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L Introduction 

Images may contain details of various sizes .. To obtain a complete description an image must 

therefore be analyzed over a whole range of spatial scales. This is usually done by gener­

ating a hierarchy of images that consists of successively reduced resolution versions of the 

original image (hence the term "multiresolution representation"). Well known examples of 

these multiresolution image representations are the pyramid and quad-tree data structures: 

see [8,13]. 

Typically, a multiresolution representation is a sequence of images in which each image 

is a filtered and subsampled copy of its predecessor. The conventional multiresolution rep­

resentations apply linear filters to reduce resolution. Linear filter techniques alter the object 

intensities and therefore the estimated location of their contours. Hierarchical image rep­

resentation schemes based on these techniques are therefore of limited applicability to the 
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description of size and shape. The underlying techniques of mathematical morphology are 
geometric in nature. As a result, multiresolution image representations constructed with mor­
phological techniques are inherently more suited for the analysis of shape and size specific 
features in the image: see [11,12]. 

The construction of multiresolution image representations requires a simple but flexible 
sampling scheme. One particular example of such a sampling scheme was introduced and 
thoroughly studied by Haralick and his co-workers [5,6). Some of their results which are 
relevant for the present discussion will be recapitulated below. But first we recall some basic 
concepts from mathematical morphology which will be used in the sequel. For a more complete 
exposition we refer to (4,9,10]. 

Let Fun(Zl2 ; 9), or Fun(Zl2 ) for short, be the space of all grey-level functions mapping Zl 2 into 
the set of grey-levels 9 which we take here to be the finite let {O, 1, 2, ... , N}. For h E Zl2 we 
denote by Fh the translated function 

Fh(x)=F(x-h) forxEZl 2 • 

We denote by id the identity operator on Fun(Zl 2 ), that is id(F) = F for every FE Fun(Zl 2 ). 

An operator 1/J : Fun(Zl 2 ) -+ Fun(Zl2 ) is called translation-invariant if 

1/J(Fh) = ('lf;(F))h, for all FE Fun(Zl2 ) and h E Zl 2 • 

Let A be an arbitrary subset of Zl2 , called the structuring element. The dilation F Efl A and 
the erosion F 8 A of the function F are defined as 

(F EEl A)(x) = sup{F(y) J y E Ax}= sup Fh(x) 
hEA 

(F 8 A)(x) = inf {F(y) J y E Ax}= inf F-h(x). 
hEA 

Here A is the reflected set of A, that is, A= {-h J h EA}. 
One can extend the given formulas for dilation and 'erosion to the case where A is a 

grey-level function. In the special case that A only attains the value zero on its support we 
can replace A by a set (as we actually did) and in this case we call A a flat structuring element. 

Dilation and erosion by A form an adjunction in the sense that for F1 ,F2 E Fun(Zl 2 ), 

The opening FA and the closing FA of F by A are given by 

FA= (FeA)EtlA 

FA= (F9A)8A. 

All these operators are translation-invariant. We recall that an operator 'ljJ on Fun(Zl 2 ) is 
called an opening if 

- 1/J is monotone, that is F ~ G implies that 1/J( F) ~ 1/J( G) 
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- ,,P is idempotent, that is ,,P2 = ,,P 

- ,,P is anti-extensive, that is ,,P ~ id. 

To define closings one has to replace the adverb "anti-extensive" by "extensive". 

First we shall briefly discuss some related ideas underlying the work by Haralick et al. in [6]. 
In particular, we will limit ourselves to flat structuring elements. 

Let S be a subgroup of 'Zl.2 ; in the sequel S will be referred to as the sampling set. Let 
the structuring element K C 'Zl.2 be large enough so that the union of all J('s positioned at 

s E S covers 'Zl.2 , i.e., 

'Zl.2 = S Ea K := LJ Ks. 
ses 

(1.1) 

Here Ks = {k + s I k E K}. Furthermore assume that K is symmetric around (0,0) (i.e., 
K = J(), that Kn S = {(O, O)}, and that 

(1.2) 

This latter condition is called the sampling condition; one easily shows that this condition 
combined with the fact that (0,0) E K yields (1.1). In accordance to the sampling theorem 
in linear signal analysis, this condition implies that the sampling distance must be less than 

half the diameter of the structuring element K. For an arbitrary element F of Fun(1l2 ), the 
sampled function [F] (which is again an element of Fun('Zl.2 )) is defined as 

[F](x) _ { F(x), x ES 
- 0, elsewhere. 

Haralick et al. consider two reconstruction algorithms, namely the dilation reconstruction 
defined by [F] ffi K, and the closing reconstruction defined by [F]1<. The restrictions on K and 
S result in the following bounding relationships: 

FK ~ [F] Ea K ~ F Ea K 

Fe K ~ [F]K ~ FK. 

If F is both open and closed with respect to K, that is, F = FK = pK, then these estimates 
yield 

[F]K ~ F ~ [F] Ea K. 

Our approach differs from the approach by Haralick and co-workers in the sense that the 
sampled image is a restriction of F ffi J( to S and not merely of F. Thereto we define a 

sampling operator a : Fun('Zl.2 ) -t Fun( S) by 

a(F)(s) = (F Ea K)(s). 

