4

Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

P.J. van der Houwen

Block Runge-Kutta methods

Department of Numerical Mathematics Report NM-R8913 June

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
19486, as a nonprofit institution aiming at the promotion of mathematics, com-
puter science, and their applications. It is sponsored by the Dutch Govern-
ment through the Netherlands Organization for the Advancement of Research
(N.W.O)).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Block Runge-Kutta Methods

P.J. van der Houwen

CWI': The Centre for Mathematics and Computer Science
Post box 4079, 1009 AB Amsterdam, The Netherlands

In this paper block methods for solving ODEs on parallel computers are constructed. Most block
methods found in the literature produce approximations to the exact solution at equidistant points.
Here, we allow that the approximations correspond to nonequidistant points like the intermediate
approximations computed in Runge-Kutta methods. This approach enables us to improve the order
of accuracy. We concentrate on explicit methods such that they are suitable for use on parallel
computers.

1980 Mathematics Subject Classification: 65M10, 65M20
Key Words and Phrases: numerical analysis, stability, block Runge-Kutta methods, parallelism.

1. Introduction

The work surveyed in this paper is joint work with B.P. Sommeijer and W. Couzy from the
Centre for Mathematics and Computer Science in Amsterdam. Full details may be found in the
references [7]-[11]. .

Our starting point is the conventional s-stage RK method for the initial-value problem

(1.1 g%(t9=f(.‘>'(t)), y(to) = yo,

defined by
s
aiz . . . A YO = yn+h z ajj f(Y(j)), i=1,..,s;
j=1
s
Yn+1 =¥yn+h 2 b; f(Y(j)), n=0,1,...
j=1
asl . o . ass
(12) :
bl . .« e bs

The general structure of the Runge-Kutta-type methods considered in this paper is a direct
generalization of this conventional method. We introduce k-dimensional block vectors Yy, the
components of which are numerical approximations to the exact solution values:

Yn+1 = (Yn,ls Yn,2, eee g Yn,k)T,

where yn; denotes a numerical approximation to the exact solution value y(ty+cjh). We shall
assume that cy=1, while the other values of cjare allowed to be any real number. Thus, the last
component of the block vector Yn+; always provides an approximation to y(tp+1). The vector
c:=(cj) will be called the block point vector. For scalar ODEs, we now define the s-stage block
RK (BRK) method

Report NM-R8913

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

A | A L L Ag YO =AY +h) A f(YD), i=1,..,5
=1

S
Yo =BoYn+h Y B (YD), n=0,1, ...,
=1
AS Asl . . . Ass

(1.3) » Yl = (e TYn4,
Bo B; . . . Bg

where the matrices A;, Ajj, Bo and Bj respectively are r-by-k, r-by-r, k-by-k and k-by-r
matrices, ex denotes the kth unit vector, and where we use the convention that for any given
vector v=(v;), f(v) denotes the vector with entries f(v;). The method (1.3) can be considered as
the block analogue of (1.2). It is straightforwardly extended to systems of ODEs and therefore
also to nonautonomous equations. In order to start the method, one needs the initial vector Yy,
which requires as many starting values as there are distinct values c; (j=1,...,k). If c=e, e being
the vector with unit entries, then only one starting value is needed. In fact, in this case, the
BRK method reduces to a one-step RK method providing k approximations to y(tp+1). We
define the order of BRK methods by the order of yp+1.

The method is explicit if the matrices Ay; vanish for j2i, diagonally-implicit if the matrices Aj;;
vanish for j>i and if the matrices Aj; are diagonal, and implicit otherwise. In this survey, we
restrict our considerations to explicit and diagonally implicit methods. For such methods, the r
components of the block vectors Y() can be computed in parallel. Hence, if r processors are
available, then the required computational time per integration step is at most the time needed
for computing s block components sequentially. We define the optimal number of processors as
the number of processors for which the number of (sequential) block component evaluations
per step is minimal. In this connection, we remark that often less than r processors are needed
for implementing the BRK method.

