start grid 
is allowed). To avoid eventual undesirable influences from a wrong initial grid on the later perfor
mance of the method, we decided to use here an adapted initial grid. To compute this grid we have 
used the same technique as Dorfi & Drury[4]. We start with a uniform grid and integrate the grid 
equation (2.5) forward in time with S PG EAR, using exact values U; = u (X;, t 0), until a stationary grid 
distribution is reached (marching to steady state). 

3. NUMERICAL EXPERIMENTS 

We tested the moving-grid method with the monitors (2.9) and (2.10) on two scalar problems. The 
second problem was used before as a test case in a.o. [6, 7]. 



3.1. Problem I: Burgers' equation 
The first problem is the well-known Burgers' equation 

oulot = - of(u)lox + t:o2u!ox 2 , 0 < x <I, t > 0, j(u) = u 2 12, 

with Dirichlet boundary conditions and solution 

where 

[ x -0.5 99t l 
r 1 = exp - 20t: - 400£ ' [ 

x -0.5 
r 2 = exp - 4£ 3t l 16£ , 

[ x-3/8] r 3 = exp - 2£ . 
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(3.1) 

For E: small this solution initially contains two layers which merge in the subsequent evolution into 
one layer. Fort = 0.001 this merging occurs at t:=::::0.55. 

3.1.1. The initial grid / 
For the monitors (2.9) and (2.10) the initial grid has been determined using the technique described 

in Section 2.3 with r = 10- 3 and a local error tolerance in SPGEAR of 10- 3 _ To decide when the 
grid distribution was stationary, we used the criterion X; < 10-s for all internal points 
i = I,···, N. 
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(ii) I I 11111111111111 I I I 1 
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(iv) 111111111111111111~111111111111 
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( vi) 11111111111111111111111 
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FIGURE 3.1. Problem I. Initial grid distribution for different K and N values. 
Arclength monitor Oeft) and curvature monitor (right). 
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Fig. 3.1 shows how the grids differ for both monitors and for the parameter choices a = I and 
(i) " = 2, N = 19, (iv) " = 2, N = 39, 
(ii) " = 1, N = 19, (v) " = 1, N = 39, 
(iii) " = 0, N = 19, (vi) " = 0. N = 39. 

One can see that distributing the grid points with the curvature monitor is more adequate, especially 
with a small number of points and" = 0. The arclength monitor concentrates too much points within 
the two layers and neglects, to some extent, the transition regions. For" = 1 or 2 and N = 19 there 
is not much difference between the arclength and curvature grid, dur. to the grid ratio inequality. For 
N = 39, the grids differ also for K = I and 2 while the curvature grid is better. 

In Table 3.1 the integration history is shown, given by: 
STEPS: total number of successful time steps 
JACS: total number of Jacobian evaluations 
BS: total number of backsolves 
ETF: total number of time error test failures 
CTF: total number of correction iteration convergence failures; i.e., the Newton process did not 

converge after 3 iterations, if necessary followed by 3 iterations with an updated Jacobian, 
or node crossing was detected during the Newton process. 

/ 

Arclength monitor Curvature monitor 

Case STEPS JACS BS ETF CTF STEPS JACS BS ETF 

(i) 254 44 663 14 0 472 94 1209 49 
(ii) 299 ~ 53 817 21 0 569 114 1503 65 
(iii) 403 52 980 16 0 657 104 1722 60 
(iv) 344 77 985 28 0 864 178 2293 121 
(v) 346 68 937 25 0 864 182 2344 120 
(vi) 490 64 1265 26 0 902 186 2439 113 

TABLE 3.1. Problem L Integration history initial grid computation. 
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FIGURE 3.2. Problem I. Plot of ux (left) and u.u (right) functions at t = 0. 
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0 
0 
0 
0 
0 
0 

It is obvious that solving the grid equation (2.5) with the curvature monitor is much more expensive 
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than with the arclength monitor. This could be explained by the fact that the second derivative of the 
initial solution function is considerably more varying in x than the first derivative and therefore the 
ODE system TBX = g will be harder to solve. (See Fig. 3.2 for a plot of Ux and u.u·) Specifically, for 
the curvature monitor the enli ies of B and g will vary much stronger with X; than for the arclength 
monitor. 

3.1.2. Time-stepping. 
We have solved (3.1) starting on the obtained initial grid and using a time-tolerance value in 

SPGEAR of 10-3 • The moving-grid parameters were T = 10- 3 and a = 1.0 together with the choices 
(i) - (vi) for IC and N. 