Thus a is a dilation as it distributes over arbitrary suprema (see [7,10]). The theory of 
adjunctions [7] states that this dilation a is uniquely related to a corresponding erosion a 
mapping Fun(S) to Fun('Zl.2 ) such that for every FE Fun('Zl.2 ) and GE Fun(S) one has 

a(F) ~ G <==> F ~ a(G). (1.3) 
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It is easy to show that 

0-(G)(x) = inf{G(s) Is E f(x n S}. 

Application of a to a sampled image a(F) gives a reconstruction of the original image. Since 
0-a is a dosing we find immediately that &a( F) 2:: F. 

It is clear that the sampling operator o- commutes with translations over vectors in S, 
that is, a(Fs) = a(F)s, for F E Fun(ZZ2 ) and s E S. In Section 2 we discuss a more 
general sampling strategy which applies to arbitrary spaces and does not satisfy any translation 
invariance principle. From Section 3 onwards we restrict the discussion to regular sampling 
strategies and we define two different reconstruction operators. If the sampling element K 
can be decomposed as A EB A, then there exists a third useful reconstruction algorithm. This 
algorithm is discussed in Section 4. In Section 5 we exami~e the situation where the sets Ks 
( s E S) are disjoint. In the construction of a morphological pyramid one has to repeat the 
sampling procedure several times. Problems related to iterative application of the sampling 
procedure are discussed in Section 6. Finally, in Section 7, we briefly discuss operations on 
sampled images. 

The sampling strategy which is the topic of this paper can also be used to digitize continuous 
images, that is elements of Fun(lR-2). The conditions under which the sampled image converges 
to the original image will be the subject of a forthcoming paper by one of the authors. 

2. A general sampling strategy 

Let X, S be arbitrary sets and let K : S---+ P(X), where P(X) is the space of all subsets of 
X. The dual mapping K* : X---+ P(S) is defined as: 

K*(x) = {s ES Ix E K(s)}. (2.1) 

It is easily seen that the second dual J(** : S---+ P(X) equa':ls J(, i.e., J( = IC'*. One can also 
show that 

LJ K(s) = X if and only if Vx EX: K*(x) -:f 0, (2.2) 
sES 

and in this case we say that J( covers X. One easily sees that, 

Vx EX: card K*(x) = 1 if and only if the K(s) are mutually disjoint, 

if K covers X. Here "card" denotes the cardinality; for a finite set this amounts to the number 
of its elements. As before Fun(X) denotes the complete lattice of all functions F : X ---+ (}, 
where Q = {O, 1, 2, ... , N} or any other complete lattice of grey-levels. The support of F, 
supp( F) is defined as the set of all x E X for which F( x) -:f O. We define the dilation 
a: Fun(X)---+ Fun(S) by 

a(F)(s) = sup{F(x) Ix E K(s)}. (2.3) 
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The adjoint erosion 0- : Fun(S) --+ Fun(X) which corresponds with <7 by adjunction can be 
computed explicitly from (1.3). We have 

which yields that 

The composition 

u(F) ~ G {:}'<Is ES: sup{F(x) Ix E K(s)} ~ G(s) 

{:} Vs ES Vx E K(s): F(x) ~ G(s) 

{:}'<Ix EX '<Is E K*(x): F(x) ~ G(s) 

{:}'<Ix EX: F(x) ~ inf{G(s) Is E K*(x)}, 

0-(G)(x) = inf{G(s) Is E K*(x)}. 

p = 0-u I 

is a closing on Fun(X), and 

ap = a. 

(2.4) 

(2.5) 

(2.6) 

We call a the sampling operator, 0- the reconstructing operator and p the reconstruction 
operator. We tacitly assume that a reconstruction operator is of the form ,,Pr, where r is a 
sampling operator mapping Fun(2l2 ) into Fun(S) and 'If; a reconstructing operator mapping 

Fun(S) back to Fun(2l2 ). From the fact that p is a closing we have the lower estimate p 2: id. 

Proposition 2.1. The closing p(F) is the largest function G for which u(G) = u(F). 

PROOF. If a(G) = a(F) then G ~ 0-u(G) = 0-u(F) = p(F). 
I 

If K does not cover X and x is one of the elements which is not contained in any of the K( s) 's, 
then we have p(F)(x) = N. If K does cover X then we can derive an upper bound for the 
reconstruction p( F) of F. Let x, x' E X. We say that x' is a K-neighbour of x if x, x' E K ( s) 
for some s ES. The K-neighbours of a point x are denoted by N(x). One derives immediately 
that 

N(x) = LJ K(s). (2.7) 
sEK*(x) 

Soy E N(x) if and only if there is ans ES such that x,y E K(s). In particular, x E N(x) 
if and only if K*( x) f. 0. So the K-neighbourship relation defines a symmetric relation on X 
which is reflexive if K covers X. We define the dilation Ii: Fun(X)--+ Fun(X) by 

8(F)(x) = sup{F(x') Ix' E N(x)}. (2.8) 

One finds immediately that 

8(F)(x) = sup{a(F)(s) Is E K*(x)}. 

