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I 
The expected number of secondary cases produced by a typical infected individual during its entire period 
of infectiousness is mathematically defined as the dominant eigenvalue of a positive linear operator. It is 
shown that in certain spacial cases one can easily compute or estimate this eigenvalue. Several examples 
involving various structuring variables like age, sexual disposition and activity are presented. 
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1. INTRODUCTION 

Suppose we want to know whether or not a contagious disease can "invade" into a population which 
is in a steady (at the time scale of disease transmission) demographic state with all individuals suscep
tible. To decide about this question we first of all linearize, i.e. we ignore the fact that the density of 
susceptibles decreases due to the infection process. It has become common practice in the analysis of 
the simplest models to consider next the associated generation process and to define the basic reproduc
tion ratio (or reproductive number but not, as it is quite often wrongly called, "rate") R 0 as the 
expected number of secondary cases produced by a typical infected individual during its entire period of 

·infectiousness. The famous threshold criterion then states: 

the disease can invade if R0 >1, whereas it cannot if R 0 <1. 

It is the aim of this note to demonstrate how these ideas extend to less simple (though probably still 
highly oversimplified) models involving heterogeneity in the populiltion and to explain the meaning of 
"typical" in the "definition" of R 0 above. Subsequently we shall deal with the actual computation of 
R 0 in certain special cases, in particular the so-called "proportionate mixing" case. 

2. THE DEFINITION 

Let the individuals be characterized by a variable ~. which we shall call the h-state variable (h for 
heterogeneity). Let s m denote the density function describing the stea4J; demographic state in the 
absence of the disease. Define A (T,~;q) to be the expected infectivity of an individual which was 
infected T units of time ago, while having h-state 'IJ, towards a susceptible which has h-state ~. The 
expected number of infections produced during its entire infective life by an individual which was 
itself infected while having h-state 'I'/ is then given by 

00 

f sm J A(T,~,'l'j)thd~ 
g 0 

where 0 denotes the h-state space, i.e. the domain of definition of~- We may call this quantity the 
next generation factor of '11· 
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REM.ARK. In order to have a unified notation for various cases we write integrals to denote sums 
whenever 0 is discrete (completely or just with respect to some component of O. A precise mathemati
cal justification involves a dominant measure and Radon-Nikodym derivatives. 

Since the new cases arise, in general, with h-states different from 71, these numbers do not tell us 
exactly what happens under iteration, i.e. in subsequent generations (although it is clear that the 
supremum with respect to 71 yields an upper estimate for R 0). 

So we abandon the idea of introducing an infected individual with a particular well-defined h-state 
and start instead With a "distributed" individual described by a density cp. The next-generation opera
tor K(S) defined by 

00 

(K(S)cp)(t) = S(t) j j A (T,~;ri)d'T</>(71)d71 (2.1) 
(] 0 

tells us both how many secondary cases arise from cp and how they are distributed over the h-state 
space. Ignoring the task of writing down conditions on S andi'.A which guarantee that K(S) is a 
bounded operator on L 1 (0), we note that the next generation factor of cf> is simply the L 1 (0)-norm of 
K(S)cp, i.e. 

00 

f s m f f Ac,,.,~, ri)d.,.4'(11)d71d~ 
ll !l 0 

(note that we do not have to write absolute value signs since the biological interpretation requires all 
functions to be positive.) If we take the supremum of the next generation factor over all cp with 
llct>ll = 1 we obtain, by definition, the operator norm of K(S). This yields an upper estimate for R 0 for 
the same reason as above: the distribution with respect to ~ is changed in the next generation and 
consequently the factor of <f> does not predict accurately what happens under iteration. 

As a concrete example consider a host-vector model. Taking O= {l,2} we find that K(S) is 
represented by the matrix 

[.,~s, .,~s,] 

and the operator norm is max {a 12S i.a 21 S 2}. These two numbers correspond to vector -? host and 
host -? vector transmission, respectively. No matter which of the two is the larger one, in the next 
generation it is necessarily the other of the two numbers which is the relevant factor. A moment of 
reflection is sufficient to realize that in the present case the average factor is 

Va12S1a21S2 

How can we define such a quantity in general? 