Monitor Case 
t =0.25 t =0.55 t =LO error(l.O) 
STEPS STEPS STEPS JACS BS ETF CTF II. 11.,., II. 112 

(i) 24 41 76 34 259 6 4 l.IE-1 2.0E-2 
(2.9) (ii) 16 33 48 26 173 9 2 7.IE-2 7.0E-3 

(iii) 26 42 90 56 254 0 20 4.6E-l 8.5E-2 
(i) /85 191 338 228 1157 15 59 l.6E-1 2.4E-2 

(2.10) (ii) 60 192 209 154 710 3 48 5.9E-2 6.5E-3 
(iii) 11 86 136 94 459 6 26 4.7E-2 4.2E-3 
(iv) 16 30 42 23 158 6 2 l.5E-1 l.2E-2 

(2.9) (v) 16 31 45 28 153 4 4 2.3E-1 l.8E-2 
(vi) 31 87 141 87 392 0 36 5.8E-2 7.6E-3 
(iv) 17 81 95 75 335 1 22 1.3E-2 8.9E-4 

(2.10) (v) 34 78 104 81 357 0 25 2.7E-2 2.IE-3 
(vi) 26 128 177 135 594 4 42 6.9E-3 5.8E-4 

TABLE 3.2. Problem L Integration history and accuracy. 

With regard to accuracy, the advantage of the curvature monitor can be clearly seen in Table 3.2 
and Fig. 3.3. With 19 internal points and for IC = 2, and to a less extent for IC = 1, the grid is more 
determined by the spatial smoothness demand than by the monitor values. Therefore with both moni
tors oscillations occur in the solution. For IC = 0 the arclength monitor concentrates too much of the 
grid points in the steep parts and apart from the oscillations a phase error can be seen. With the cur
vature monitor the solution is very accurate but the grid lines are wobbling a bit. In Fig. 3.3 we also 
see, for the same choices, how the method functions with a larger number of points (N = 39). Here 
the ardength monitor gives both smooth grid lines and a reasonably accurate solution, although for 
IC = 2 and I the wave-velocity is not quite correct and for IC = 0 again oscillations in the solution 
occur. Note that for IC > 0 the spatial grid smoothing prevents the arclength monitor from clustering 
a great deal of points inside the layers. The curvature monitor gives for every IC very good accuracy 
but the grid lines are not smooth functions in time. Non-smooth grid lines X;(t) are of course detri
mental for the numerical integration process. It is conjectured that the non-smoothness of the grid 
lines is a consequence of the sharp peaks in Uxx. 

From the results in Table 3.2 it can be seen that, using 39 internal points, the curvature monitor 
gives much better accuracy than the arclength monitor, but at considerably higher costs. For N = 19 
and IC = I, 2 (case (i), (ii)) there is no difference in accuracy but for the curvature monitor the costs 
are dramatically larger. This is caused by the oscillations in both the solution and the grid (see 
Fig. 3.3). The computational costs moreover are rather dependent on the parameter choices. We can 
see that the number of Newton failures is lower in the integration with (2.9) as monitor than with 
(2.10). It occurs in the latter integration process more than once that solving the nonlinear system 



8 

E-< ... 
x 
:=J 

x 
:=J 

0 

0 

0 

0.0 

0 

/ 

c: 
0 

0.0 

0 

0 

a 
a.a 

0 

1.0 

x 

" " 

i.a 
x 

1.a 
x 

E-< 
.... 

x 
:=J 

x 
:=J 

0 

0 

0 

0.0 1.0 
x 

" v 
0 

" + 

" 

0 

0 

a.a 1.a 
x 

0 

0 

a 
a.a 1.0 

x 
0 

0 

0-1--.---.--.--.--.--.--.--.--,--, 

0 

0-1--.--..---.--.--.--.--.--..---.-~ 

0.0 1.0 0.0 1.0 
x x 
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repeatedly fails to converge, resulting in a sharp decrease in stepsize. Moreover, if we take -r = 0, 
which is possible since (2.5) is approximately satisfied at the initial time, then the results for the 
arclength monitor do not change much but the process with the curvature monitor again and again 
breaks down due to repeated Newton convergence failures. It is then imprEsible to restart the integra
tion process, although both the solution and the grid seem to be reasonable well. Note that for -r = 0 
a DAE system results. For monitor (2.10) this DAE system thus appears to be much more difficult to 
solve with SPGEAR. 