Since p(F)(x) = inf{u(F)(s) I s E K*(x)}, we find that p(F)(x) ~ li(F)(x) if K*(x) f. 0, 
and equality holds if K*(x) contains exactly one element. Thus we have proved the following 
result. 
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Proposition 2.2. If K covers X then 

p ~ b, (2.9) 

where equality holds if the K ( s) are mu tu ally disjoint. 

Remark 2.3. Here we have applied a dilation to sample the image and obtained a recon­
struction by application of the adjoint erosion. Instead, one could reverse the order and first 
erode to sample the image, and then dilate to get a reconstruction. The latter reconstruction 
operator, which we will denote by p*, is an opening. The two approaches are closely related. 
This becomes apparent by defining the negative F* of the function Fas F*(x) = N - F(x). 
Then p*(F) = (p(F*))*. Note that the negative of afunctioJ1 which takes values in ?Z+ U{oo} 
cannot be defined properly. 

3. Regular sampling 

In the sequel we will only consider the case X = 7l 2 , and assume that S is a subset of Ill2 • 

Unless otherwise stated, x will always denote an element of X and s will denote an element of 
S. Let K(s) be the translate along s of some fixed set KC IR2 , called the sampling element. 
From now on we shall use the notation Ks rather than K(s). Again we assume that 1(3 C ?Z 2 • 

Then 

K*(x) = Kx n S. (3.1) 

Here k is the reflection of K, i.e., f( = {-k I k E K}, and kx is the translate of k along the 
vector x. We say that K is symmetric if k = K, and that K is shape-symmetric if k = Kh 
for some h E IR2 • Obviously, every symmetric set is also shape-symmetric. The situation that 
K covers 7l 2 can be denoted mathematically as 

(3.2) 

In Figure 1 we have depicted some regular sampling strategies. Note that in Figure l(f) the 
covering assumption (3.2) is not satisfied. The K's in Figure 1( a)-(f) are symmetric whereas 
the K in Figure l(g) is only shape-symmetric. 

For practical reasons we make the following assumption: 

Assumption 3.1. S is a subgroup of ?Z 2 • 

This assumption implies in particular that (0, 0) E S, and excludes the sampling strategies 
depicted in Figures l(d),(e). 

Remark 3.2. Note that Assumption 3.1 does not imply a severe restriction of generality. 
For example, the sampling scheme depicted in Figure l(d) is, modulo a translation, equivalent 
to the one in Figure l(g). 
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We say that the mapping 'l/J on Fun(?Z.2) is an S-operator if it commutes with translations 

along vectors in S, i.e., 

,,P(Fa) = ,,P(F)a, FE Fun(:ZZ2 ), s ES. 

The dilation sampling operator of (2.3) can now be written as 

a(F)(s) =(FEB K)(s). (3.3) 

The reconstruction operator p = aa is given by 

p(F)(x) = inf {(FEB f()(s) Is E 1x n S}. (3.4) 

Obviously, p is an S-operator. 

We give an upper- and lower-bound for p. Recall that the K-neighbourhood N(x) of an 
element x is given by N(x) = {y C 2Z2 I x,y E Ka for some s ES}. Let 

L=Kffif(. (3.5) 

Lemma 3.3. For every x E :ZZ 2 , 

N(x) C Lx. (3.6) 

PROOF. From (2.7) we get that 

N(x) = LJ Ks c LJ Ka= (K EB K)x = Lx. 
sEK*(x) aEi<., 

I 

Figure 2 illustrates that the size and shape of N ( x) generally depend on x, and that the 

inclusion in (3.6) may be strict. 

Proposition 3.4. For every FE Fun(:ZZ2 ) we have the following lower-bound for p(F): 

pi<_ S p(F). (3.7) 

If K EB S = 2Z 2 then we have the upper bound 

p(F) SF EB L. (3.8) 

PROOF. From (3.4) we get that 

p(F)(x) ~ inf{(F EB K)(y) I y E Kx} = Fj( (x). 

The estimate (3.8) follows from Proposition 2.2 and Lemma 3.3. 

I 
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Corollary 3.5. For every F E Fun(?Z2 ), 

(3.9) 

PROOF. From (3.7) and the fact that a= ap and a are increasing, we get 

whence equality follows. 

I 
We will now present a second reconstruction operator, cal}ed the closing reconstruction and 
denoted by Pk· Thereto we first define the operator a0 on Fun(?Z2 ) as follows: 

ao(F)(x) = { a(F)(x), if x ES 
0, elsewhere. (3.10) 

From (3.3) it follows trivially that 

(3.11) 

Lemma 3.6. If K EB S = ?Z2 then 

p(F) :::; ao(F) EB K, (3.12) 

for every F E Fun(?Z2 ). 

PROOF. From J( EB S = ?Z2 it follows that K*(x) = kx n S -:f 0, for x E ?Z 2 , and we get that 

This proves the result. 

p(F)(x) = inf{a(F)(s) Is E kx n S} 

:::; sup{a(F)(s) Is E f(x n S} 

= sup{ao(F)(y) I y E Kx} 

= (ao(F) EB K)(x). 