In the explicit and diagonally-implicit case, the representation (1.3) is very convenient for
implementing the method on a computer, because the actual code is a direct translation of the
scheme (1.3) and the instructions for the computer in order to exploit the built-in parallelism of
the method are obvious. Conversely, by representing a given method in BRK format, it is
readily seen whether the method is suitable for use on a parallel computer or not.

Below we present examples of methods from the literature which have been constructed for use
on parallel computers. We shall use the BRK notation defined above and we give the order p
and the number of processors needed for implementation.

Method of Miranker and Liniger [16]. Explicit, two-processor method which seems to be the
first method constructed for parallel solution of initial-value problems:

1000
0100
0010
0001
(1.4) , ¢=(-1,0,2, DT, p=4, k=r=4, s=1.
01000 O0 O 0
00011 0 0 O 0
0001 (|-1/3 43 83 -53
0 001 |1/24 -5/24 9/24 19/24

Method of Worland [21]. Explicit two-processor method based on the PECE mode of a
predictor of Shampine & Watts [19] and the Clippinger-Dimsdale corrector [3]:

10 0 O
01 0 O
00 1 O
00 0 1
001 0Jj0 O O 0
00 0 110 0 O 0
013131310 1/4 -1/3 13/12
0 1/31/3 1/3| 02924 -3 79/24

(1.5) , €=(-1/2,01/2,1)T, p=k=r=4, s=2.
001 OO0 O O 0 00 O O
00 0 110 0 O 0 00 0 O
00 0 110 O 0 54 00 1/3-1/24
00 0 1]0 0 0 16 00 23 1/6

Multi-block method of Chu and Hamilton [2]. Explicit two-processor method based on the
PECE mode of a PC pair using full block methods:

10
01
5 4
28 -27

1 2
6 9

(1.6)

01

, ¢=(1/2, DT, p=4, k=r=s=2.

-1/48 13/48 13/48 -1/48

0 1/6 2/3 1/6

BRK method not derived from PC pairs [7]. Explicit two-processor method requiring two
starting values:

1 00
0 01
0 1a a
(1.7) , a=4/3++13/12, ¢ =(0, 1,)T, p=3, k=r=3, s=1.
0 01 0 0 0
5
00 1 0 &y O
7 7
0 0 1 -§+a -3—-3. 1

DIRK method of Iserles and Ngrsett [13]. L-stable, diagonally-implicit two-processor method:
112 0
1 0 23
1|-52 52 12 0
1{-53 43 0 273

(1.8) , c=e, p=4, k=1, r=s=2.
1 -1 32 -1 3R

2. Construction of high-order methods

The order of the above-mentioned methods do not exceed p=4. In this section we outline the
construction of higher-order methods. We distinguish methods requiring only one starting
value (RK methods) and methods requiring several starting values (multistep methods).

2.1. RK methods

Let Ojj be the i-by-j null matrix, let A be a given r-by-r matrix, let B and D be r-by-r diagonal
matrices, let b be a given vector of dimension r, and let 0 and e respectively denote the null and
unit vector whose dimension should be clear from the context in which it is used. Setting k=s,
we define the matrices

Aji=0 .. 0e),i=1,..,s; Bp:=(0 ... 0e); O:=0;
(2.1a)

Bi:=(b...0000)T, By:=(0b0...00)T, ., Bg:=(0...000b)T,

and we consider BRK methods generated by the Butcher-type array

Ai| B
Abl C D
A3l O AD D
A4 O O AD D
As| O . . . O AD D
(2.1b) , c=e,
BO Bl . . . BS-Z Bs-l Bs

with yp+1 defined by (1.3). Evidently, this tableau generates a particular family of DIRK
methods providing k approximations to the true solution y(tp+1). If B=D=0, then (2.1) reduces
to an explicit RK (ERK) method. It is readily verified that (2.1) originates from iterating the r-
stage RK method

(2.2) Y =ype + hAf(Y), yn+1 =yn+ hbTE(Y).

(for details of the iteration process we refer to [8] and [10]). The method (2.2) will be called the
generating corrector formula. Usually, this corrector formula is an implicit RK method, but the
considerations below also apply to the case where (2.2) is an ERK method.