3.2. Problem JI: A 'hot spot' problem from combustion theory 
This problem is described in Adjerid & Flaherty [I] as a model of a single-step reaction with 

diffusion and reads 

3u!3t = 32ul3x 2 + D(l +a - u)exr(--8/u), 0 < x < 1, t > 0, 

Clu!Clx (O,t) = 0, u(l,t) = 1, t > 0, 

u(x, 0) = I, 0.;::;; x ~I, 

where D = Re8 I (a8) and R, 8, a are constant numbers. The solution represents a temperature of a 
reactant in a chemical system. As before we selected the problem parameters a = 1, 8 = 20, R = 5. 
For small times the temperature gradually increases from unity with a 'hot spot' forming at x = 0. At 
a finite time, around t = 0.26, ignition occurs, causing the temperature at x = 0 to increase very 
rapidly to 2. A flame front then forms and propagates towards x = I at high speed to a steady state 
(t~.29). 

Since the solution at t = 0 is a constant, we start on a uniform grid using 41 grid points (N = 39) 
and a time-tolerance in SPGEAR of 10- 5 • The moving-grid parameters are a = 1.0 and 

(i) K = I, 'T = 0.061, (ii) IC = J, 'T = 0. 

Monitor Case 
t =0.25 t =0.26 I =0.27 t =0.29 
STEPS STEPS STEPS STEPS JACS BS ETF CTF 

(2.9) (i) 34 49 105 136 36 453 23 0 
(ii) 34 51 106 133 35 445 22 0 

{2.10) (i) 42 59 197 416 131 1240 86 l 
(ii) 43 62 198 * 

TABLE 3.3. Problem H. Integration history; 
* means that the integration has been interrupted due to repeated Newton failures. 

In Fig. 3.4 plots of the grid movement and of the PDE solution at times t = .26, .27, and .29 are 
shown for both monitors. The grid lines are only shown for t > 0.25; before this time point the grid 
is uniform. The solid lines in the plot of the PDE solution represent a very accurate reference solu
tion. 

For this problem the time integration is of more weight than the precise placement of the grid 
points and therefore it shows even better that using the curvature monitor in the moving-grid pro
cedure is expensive and not very robust, the costs being unacceptably high and varying for different 
parameter settings. Note in particular for the curvature monitor the oscillatory grid lines for t > .27 
if -r = 0, resulting in very small time steps. In Table 3.3 we see that for -r = 0 the moving-grid 
method with (2.10) does not reach steady state, due to repeated Newton failures (at t~.287) even if 
the time step has already been reduced to approximately zero. The reason for this, is that the condi
tion number of the Jacobian matrix is very large, say > 109, and therefore the numerical 
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perturbation will be larger than the tolerance for the Newton process. With T = 10-3 the steady 
state is reached without any difficulties in solving the nonlinear system, but again the moving-grid 
method with (2.10) uses much more time steps than with (2.9) as monitor. This test indicates again 
that the curvature monitor gives rise to a much more difficult semi-discrete problem. Observe that for 
the arclength monitor there is not much difference in performance for both choices of parameters. 

4. SOME FURTHER OBSERVATIONS ON MONITORS AND ON THE GRID EQUATION 
In [7] we have used the curvature solution functional 

m(u) =a+ [<uxx)2r!,. 
instead of them (u) underlying (2.10), i.e., 

m(u)= [a+(uxxi)";... 

(4.1) 

(4.2) 

At first sight the difference between the two is minor as this merely concerns the regularization con
stant a. However, in a numerical calculation the regularization in (4.1) may lead to erroneous results. 

To see this, we introduce the related functions 

g1(y) = a+ (y))14 , 

g2(y) = (a + y2)'14, 

and compute 

dg1(y) 
I . ( 2s1gn y) 

dy (y2)\4 ~ 
1 

dg2(y) 2Y 

, 

dy (a + y2)3/4 · 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

The variable y represents the true second derivative Uxx in the above analytical expressions and in an 
actual numerical implementation y represents the numerical replacement for uxx, e.g., expression 
(2.11). Clearly, for small values of Uxx or its numerical replacement the above derivatives behave in an 
entirely different way. While dg 2(y)ldy vanishes for y _,.. 0, dg 1(y)ldy blows up. Furthermore, if the 
numerical replacement for Uxx has a wrong sign, which is of course conceivable if Uxx~O, then also 
dg 1(y)ldy has a wrong sign. This results in entirely wrong derivative values aM;l'dU1, 3M;laX1 that 
appear in the Jacobian matrix which we encounter in implicitly solving the grid equation (2.8). In par
ticular, it can imply that during a Newton iteration entries in the true Jacobian vary extremely 
rapidly. This of course forms a serious obstacle. Numerical experiments with the moving-grid method 
using a monitor based on ( 4.1) instead of ( 4.2), have confirmed this. 