We define the closing reconstruction Pk by 

I 

(3.13) 

Note that Pk(F) = ao(F)K if K is shape-symmetric, since closing with the translate Kh gives 
the same result as dosing with K. 
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Proposition 3. 7. 

FE Fun(:ZZ2 ), 

Let K be shape-symmetric and suppose that K EB S = :ZZ2 • For every 

FeK:::; p(F)eK:::; Pk(F):::; (FE:Bk)K = (FEBL)eK. 

If, in addition, Kn S = {(0,0)}, then 

apk = a, 2 -Pk - Pk, and Pk S, p. 

PROOF. The estimates follow immediately from (3.11) and Lemma 3.6. 

If Kn S = {(0,0)}, then, for FE Fun(:ZZ2 ) and s ES, 

. !, 
<YPk(F)(s) = <Y(<Yo(F)K)(s) = [ao(F)K EB k](s) 

= [ao(F) EB k](s) = sup ao(F)(x) 
xEK. 

= ao(F)(s), 

(3.14) 

(3.15) 

since the supremum takes its value in Sn Ks = {s}. Thus apk = <Y. Now the second relation 

follows immediately. 

To prove that Pk :::; p, note that PPk = impk = aa = p. Since p ~ id we find that p ~ Pk· 

I 

We point out that (3.15) also holds if K is not shape-symmetric. Note that one may not 

conclude that Pk is a closing. 

If K EB S = :ZZ2 does not hold, in particular, if K contains only one point and Sis a nontrivial 

subgroup of :ZZ 2 , then the closing reconstruction Pk is rather useless. The same is true if the 

sampling element K is large compared to the spacing of the sample points in S, so that there 

is much overlap. However, Pk may yield a reasonable reconstruction if K EB S = :ZZ 2 , and if Ks 

are mutually disjoint: this is actually the situation discusse~ in Section 5. 

4. The case K = AEB A 

In this section we present an important class of sampling elements J( for which there exists 

a reconstruction algorithm which sometimes performs "better" than p and Pk· Let A C "ll.. 2 • 

Throughout this section we will assume the following. 

Assumption 4.1. A satisfies the covering assumption SEBA= :ZZ2 • 

We define the symmetric sampling element J( as 

K =A EB A. ( 4.1) 

In Example 4.6 we will consider the important special case that S = 2:ZZ 2 = {(2i, 2j) I i,j E ?l}, 
and A = {(O, 0), (1, 0), (0, 1 ), (1, 1 )}. We start with a lemma. 
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Lemma 4.2. Let Assumption 4.1 hold and let](= A EB A. For evezy x E "ll.. 2 , 

PROOF. Because of the symmetry, we only have to prove the first inclusion. Let a E A. We 
must show that a + x E (Ax n S) EB ](. Since A EB S = "ll.. 2 there exist a' E A and s' E S such 
that -x = a1 + s'. Then -s' = a'+ x E S, because Sis a group, and -s' = a'+ x E Ax. 
Therefore -s' E Ax n S. Now a+ x = -s' +a - a' E (Ax n S) EB K, since a - a' EK. 

I 
Let ao be as in (3.10). We define the reconstruction operator 

I 

Proposition 4.3. Let Assumption 4.1 hold and Jet ]( = A EB A. Then 

id~ Pa~ Pk· (4.2) 

PROOF. To prove the first inequality it suffices to show that FEBA ~ ao(F)EBA, or equivalently, 
that for x E "ll.. 2 , 

sup{F(y) I y E Ax}~ sup{cro(F)(y) I y E Ax} 

= sup{cr(F)(s) Is E Ax n S} 

= sup{sup{F(z) I z E Ks} I s E Ax n S}. 

It is sufficient to prove that for every y E Ax we have y E K 8 for some s E Ax n S. But this is 
the same as Ax C (Ax n S) EB K, which was proved in Lemma 4.1. 
We are now going to show that Pa ~ Pk· We observe that any function which is closed with 
respect to K is also closed with respect to A, that is, (GI<)"i = GI<, for any function G on 
"ll.. 2 • Since G ~ QI< this implies that GA ~ GK. From this observation the proof follows 
immediately. 

I 
Note that, because of the symmetry, we also have 

( 4.3) 

Proposition 4.4. Let K = A EB A, with A satisfying Assumption 4.1, and suppose that 
Kn S = {(O, O)}. Then 

P =Pa= Pk· 

PROOF. We first show that, for any FE Fun("ll.. 2 ), 

which is equivalent to 

( 4.4) 



From ]( = A EB A we find that 

a(ao(F)A.)(s) = [ ((ao(F) EB A) e A) EB A EB A] (s) 

= [ao(F)EBAEBA](s)= [ao(F)EBK](s) 

= sup ao(F)(x) = ao(F)(s) 
xEK, 

= a(F)(s), 

11 

because ](5 n S = { s }. Since ap = a we have aop = <To. Application of the closing by A at 

both sides results in PaP =Pa· But since Pa 2: id this yields that PaP 2: p, which gives Pa 2: p, 

and hence Pa = p. The proof that Pa = Pk proceeds along the same lines: recall from ( 4.2) 

that Pa S Pk· I 
I 

Remark 4.5. Let ]( = A EB A. Then 

]( n S = {(O, O)} if and only if the As are mutually disjoint. 