In the following subsections, we construct matrices A, B, C and D and a vector b such that the
components yn i of Yp4+1 provided by the BRK method (2.1) have orders p-s+i, i=1,...s. Thus,
we shall construct a pth-order DIRK method with embedded formulas of orders p-1, ..., p-
s+1. We start with explicit methods, i.e., B=D=0.

2.1.1. ERK methods

We summarize the results we obtained for parallel ERK methods (cf. [8]). For that purpose, we
need the notion of the number of sequential stages (or, as it was termed by Iserles and Ngrsett
[13], the number of effective stages).

Definition 2.1. An ERK method is said to require s sequential stages if the computation time
required for evaluating all right-hand sides in one step is s times the computation time required
by one right-hand side evaluation, assuming that sufficiently many processors are available. o1

Thus, if B=D=0, then (2.1) is an ERK method requiring s sequential stages. In the paper of
Iserles and Ngrsett, the following theorem was proved:

Theorem 2.1. ERK methods of order p necessarily require at least p sequential stages. 0

This assertion led Ngrsett and Simonsen [17] to pose the problem whether it is always possible
to find ERK methods of order p using not more than p sequential stages, assuming that
sufficiently many processors are available. Such methods were called optimal in [17].

Definition 2.2. An ERK method is called optimal if its number of sequential stages equals its
order. 1

For p<4, the above problem can (of course) be answered positively and for p=5 Ngrsett and
Simonsen mention a 6-stage, Sth-order method of Butcher possessing 5 sequential stages. For
higher-order ERK methods, the following theorem [8] solves the problem posed by Ngrsett
and Simonsen:

Theorem 2.2. If B=D=0, C=A, and if the corrector formula (2.2) is of order s, then the method
defined by (2.1) is optimal and the components yn i of Yn+1 have orders i, i=1,...,s. 01

For any even p there exist RK methods of order p requiring p/2 stages (Gauss-Legendre
methods) and for any odd p there exist RK methods of order p requiring (p+1)/2 stages (Radau
methods). Using these methods as generating corrector formula (2.2), we have in (2.1)
r=[(p+1)/2], where [.] denotes the integer part function, and we are led to the corollary:

Corollary 2.1. There exist optimal ERK methods of any order p requiring [(p+1)/2] processors. 11

In order to demonstrate that the use of parallel computers may save computing time, we
compare the 'parallel, iterated’ RK (PIRK) methods of this section with the so-called 8(7)
method of Prince and Dormand [18]. According to [6] this method is nowadays generally
considered as one of the most efficient methods with automatic stepsize control for TOL-values
approximately in the range 10-7 to 10-13. We compare the DOPRIS code, as given by Hairer,
Ngrsett and Wanner [6], with the PIRK method based on the Gauss-Legendre correctors of
orders 8 and 10. To let the comparison of the DOPRI8 code and the PIRK codes not be
influenced by a different stepsize strategy, we equiped the PIRK codes with the same strategy.
These codes are respectively denoted by PIRKS8 and PIRK10.

As test problem we take the equation of motion (cf. Problem B5 from [12]):

y1' =y2y3, y1(0) =0,
(2.3) y2'=-y1y3, y200=1, 0<t<T.

y3' = - .51y1y2, y3(0) =1,
In Table 2.1, we have listed the values A\N, where A denotes the number of correct decimal
digits at the endpoint (i.e., we write the maximum norm of the error at t=T in the form 10-3)
and where N denotes the total number of sequential right-hand side evaluations performed

during the integration process. For tolerances TOL running from 10-5 up to 10-12 we list the
values of N which were found for a number of values of A.

Table 2.1. Values of N for Problem B5 from [12] at T=20.

Method A=6 A=7 A=8 A=9 A=10 A=11 A=12
DOPRIS 415 576 728 898 1133 1422 1817
PIRKS 294 381 534 728 961 1172 1746
PIRK10 252 297 357 426 580 730 920

2.1.2. DIRK methods

Our main results for parallel DIRK methods of the form (2.1) with D#O obtained in [10] are
summarized below.