In conclusion, the regularization parameter a should not be separated from the derivative expres
sion as in (4.1). It is emphasized, that this observation also applies to the two arclength monitors 

m 1(u) = a + [<uxf r (4.7) 

and 

m2(u) = [a+ (uxf r. 
Note that 

dm1(u) 
--- = sign(ux), 

dux 

(4.8) 

Finally, when applying the method of [7] no difficulty originating from the above point was perceived. 
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We owe this to the fact that the method of [7] uses monitor information in an explicit way. 

We also considered a monitor which places the grid points in the curvature without computing the 
large and unreliable values of Uxx in reality. This monitor function is 

M; := d;. [a+ (uxx, ... ,,,)2r, (4.9) 

where 

and 

!
Uxx., (cf. 2.11) 

u - u 
X;•I Xj 

d; 
Uxx, (cf. 2.11) 

U;+1 - U;-1 
Ux = ' ' X;+i - X;-i 

i = 0 

i = 1, · · ·, N-1, (4.10) 

i = N 

d; = (6..x;+I + 6..x;-1)/2. 

Note, that since 6.X0 =AX _ 1 and !:iXN = 6.XN+1' the multiplier of Uxx in (4.9) is for all i the 
/. 1+112 

same as the denominator in (4.10) and therefore M; can be computed by 

- [ 2 2] ~ M; - a. d; + (Ux, ... , - Ux) . (4.11) 

Hence, the idea behind this monitor is to compute a difference of two difference quotients for ux 
rather than the common divided difference. If we assume that 41.X/:::::;d; then this monitor can be 
obtained by discretizing the..equidistribution rule [ l 2 

X1+1 J m (u)dx = constant, 

where m(u) is defined by (4.2). 
The difficulty with this monitor is that M; can become arbitrarily small (dependent on ic and N). If 

we take, e.g., AX;+ 1 ~ 0 and !:iX; - I ~ 0 then Ux, ... , ~ Ux, and therefore M; ~ 0. This is a very 
undesirable property since M; should be larger than zero to prevent infinite terms in the grid equa
tion. 

As suggested in [6], the grid equation can alternatively be formulated in terms of the grid distance 
!:iX; rather than in the point concentration n;. This yields, instead of (2.5) 

. . - - - -
(T!:i; + A;)M; - (T!:i;-J + .6.;-1)M;-1 = 0, (4.12) 

with A;:= AX; - ic(K+l)(AX;+ 1 - 21lX; + 4iX;-i) analogously defined as ii;. Th.is formulation is, 
especially for analytical reasons, much simpler than (2.5) but, unfortunately, (4.12) appeared to be 
harder to solve with a Newton process. We presume that this is caused by the fact that the Jacobian 
entries are larger, and thus more varying, for ( 4.12) than for (2.5) in case of a not well-placed grid. 
This can be easily seen if we take T = " = 0. The entries of the Jacobian for solving (4.12) are then 
approximately those going with (2.5) multiplied by (6X;M;)2 , which is for all i more or less a constant 
in case the grid equations are solved, but which can be rather large if M; is large and the correspond
ing AX; not (yet). 
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5. CONCLUSIONS 
We have seen in both experiments in Section 3 that the use of the curvature monitor results in a 

good distribution of the grid points and accurate results, but that the time integration both in the ini
tial grid computation and in the moving-grid method itself brings about large and sometimes even 
unsurmountable problems. The curvature monitor gives rise to a semi-discrete problem that is harder 
to solve for the stiff solver SPGEAR. The origin of the difficulties seems to emanate from the fact that 
the second derivative of the solution may vary rapidly over the space interval (especially in a wave 
front), resulting in widely different entries in the grid equation. Because the grid equation is severely 
nonlinear, this strong variation very much hinders the Newton process. For the arclength monitor this 
variation is much less and it is our experience that for this monitor the time integration with stiff 
solvers like SPGEAR is normally done in an efficient way. Also, for the arclength monitor the choice of 
the parameters " and T is not very critical. 
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