After m generations the magnitude of the infected population is (in the linear approximation) 
K(Sr<J> and consequently the per-generation growth factor is llK(sr11 11m. We want to know what 
happens to the population in the long run, so we let m-+ oo. The so-called spectral radius (SCHAEFER, 
1974) r(K(S)) is defined by 

r(K(S)) = inf llK(sr11 11m = lim llK(sr11 11m 
m;;o.l m-+oo 

(2.2) 

Starting from the zero lh-generation q,, the m-th generation K(srq, converges to zero for m-?oo if 
r(K(S))<l whereas it can be made arbitrarily large by a suitable choice of cp and m when 
r(K(S))> 1. Moreover, the positivity guarantees that in the latter case there is not really a restriction 
on cp. Indeed, K(S) is a positive operator (i.e. nonnegative functions are mapped onto nonnegative 
functions) and this fact guarantees that r(K(S)) is an eigenvalue (SCHAEFER, 1960, 1974), which we 
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shall call the dominant eigenvalue (since 17'.l<;r(K(S)) for all)\ in the spectrum of K(S)) and denote by 
I'd· Under minor technical conditions on A and S (see Remark 4 below) one has in addition that 

K(S)"'q, ,..,, c(tl>)P'34>d for m-+oo (2.3) 

where cJ>d is the corresponding eigenvector (which is positive) and c(cp) a scalar which is positive when
ever cJ> is nonnegative and not identically zero. So after a certain period of transient behaviour each 
generation is (in an approximation which improves as time proceeds) Pd times as big as the preceding 
one and distributed over h-state space as described by cl>d· 

If we rephrase this as: "the typical number of secondary cases is Pd ", we are ready for the 

DEFINITION. R 0 =r(K(S))=pd= the dominant eigenvalue of K(S). 

With this definition the threshold criterion remains valid, as can be verified as follows. The thres
hold criterion relates the generation process to the development of the epidemic in real time, both in 
the linearized version. The linearized real time equation is / 

co 

t(1,a =smf J A(,,.,~,'l})i(t-,,.,'l}')d'fa'i} (2.4) 
D 0 

where i(t,E) is the rate at which susceptibles with h-state ~are infected at time t. This equation has a 
solution of the form i(t,E)=e>..tl/i(E) if and only if 1/1 is an eigenvector of the operator KA defined by 

co 

(KAcp)(E) =smf f A(T,~,'l})e-A-rd'n/>(T1')d'11 (2.5) 
D 0 

with eigenvalue one. Positivity arguments can be used to show that among the set of such J\. with larg
est real part there is a real one, which we shall denote by~ (and the corresponding eigenvector by 
lf!d)· Monotonicity arguments (see e.g. HEDMANs (1986) p. 194) then imply that 

~>O~R0>1 and~<O~R0<1 

RmuJucs 
1) Whereas Ro is a number,~ is a rate. 
2) Note that~ and !/Id describe the growth and the h-state distribution in the exponential phase of an 
epidemic, when the influence of the precise manner in which the epidemic started has died off and the 
influence of the nonlinearity is not yet perceptible. 
3) Let now S describe the susceptible population in a steady .. endemic state. Then necessarily 
r(K(S))= 1. See Ex.ample 4.3. 
4) In order to guarantee that any introduction of infectivity in the population leads to an epidemic 
when Ro> l we need to make an irreducibility hypothesis (SCHAEFBll, 1974). 
5) To obtain a complete model one has to specify the demographic processes, and in particular how 
per capita birth - and death rates are affected by f,he disease. If one makes the obvious assumption 
that the disease leads to a lower (or equal) birth rate and to a higher (or equal) death rate one can use 
the linearized problem to obtain upper estimates for the nonlinear problem. Th'ils one can prove, in 
general, global rather than local stability for R 0 <1. Or, in other words, endemic states are impossible 
when R 0<l. 
6) We have restricted our attention to the bilinear case. However, replacing S(E) in the definition (2.1) 
of K(S) by h(S(E)) or S(E)/(1 + £S(T1')dT1) or something similar does not make any essential 

difference. See Examples 4.1 and 4.2 below. Note that for the invasion problem one will always have 
an expression involving the (known) function S only. Of course things are different if one wants to 
characterize endemic states, like in remark 3 above. 
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3. CoMPUTATIONAL ASPECTS: EASY SPECIAL CASES 

3.1. Proportionate mixing 
To compute the dominant eigenvalue of a positive operator is, in general, not an easy task. However, 
there is one special case in which the task is trivial: when the operator has one-dimensional range. 
Biologically this corresponds to the situation in which the distribution (over the h-state space 0) of 
the "offspring'' (i.e. the ones who become infected) is independent of the state of the "parent" (i.e. the 
one who transmits the infection). In the epidemic literature this is called "proportionate-mixing" (BAR
BOUR, 1978). 