Since the bulk of the computational effort required by these methods goes into the solution of
the s-1 systems of equations, we define:

Definition 2.2. A DIRK method is said to require s sequential stages if the computation time
required for solving all systems of equations in one step is s times the computation time
required by solving one system of equations, assuming that sufficiently many processors are
available. 01

Thus, if both B and D do not vanish, then (2.1) is a DIRK method requiring s-sequential
stages. I B=0 and D=0, then s-1 sequential stages are required. The following theorem
determines the order of the approximations yp j:

Theorem 2.3. If the corrector formula (2.2) is of order p*, then the components yn i of Yn+1
defined by the method (2.1) have orders pj, i=1, ... , s which are given by:

Type IA.1: B=0, C=A-D => pi=min{p*,i}

Type IB.1: B=D, C=A-D => pi=min{p*,i}

Type IB.2: B=D=diag (Ae), C=A-D => pj=min{p*,i+1}
Type IC.1: B=0O => pi=min{p*,i-1}, i>2
Type IC.2: B=0, D=diag (Ae-Ce)) => pi=min{p*,i}

Type IC.3: B=0, D=diag (Ae-Ce)), DAe=A2e => pi=min{p*,i+1}. 0 "

Since yn+1:=Yn,s. it follows from this theorem that Type IC.3 methods are the most efficient
ones because order p* requires only p*-1 sequential stages. Unfortunately, in general Type
IC.3 methods are not A-stable. The following corollary of Theorem 2.3 can be proved[10]:

Corollary 2.2. The order of A-stable Tifpe IC methods cannot exceed their number of sequential
stages plus 1, unless bTD-![I-AD-1]s+2Ce=0. g

Thus, in order to construct a DIRK method of Type IC of order 4, at least 3 sequential stages
are required, whereas the L-stable, fourth-order DIRK method (1.8) of Iserles and Ngrsett
requires only 2 sequential stages. On the other hand, (2.1) also generates formulas of orders 3,
2 and 1. However, more important is the possibility to generate embedded methods of orders
higher than p=4 possessing quit favourable stability properties. First we consider the case
where D has constant diagonal elements. This case allows a theoretical analysis. Analogous to
an analysis by Wolfbrandt [20] of SDIRK methods (that is, RK methods with constant
diagonal in the Butcher tableau), stating that for 1<p<6 and p=8 the stability function of SDIRK
methods of order p and requiring p stages is L-stable, and for p=7 and 9<p<15 it does not (see
[1, p. 248] for a summary of Wolfbrandt's result), we arrive at the theorem:

Theorem 2.4. Let the corrector formula (2.2) be of order p*=s, then there exist values of d
such that the Type 1B.1 methods are L-stable for 1<s<6 and s=8. []

Within the class of methods with D=dl, it is possible to construct (at the cost of an additional
sequential stage) still higher-order L-stable approximations. This can be achieved by choosing
the corrector formula (2.2) such that b=ATe, (so-called stiffly accurate corrector formula) and
by adding to Y1 the component (e;)TY(®). The resulting method is again of the BRK form
(1.3), but has the property that yn+1=(ep)TY(). Let us call these special methods Type II
methods. First we state the analogue of Theorem 2.3 for Type II methods:

Theorem 2.5. If the corrector formula (2.2) is of order p* and satisfies b=ATe,, then the order
of yn,i is given by Theorem 2.3 and yp,1:=(er) Y) is also stiffly accurate with order p given

Type IIA.1: B=0O, C=A-D => p=min{p*,s-1}
Type 1IB.1: B=D, C=A-D => p=min{p*,s-1}
Type IIB.2; B=D=diag (Ae), C=A-D => p=min{p*,s}

Type IIC.1: B=0O => p=min{p*,s-2}
Type IIC.2: B=0O, D=diag (Ae-Ce)) => p=min{p*,s-1}