To prove "if", assume that the As are mutually disjoint and that s E ]( n S. So s E A EB A, 
and therefore can be written as s = a1 - a2 with a1, a2 E A. But then a1 = a2 + s E A 8 • This 

implies that a1 E An As which is possible only ifs = (0, 0). 

To prove "only if", assume that]( n S = {(0,0)} and that x E Arn As for some r,s ES. 

Then x = ai + r = a2 + s for some a1, a2 E A. So r - s = a2 - a1 E A EB A = ](. But r - s is 

also an element of S and therefore must be equal to zero. So r = s. 

Example 4.6. We consider now the important special case where S = 2?l. 2 • We define 

K< 2> = {( i,j) I o s i,j s 1} 

K<3 > = {(i,i) I -1si,is1} 
J(C5) = {(i,i) I -2 s i,j s 2j. 

Then ]((3), ]((5) are symmetric and ]((2) is shape-symmetric. See Figure 3( a). We denote 

by a< 2), a<3) and q(5) the corresponding sampling strategies. For i = 2, 3, 5 we define p(i) = 
&(i)a(i). If A(3) := ]((2) then J((3) = A( 3)· EB _A(3), and A(3) satisfies the assumptions of 

Proposition 4.4 whence we obtain that 

p(3) = p~3) = P13), 

where p~3) and p13 ) have the obvious meaning. Defining A( 5) := ]((3 ) we have ]((5) = A(5) EB 

_A(s). Now A( 5) satisfies the covering assumption (4.1), that is, 

It follows from Proposition 4.3 that 
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However, K( 5 ) n S contains more than just the element (0,0), so the conclusions of Proposi­
tion 4.4 do not follow. By means of some simple examples it can easily be understood that p(3) 
and p(s) have a rather different performance. Thereto we consider a binary image consisting 
of only one point x. If x E 'll.. 2 is a point with odd coordinates, then p(3) ( { x}) = Ki3> and 
p< 5>( { x}) = { x }: see Figure 3(b ). However, if x is a point with even coordinates, and hence 
an element of S, then p<3>({x}) = {x} and / 5>({x}) = Ki3>: see Figure 3(c). (In fact, we 
should not insert sets but their characteristic functions as arguments of p.) For completeness 
we mention that in the first case p<2> ( { x}) = 1(12> and p~5 ) ( { x}) = As) ( { x}) = Kl3), whereas 
in the latter case p< 2>({x}) = Ki2> and p~5)({x}) = p~5)({x}) = Ki5>. 

5. Non-overlapping sampling elements 
Next we consider the case that the K s 's form a partition of the space "ll.2 • Throughout this 
section we make the following assumptions, which are in particular satisfied for the sampling 
strategies depicted in Figures 1 (b ),(g) ,(h). 

Assumption 5.1. 

(a) K ffi S = 'll 2 

(b) the Ks are mutually disjoint, i.e. Kr n Ks = 0 if r f s, r, s E S 
(c) (O,O)EK 
( d) K is shape-symmetric. 

Note that (b) and (c) imply that Kn S = {(0,0)}. So we can apply Proposition 3.7 which 
tells us that (JPk = a, p~ =Pk and Pk :'.S p. 

Remark 5.2. Note that (c) is not really a restriction. Because of (a),(b) there is a unique 
so E S so that (0, 0) E Ks0 • Let K' = }(30 and let p' be the reconstruction operator corre­
sponding to K'. Then p' = p. 

Assumption 5.1 guarantees that there exists for every x E ll..2 a unique sx E S such that 

(5.1) 

Then the K-neighbourhood of x is 

N(x) = Ks,,· (5.2) 

The erosion iY of (2.4) reduces to 

iY(G)(x) = G(sx), (5.3) 

and it follows immediately that aiY is the identity operator on Fun(S). The reconstruction 
operator p = a(J becomes 

p(F)(x) = (J(F)(sx) = sup{F(y) I y E Ks..,} for all x EX. (5.4) 

In particular this implies that p is both a dosing and a dilation. By FJs we denote the 
restriction of F to S. 
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Lemma 5.3. Let Assumption 5.1 hold and let FE Fun(ZZ.2 ) with supp(F) C S. Then 

a(F) = a(F EB K) =Fis· (5.5) 

PROOF. The first equality is easy, and we only prove the second. Suppose that supp(F) CS. 

Then 

(FEB K)(x) = sup{F(y) I y E Kx} = sup{F(y) I y E Kx n S} = F(sx), 

for all x E X. Therefore 

a(F EB K)(s) = sup{(F EB K)(x) Ix E Ks} = sup{F(sx) Ix E Ks} = F(s), 
I 

for alls E S. 

Proposition 5.4. Let Assumption 5.1 hold, and let K be shape-symmetric. Then 

p(F) = Pk(F) EB K and Pk(F) = p(F) 8 K, 

and 

PROOF. We first show that p(F) = a0 (F) EB K. For x E ZZ. 2, 

(ao(F) EB K)(x) = snp{ao(F)(y) I y E kx} 

= a(F)(sx) = p(F)(x), 

where we have used (5.4). This yields that 

Pk(F) EB K = ((ao(F) EB K) 8 K) EB K = ao(F) EB K = p(F), 

and that 

p(F) 8 K = O"o(F)K =Pk, 

which proves (5.6). 

I 

(5.6) 

(5.7) 

We now prove (5.7). From the first equality in (5.5) it follows that a= aa0 • This implies that 

Thus apk =a and hence p~ =Pk· 
I 
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6. Repeated sampling 
In case we want to repeat the sampling procedure of Section 3, we have to define a sampling 
element K' C S and a sampling set S' in S such that S' is a subgroup of S. In this section 
we will restrict to the case where the same sampling scheme is used in every step. We make 
the following assumption: 

Assumption 6.1. Sis a subgroup of 'll..2 which is isomorphic to ll.2 • 

We point out that every nontrivial subgroup S of 'll..2 which is not isomorphic to 'll is isomorphic 
to 'll..2 , and in that case the quotient group 'll.. 2 / S is finite. Let i : 'll..2 -r S be a group 
isomorphism. Note that i is completely specified by its values at the points (1, 0) and (0, 1 ). 
Let s1, s2 E S be such that S is generated by s1, s2, i.e., every s E S can be written as s = 
ni s1 + n2s2 for some ni, nz E 'll... Then i is completely dete:rinined by i( 1, 0) = s1, i( 0, 1) = s2; 
namely i(k,l) = ks 1 + ls 2 • In general, many choices for s 1 ,s2 are possible; often they can be 
chosen orthogonal: see Figure 4. 

We define S(o) = 'll..2 and let J((O) = J( C Zl.. 2 be an arbitrary sampling element. We define 
S(P), J((P) recursively as 

(6.1) 
Note that S(l) = S. By induction, it follows easily that every S(P) is a group which is 
isomorphic to 'll..2 and that 

Lemma 6.2. For every p 2: 0, 
(a) if (0, 0) E K, then (0, 0) E J((P); 

(b) if K Efl S = Zl.. 2 , then J((P) Efl S(P+1) = S(P); 

(c) if the sets Ks with s E S are mutually disjoint, then the sets K}Pl with s E S(p+l) are 
mutually disjoint as well; 

( d) if K is (shape-) symmetric then J((P) is (slrnpe-) symmetric as well . 
.. 

PROOF. (a),(c),(d) are trivial, and we shall only prove (b). The proof goes by induction. Let 
K(p-l) Efl S(P) = S(p-l) 

for some p 2: 1. Then 

J((P) Efl 5(p+l) = LJ{k' + s' I k' E J((P)' s' E s<p+l)} 

This proves the result. 

= LJ{i(k) + i(s) I k E K(p-1), s E S(P)} 

= LJ{i(k + s) I k E J((p-1), s E S(P)} 

= i(LJ{k + s I k E J((p-1), s E 5(p)}) 

= i(K(p-l) Efl S(P>) 

= i(S(P- 1>) = S(P). 

1111 
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Let, for p ~ 0, the sampling operator u(p,p-l) : Fun(S(p-l))-+ Fun(S(P)) be defined by (2.3), 

i.e. 
u(p,p-l)(F)(s) = sup{F(x) Ix E K~p-l)}, 

where FE Fun(S(p-l)) and s E S(p). Thus a(p,p-l) is the operator which brings us from the 

(p - l)'th to the p'th level. We can go immediately from the O'th to the p'th level by means 

of the composed sampling operator 

O"(p,O) = O'(p,p-l)O'(p-l,p-2) ... a(l,O)_ 

This requires the sampling set S(P) and the sampling element K(p-l)Ef!K(p-2)Ef! ... Ef!K( 1)Ef!K(O). 

From Lemma 6.2(b) we deduce that, if K EfJ S = ll..2, then K(m-l) EfJ S(m) = s<m-l) form ::::; p, 

and hence, 
K(p-1) EfJ J((p-2) EfJ ••• EfJ J((O) EfJ s<v( = ll.2. 

There is an alternative way to represent the sampled images a(p,O)(F). Using the isomorphism 

i : ll..2 -+ S one can construct a lattice isomorphism 7r : Fun( S) -+ Fun(ll.. 2 ) as follows: 

7r(G)(x) = G(i(x)), for GE Fun(S), x E ll.. 2 • 

Then 7r0' maps Fun(ll..2 ) into itself. Now repetition of the sampling procedure defined by K 

and S a.mounts to iteration of the mapping 1f<:J. An example is presented in Figure 8. 

7. Operations on sampled images 

In this section we denote the closing and opening respectively with the symbols e and o. So 

instead of FK (resp. FK) we write Fe K (resp. F o K). 

We denote by EfJ and 8 respectively the dilation and erosion on Fun(ll..2 ), and by EfJ and 8 

the dilation and erosion on Fun(S). Analogously, i' and o will denote the closing and opening 

on Fun(S). If C C S then both the expressions F EfJ C for F E Fun(ll..2 ), and G EfJ C for 

GE Fun(S) make sense. 