Type IIC.3: B=0, D=diag (Ae-Ce)), DAe=A2e => p=min{p*,s}. 1
The main stability results obtained for the Type II methods are given by

Theorem 2.6. If the corrector formula (2.2) is stiffly accurate (b=ATe;) and has order p*=s-1,
then there exist values of d such that :

(@) Type IIA.1 methods are L-stable for 1<s<7 and s=9.
(b) Type IIB.1 methods are L-stable for 1<s<9 and s=11. (1

We illustrate the performance of the methods by integrating a test problem proposed by Kaps
[1981]: '

d 1 1 d
@4 =@+ 2w+ Syn Gy n) O =0 =1, 0<i<1,

with exact solution yj=exp(-2t) and y2=exp(-t) for all values of the parameter €. We tested
several correctors and all types of methods which are L-stable. In Table 2.2 the values of A are
listed (cf. Table 2.1). Notice that the Type II methods require a stiffly accurate corrector (such
as the Radau II formulas) and that L-stable, seventh-order methods are only possible within the
family of Type IIB methods. In all experiments we observe the phenomenon of order reduction
(if p is the order of the method, then, on halving the step size, the value of A should increase by
.3p if no order reduction is exhibited). Roughly speaking, we see a reduction by one order.

Table 2.2. Values of A for problem (2.4) at t=1 with e=10-2.

Type Corrector Order h=1/4 h=1/8 h=1/16 h=1/32 ﬁ=1/64 Seq. Stages Proc.
IB.1 RadauIIA 3 39 47 54 58 64 3/h 2
Gauss-Legendre 4 30 37 44 52 6.0 4/h 2
Explicit RK 4 31 38 4.5 53 6.1 4/h 4
Radau TA 5 35 43 52 62 174 S/ 3
Gauss-Legendre 6 32 41 50 62 175 6/h 3
ITA.1 RadauIlA 3 36 43 49 56 6.2 3/h 2
Radau ITA 5 38 45 53 6.3 7.5 5/h 3
IIB.1 RadauIlA 3 42 46 52 59 6.7 4/h 2
Radau ITA 5 62 56 6.1 69 8.0 6/h 3
Radau TA 7 43 52 62 77 94 8/h 4

We also considered Type II methods with matrix D possessing distinct diagonal entries. From
Theorem 2.5 and by means of computer calculations found:

Corollary 2.3. Let the corrector formula (2.2) be defined by the r-stage Radau IIA formula,
and let s=2r-1, then the Type 1IC.3 methods have order p=2r-1, they require p-1 sequential
stages, and they are A(0wp)-stable where 03 = /2, 05~ 7/2 - 3103, o7 =m/2 - 4102, 0

Thus, by using distinct diagonal values we can save a sequential stage.

We conclude this section with a comparison of the various DIRK methods available in the
literature and those discussed in this paper. The methods designed for parallel computation are
indicated by PDIRK. Effectively, all methods in this survey are SDIRK methods. The order
range of the embedded formulas are listed in the column headed with pemp.

Method p Stages Seq. st. Processors Stability Pemb Reference/Specification

SDIRK p=3 pl p-1 1 A-stable Ngrsett [1974]

SDIRK p=4 p1 p-1 1 A-stable Crouziex [1976], Alexander [1977]
SDIRK p=3 P P 1 S-stable <p Cash [1979], Cash & Liem [1980]
SDIRK P4 p+l p+l 1 S-stable <p Cash [1979], Cash & Liem [1980]
PDIRK p=4 P p-2 2 L-stable p-1 Iserles & Ngrsett [1988]

PDIRK p<6 ps p [(p+1)/2] L-stable <p Type IIA.1, D=dI

PDIRK p=8 ps p [@+1)2] L-stable <p Type I1A.1, D=dl

PDIRK p<8 (p+l)s p+l [(p+1)2] L-stable <p Type IIB.1, D=dI

PDIRK p=10 (p+1)s p+l [(@p+1)2] L-stable <p Type IIB.1, D=dI

PDIRK p=3 ps p [(@+1)2] L(o)-stable <p Type IIB.2, 0=87.47

PDIRK p=5 ps p [(@+1)2] L(o)-stable <p Type IIB.2, 0=89.12

PDIRK =3 (@-1)s p-1 [(p+1)/2] A-stable p-1 Type IIC.3

PDIRK p=5 (p-1)s p-1 [(p+1)2] A(o)-stable [2,p-11 Type IIC.3, a=89.997
PDIRK p=7 (p-1)s . pl [(e+1)/2] A(c)-stable [2,p-11 . Type IIC.3, 0=89.959

2.2. Multistep methods
We consider the special two-stage method

I O O
A|lB C
________________ , C#e: Yn+1 = AYn + th(Yn) + th(YIH'l)'

where A, B and C are arbitrary k-by-k matrices (here, r=k). Unlike the RK methods of the
preceding sections, not just one component of Yy, plays a role in this scheme, and therefore it
belongs to the class of multistep methods.

The order condtions for methods of the above special two-stage form are extremely simple:

Theorem 2.7. Let the error vectors C; be defined by
Cj:=A(c-e) +j[B(c-eyl+Ccl]-d, j=0,1,....
Then order p is obtained if the error vectors C;vanishfor j=0, 1, ...,p. 0

In this theorem powers of vectors are meant to be componentwise powers. The above order
conditions are sufficient conditions but often they are not ail necessary (for a discussion cf.
[91). The block point vector ¢ plays an important role in the order conditions and by using this
vector, we can achieve higher order or better stability than is possible within the class of block
methods where the abscissas ty+cjh are equally spaced.

In the following subsections we shall give examples of, respectively, explicit, diagonally-
implicit, and fully implicit methods. Based on these methods, and by means of predictor-
corrector (PC) iteration, we can construct high-order explicit and diagonally-implicit BRK
methods (see Section 2.2.4).

2.2.1. Explicit BRK methods

Explicit methods arise for C=0 reducing the method to one-stage form:

This method needs k starting values and on k-processor computers it requires one sequential
righthand side evaluation per step. Therefore, its computational complexity is comparable with
that of explicit k-step linear multistep (LM) methods. For example, for k=2 we can construct
the one-parameter family of third-order BRK methods (examples of higher-order methods up to
order 7 can be found in [9])

1 0
0 1
2.5) . e=(c, DT, c#1, p=3,k=2, s=1.
c2(3-c) 1-3c c2 c
(1-c)? (1-¢c)3 (l-c)i (l-c)i
53¢ -c3+3c2-4 2-¢ (2-¢c)p?
(1-c)y* (1) (1-c)? (1c)?

For c<1-V3 and ¢>1+V3 this method is zero-stable and can be used as a method in its own
right. For c=11+v/6, this method has zero parasitic roots if h=0. Alternatively, the parameter ¢
may be used for maximizing stability intervals (cf.[11]).

2.2.2. Diagonally-implicit BRK methods

Such methods arise when we set C=diag(d). As before, this method needs k starting values and
on k-processor computers it requires the solution of one sequential, implicit relation per step.
Therefore, its computational complexity is comparable with that of implicit k-step LM methods.
In this case, we can construct for k=2 a three-parameter family of third-order methods. The
length of the formulas prevents us from presenting them here (see [9]). In this family there are
several strongly A-stable methods, of which one of them is given below:

1 0 0 0
0 1 0 0
12 12 | -9/4 -1/4 52 0
1 0 ~7/4 9/4 0 52
(2.6) , ¢=(1,1)T, p=3, k=s=2, A-stable.
12 12 | -9/4 -1/4 52 0
1 0 -7/4 9/4 0 52

2.2.3. Fully implicit BRK methods

We constructed fully implicit methods for use in PC-type methods. For k=2, we found the one-
parameter family of fourth-order, zero-stable methods