Lemma 7.1. Assume (0,0) EK, and let Fi E Fun(ll..2) for i EI. Then 

/\er( Fi)::::; a(/\ (Fi EfJ K)). 
iEI iEI 

PROOF. Since (0,0) EK, we haves E Ks, for s ES, hence 

a(/\(Fi EfJ f())(s) = sup{/\(Fi EfJ K)(x) Ix E Ks} 
iEI iEI 

iEI 

= /\ cr(Fi)(s). 
iEI 

This proves the assertion. 

I 
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Proposition 7 .2. 

F E Fun(ZZ. 2 ), 

Assume that (0, 0) E K, let F E Fun(ZZ. 2 ) and C C S. For every 

a(F EB C) = u(F) EB C 

o-(F 8 C) ::; a(F) 8 C::; a((F EB K) 8 C) 

a(F o C)::; a(F)oC::; a((F EB K) o C) 

a(F e C)::; a(F)'iC::; a((F EB k) • C) 

p(F) EB Cs; p(F EB C) 

p(F 8 C) s; p(F) 8 Cs; p((F EB k) 8 C) 

p(F) o Cs; p((F EB /() o C) 

p(F) •Cs; p((F EB /()@ C). I 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

(7.6) 

(7.7) 

(7.8) 

PROOF. Let FE Fun(ZZ. 2 ) and CC S. First we note that for s ES, a(Fs) = a(F)s· The first 
identity expresses the fact that a is dilation which commutes with S-translations. 
We now prove (7.2): 

a(F 8 C) =a(/\ F_c) ::; /\ a(F-c) 
cEC cEC 

= /\ a(F)-c = a(F) 8 C. 

To prove the second inequality in (7.2) we use Lemma 7.1: 

u(F) 8 C = /\ a(F)-c = /\ u(F-c) 
cEC cEC 

s; a( f\ (F-c EB K)) = a((F EB i() 8 C). 
cEC 

Now (7.3) and (7.4) follow immediately. 
We prove (7.5): 

p(F EB C) = aa(F EB C) = a(a(f.') EB C) 

=a( V u(F)c) ~ V [&a(F)]c 
cEC cEC 

= p(F) EB C. 
(7.6) follows in a similar way. 
To prove (7.7) and (7.8) one can use (7.5) and (7.6). 

If 1/J is an operator on Fun(S) then 

1/J = 0-1/Ja 

is an operator on Fun(ZZ.2 ). Conversely, if 1/J is an operator on Fun(ZZ.2 ), then 

(7.9) 

(7.10) 

is an operator on Fun( S). One can show that 1/J is increasing if and only if 'ljJ is increasing, and 
that 'ljJ is an S-operator if and only if 'ljJ is an S-operator. 
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Proposition 7.3. 

(a) If 'ljJ is a closing on Fun(S) then 1jJ is a closing on Fun(Zl2 ). 

(b) If 'ljJ is an opening on Fun(Zl2 ) then 'ljJ is an opening on Fun( S). 

PROOF. We only prove (a). Obviously 

and therefore 1/;2 :?: t/J. On the other hand, 

I I 

8. Results and discussion 

Each image in a multiresolution sequence is usually generated from its predecessor by reducing 
both the resolution and the sample density. In the morphological sampling scheme this is done 
by sampling the dilation. This generation process can be implemented efficiently as a single 
operation by assigning to each sample point at the coarser sample grid the maximum of the 
function values at neighbouring points in the finer sample grid. 

A hierarchical decomposition of an image into a set of size limited components can be 
obtained by subtracting successive members of a multiresolution image sequence. This is the 
basic principle of the popular DOG, DOLP or Laplacian pyramids [1,2,3]. The subtraction of 
images with different resolution and sample densities requires an interpolation procedure that 
maps an image represented on a coarse sampling grid into one represented on a finer sampling 
grid. In the dilation sampling scheme the interpolated sample points can be obtained by 
the adjoint erosion. This interpolation process can be performed in a single operation by 
assigning to each sample point at the finer sample grid the minimum of the function values at 
neighbouring sample points in the coarser sample grid. 

In the dilation sampling scheme there is a direct mapping between the original image 
and every other member of the hierarchical sequence. This is a result of the fact that the 
sequential application of dilations is equivalent to a single dilation. 

These results are in contrast to Haralick's morphological samling scheme (which applies 
successive openings or closings to reduce the resolution and dilations or closings to interpolate 
sample points) where no simple mapping between neighbouring samples in successive image 
representations exists. Moreover, in Haralick's scheme there is no direct mapping between the 
original image and every other member of the hierarchical sequence. This is a result of the fact 
that the sequential application of openings or closings with structuring elements of increasing 
size is not equivalent to a single opening or closing (see [10, Chapter 10)). 