10

10 0 0

01 0 0
01 -c3 c(c2-6¢c+6) c(c>-6¢+6) -c3
12(1-c) 12(1-¢) 12(1-c) 12(1-c)
01| — (1-2¢) -6¢2+10c-3 3-2¢c 6¢2-14c+7
12(1-c)2-c) 12c(1-c) 12¢c1-¢c) 12(1-c)(2-¢c)
(2.7) .¢=(c, 1), p=4,
k=s=2. -
01 -c3 c(c2-6¢c+6) c(c2-6¢+6) -3
1-c) 12(1-¢) 12(1-c) 12(1-c)
01 (1-2¢) -6¢2+10c-3 3-2c 6¢2-14c+7

12(1-c)(2-c) 12c(1-c) 12¢c(1-c) 12(150)(2-c)

If c=1-v1/5, then the method becomes fifth-order accurate.

2.2.4. PC-type methods

Let the predictor be of one of the two forms:

I]O O
D| E F I |1 O

(2.8) e, e with F =0,
D| E F D E

and let the corrector be of the form

1]0 O
A|lB C

(2.9) ,
A|lB C

then we can construct higher-stage methods by PC iteration. In choosing a PC pair, the block
point vactors ¢ should be identical. For example, the PC pair {(2.5),(2.7)} generates the 3-
stage BRK method

1| O
D| E O
A|l B C O
(2.10) ,
Al B ¢ o

which is fourth-order accurate for all values of ¢ and requires two sequential righthand side
evaluations and two starting values. The same {(2.5),(2.7) }pair generates the 4-stage, fifth-
order BRK method:

I o)
D E O
A B C O
A B O C O
2.11D) , c=1-VJ1/5,
A B O C O

which requires 3 sequential righthand side evaluations.

In this way, we can construct high-order methods in a relatively straightforward manner.
However, as for most block methods, the stability of the higher-order methods offers a
considerable problem (see, e.g., Donelson & Hansen [4]). The highest order method we
constructed so far is an explicit, stabilized, eighth-order, 3-stage method of the form (2.10)
requiring four starting values and with real stability interval [-0.302, 0]. The matrices A, B, C,
D and E in (2.10) are given by:

0 1 0 0 00 0 0
0 0 0 1 00 0 0
3.73.112. 6.53. 6.73. 32'5'7'809 33.53.73.37
2.12) A:=| 327°:1383 3°5°263 , 3°7°-827 C:=
2.12) 30469-210 30469-27 30469210 00 3046925 30469-210
4549 33-1039 0 -33.79 00 29-11 14369
30469 30469 30469 30469-3-5-7 30469
0 0 0 0
0 0 0 0
3.c4.73 6.52.7.17. 5.52.73 5.5.73.
B.=| 3*5%73 365271767 355273 3557313 , ¢=(1,0,52 DT,

3046929 30469210 30469-2° 30469-2°
23029 33131709 283231 3261337
30469-37 30469-57 3046957 304695

0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0

D:=| 5975 1539 537 2793 E.=| 225 567 9 2205
224 20 35 32 | 32 8 32
82 117 63232 2 3 18 128 1
343 125 128625 3 49 25 1225

12

2.2.5. Numerical examples

In Table 2.2 we compare the BRK methods of the preceding Section 2.2 with methods from the
literature (see also Table 2.1). The methods are grouped according to their k-value which
mainly determines the computational complexity.

Table 2.2. Values of A for Problem B5 from [12] at T=20.

Sequential righthand sides N 120 240 480 960 1920 p k
Two-step Adams-Bashforth method 1.2 19 25 3.1 37 2 2
Two-step Adams pair: PECE 1.2 20 29 38 47 3 2
Chu-Hamilton multi-block method (1.6) * 33 47 60 73 4 2
BRK method (2.5): c=1 -6 1.6 26 35 44 53 3 2
BRK method (2.11) 25 39 55 70 85 5 2
Four-step Adams-Bashforth method 33 38 48 60 7.1 4 4
Four-step Adams pair: PECE 25 34 48 62 77 5 4
Miranker-Liniger method (1.4) 3.1 50 63 7.2 83 4 4
Shampine-Watts method (1.5) 19 33 46 59 72 4 4
BRK method (2.12) 29 74 9.8 8 4
References

(1]
(2]
(3]

(4]
(5]
(6]

[7]

(8]

[9]

[10]
(11]
[12]

[13]
(14]

Butcher, J.C. (1987): The numerical analysis of ordinary differential equations, Runge-
Kutta and general linear methods, Wiley, New York.