The results of several different reconstruction operators are shown in Figures 5-7. Fig­
ure 5(b) illustrates that the use of a sampling element which is only shape-symmetric results in 
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the asymmetric reconstruction of small circular objects in Figure 5(a). Figures 5(c) and 5(d) 
show that the accuracy of the reconstruction depends on the size of the sampling element 
and the position of the image details relative to the sampling grid. Figure 5( e) shows that 
the intersection of the reconstruction with sampling elements of different sizes gives a better 
approximation of the original image then either of the reconstructions by itself. This is also 
an immediate consequence of the theoretical result that either of the reconstruction operators 
involved is a closing. Figures 5(f) and 5(g) were obtained by sampling with ](( 5) followed 
by a closing with respectively ]((5 ) and A( 5) = ]((3)_ Although both reconstructions use 
the same dilation sampling element, the reconstruction in 5(f) is much coarser than the one 
in 5(g). This also follows from Proposition 4.3. These examples show that too much overlap 
of the sampling elements used by the reconstructing operator results in a reconstruction that 
contains no details with negative contrast smaller than th~ sampling element. As a compar­
ison Figures 5(h) and 5(i) show respectively the results of Haralick 's opening-sampling with 
dilation-reconstruction and dosing-sampling with closing-reconstruction. 

Figures 6 and 7 show the results of the different reconstruction operations on respectively 
the red and blue components of a colour picture of the Golden Gate Bridge in San Francisco. 
Note that the bridge has a positive contrast in the red component and a negative contrast 
in the blue component. These examples illustrate the effects of different dilation sampling 
reconstructions on image details with opposite contrast. 

Figure 8 shows a morphological pyramid that was obtained by repeated application of the 
dilation sampling procedure. Note that (i) progressively larger details with negative contrast 
are filtered and (ii) a progressively coarser approximation of the remaining details is obtained 
with a progressive increase in the number of iteration steps. 
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Figure 1. Some examples of regular sampling strategies. The set X = { . } , tlie set 
S = { 111 }, and the sampling element](= { O }. 
In each case the origin of the sample element coincides with an element of S. 
( a)-(f) Examples of symmetric sampling elements. (f) Example where the covering assumption 
is not satisfied. (g) Example of a shape-symmetric sampling element. (g) Example of a non­
symmetric sampling element. 
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Figure :2. The size and shape of the K-neighbourhood N( x) of an element x depends on 
the actual choice of x. All symbols have the same meaning as in Figure 1. 
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Figure 3. The effects of different reconstruction operators. The same symbols as in Fig-

ure 1 have been used. The images consist of grey-shaded pixels. 
(a) One shape-symmetric (K< 2>) and two sy'mmetric (K(3) and J((5)) sampling elements. 
(b) If x has odd coordinates then tlie reconstruction with J(( 5) returns { x} wliereas the recon­
struction with J((3 ) returns Jd3). 

(c) If x has even coordinates (x ES) then the reconstruction with J((5) returns Jd3) whereas 

the reconstruction with 1((3) returns { x }. 
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Figure 4, An example of repeated sampling for the sampling strategy depicted in Fig­
ure l(b ). The group isomorphism i : ll --+ S is defined by s1 = i(l, 0) = (2, 1) and 
s2 = i(0,1) = (-1,2). Note that s1 and s2 are chosen orthogonal. 
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(a) (b) 

(c) (d) 

(e) (f) 
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(g) (h) 

(i) 

Figure 5. The effects of different reconstruction operations (compare Example 4.6). In all 

examples a regular sampling grid was used with the group isomorphism i : 71.. -+ S defined by 

i(l,O) = s1 = (2,0) and i(0,1) = s 2 = (0,2).· For the sampling elements J((2),J((3),J(( 5), see 
Figure 3(a). 

(a) Original image. 
(b) Reconstruction with p(2). 

(c) Reconstruction with p(3). 

(d) Reconstruction with p<5>. 
(e) The intersection of p(2) ,p(3) and p(5). 

(f) Reconstruction with p~5 ). 
(g) Reconstruction with p~5 ). 
(h) Haralick's opening-sampling and dilation-reconstruction with J((3). 

(i) Haralick's closing-sampling and closing-reconstruction with J((3). 
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(a) (b) 

(c) (d) 

(e) (f) 
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(g) (h) 

(i) 

Figure 6. As Figure 5 for the red component of a colour picture of the Golden Gate Bridge 
in San Francisco. 
(a) Original image. 
(b) Reconstruction with p< 2>. 
(c) Reconstruction with p(3). 

(d) Reconstruction with p< 5>. 
( e) The intersection of p(2), p(3) and p(5). 

(f) Reconstruction with p~5). 
(g) Reconstruction with p~5). 
(h) Haralick's opening-sampling and dilation-reconstruction with J((3). 

(i) Haralick's closing-sampling and closing-reconstruction with J((3 ). 
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(c) 

(e) (f) 
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(g) (h) 

(i) 

Figure 7. As Figure 5 for the blue component of a colour picture of the Golden Gate 

Bridge in San Francisco. 
(a) Original image. 
(b) Reconstruction with p(2). 

( c) Reconstruction with p(3). 

(d) Reconstruction with p(5). 

(e) The intersection of p( 2) ,p(3) and p( 5). 

(f) Reconstruction with p~5 ). 
(g) Reconstruction with p~5 ). 
(h) Haralick's opening-sampling and dilation-reconstruction with J(C3). 

(i) Haralick's closing-sampling and closing-reconstruction witli !((3 ). 



32 

Figure 8. An example of a morphological pyramid obtained by repeated application of the 
dilation sampling with sampling element 1((3). The group isomorphism i : 7l __, S is defined 

by i(l,O) = 8 1 = (2,0) and i(O,l) = 8 2 = (0,2). 