Chu, M.T. & Hamilton, H. (1987): Parallel solution of ODE's by multi-block methods,
SIAM J. Sci. Stat. Comput. 3, 342-53.

Clippinger & Dimsdale (1958): in: E. Grabbe, S. Ramo & D. Woolridge, Handbook of
Automation, Computation and Control, Vol. I: Control fundamentals, Chapt. 14, p. 14-
60, Wiley, New York, 1958.

Donelson, J. & Hansen, E. (1971): Cyclic composite multistep predictor-corrector
formulas, SIAM J. Numer. Anal. 8, 137-57.

Gear, C.W. (1987): Parallel methods for ordinary differential equations, Report No.
UIUCDCS-R-87-1369, University of Illinois, Urbana Champaign, Urbana.

Hairer, E., Ngrsett, S.P. & Wanner, G. (1987): Solving ordinary differential equations
1. Nonstiff problems, Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-
Tokyo.

Houwen, P.J. van der, Sommeijer, B.P. & Mourik, P.A. van (1988): Note on explicit
parallel multistep Runge-Kutta methods, Report NM-R8814, Centre for Mathematics and
Computer Science, Amsterdam (to appear in J. Comp. Appl. Math., 1989).

Houwen, P.J. van der & Sommeijer, B.P. (1988): Variable step iteration of high-order
Runge-Kutta methods on parallel computers, Report NM-R8817, Centre for Mathematics
and Computer Science, Amsterdam (to appear in J. Comp. Appl. Math.).

Houwen, P.J. van der & Sommeijer, B.P. (1989): Block Runge-Kutta methods on
parallel computers, Report NM-R89.., Centre for Mathematics and Computer Science,
Amsterdam (submitted for publication).

Houwen, P.J. van der, Sommeijer, B.P. & Couzy, W. (1989): Embedded diagonally-
implicit Runge-Kutta algorithms on parallel computers (in preparation).

Houwen, P.J. van der, Sommeijer, B.P. & Couzy, W. {1989): Stability of parallel block
Runge-Kutta methods (in preparation).

Hull, T.E., Enright, W.H., Fellen, B.M. & Sedgwick, A.E. (1972): Comparing
numerical methods for ordinary differential equations, SIAM J. Numer. Anal. 9, 603-
637.

Iserles, A. & Ngrsett, S.P. (1988): On the theory of parallel Runge-Kutta methods,
Report DAMTP 1988/NA12, University of Cambridge.

Jackson, K. & Ngrsett, S.P. (1988): Parallel Runge-Kutta methods, to appear .

[15]
[16]

[17]

[18]
[19]

[20]
[21]

Lie, L. (1987): Some aspects of parallel Runge-Kutta methods, Report No. 3/87,
University of Trondheim, Division Numerical Mathematics.

Miranker, W.L. & Liniger, W. (1967): Parallel methods for the numerical integration of
ordinary

differential equations, Math. Comput. 21, 303-20.

Ngrsett, S.P. & Simonsen, H.H. (1989): Aspects of parallel Runge-Kutta methods, in:
A. Bellen (ed.): Workshop on Numerical Methods for Ordinary Differential Equations,
L'Aquila, 1987, Lecture Notes in Mathematics, Springer-Verlag.

Prince, P.J. & Dormand, J.R. (1981): High-order embedded Runge-Kutta formulae, J.
Comp. Appl. Math. 7, 67-75. i

Shampine, L.F. & Watts, H.A. (1969): Block implicit one-step methods, Math. Comput.
23, 731-40.

Wolfbrandt, A. (1977): Thesis, Chalmers Institute of Technology, Géteborg.

Worland, P.B. (1976): Parallel methods for the numerical solution of ordinary differential
equations, Trans. Comput. C-25, 1045-48.