Assume that 

A('f,~,'i'j) = a(eB(T,71) 

then 
co 

(K(S)q,)(e = S(ea(e f j B(T,71)d'Tef>{_71)d71. 
Q 0 

So there can be but one eigenvector: S Cea <e. Since 
co 

K(S)Sa = (j j B(T,71)dTS(71)a(71)d71)Sa 
Q 0 

we conclude that 
co 

Ro = Pd = J J B(.,.,71)dTS('1'1)a('1'1)d'1'1 
Q 0 

RBMArucs L Note that the crucial assumption is that 
co 

(3.1) 

I (3.2) 

(3.3) 

J A (T,~,'i'j)d'f = a(eb(71) (3.4) 
0 

rather than that A itself can be decomposed as in (3.1). In other words, proportionate mixing need 
only to occur over the generations. 
2. A convenient normalization is 

f s cea <~~ = 1. (3.s) 
Q 

Then Sa is the probability density function for h-state at infection while b (e is the total expected 
number of "offspring'' of an individual which was infected while having h-state f. This interpretation 
yields once more that 

Ro = f b(T1)S('l'l)a(71)d'fl (3.6) 
Q 

3. Proportionate mixing in a strict sense is the special case in which a and b differ only by a multipli-
cative constant. -

3.2. Proportionate mixing with enhanced infection within the own group. 
A second case in which it is easy to derive an explicit threshold criterion, even if we cannot calculate 
Ro explicitly, occurs when individuals preferentially mix with their own kind and otherwise mix pro
portionally. If we moreover assume that the h-state stays constant over epidemiological time (but see 
Example 4.3) then K(S) is of the form 

(K(S)P)(e = S(e{a(ejb(T1)P(71)d71 + c(~e} (3.7) 
Q 
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where cmsm is the number of first generation "offspring" produced "directly" in one's own group. 
The eigenvalue problem K(S)ip=pcp can be rewritten as 

p-c(~sm S(f>a(E)[b(T1)1/>(r/)dT1 = <P<.€> (3.8) 

Multiplying both sides by b (E) and integrating over 0 we obtain the characteristic equation 

f b ms <f>a<a dE = 1 (3.9) 
12 p-cmsm 

The left hand side defines a decreasing function of p which tends to zero for p~oo. The largest real 
root Ro is larger than one if and only if either 

(i) cmsm > 1 for some ~EO, 

or, otherwise, (3.10) 

(ii) j b(E)S({)a(E) d~ > 1. 
0 i-cmsm 

I 

(Of course a more precise formulation of (i) is ess sup cms<a> L) When (i) holds a single just 
infected individual with h-state ~ will already start a full blown epidemic among its likes. If, on the 
other hand, cmsm<l for all EeO any epidemic has to be kept going by the additional cross infec
tions among different types. To understand (ii) we distinguish cross infections and direct infections 
within the own group and argue as follows. As before Sa is, with the normalization (3.5), the proba
bility density function for h-state at cross infection. The expected total number of cases, including its 
own, produced by an individual of h-state E through chains of infectives which stay wholly among its 
likes is (l-S(€}c(E))- 1• Each of these produces an expected number of cross infections equal to b@. 
So by treating the "clan's" as a kind of individuals we are back to our old proportionate mixing prob
lem and we find 

l b(E) l-S~€)c(€) S(f)a(f>dE (3.H) 

as the expected offspring number at the clan level. An epidemic occurs if and only if this number 
exceeds one. 

REMARK. One of us had derived the result (3.10) in the context of the geographical spread of plant 
diseases (think of foci within fields). Recently our attention for this special case was revived by pre
prints of V. Andreasen & F.B. Christiansen (in which they derive the same result in the context of a 
finite h-state space) and of S.P. Blythe and C. Castillo-Chavez. 

3.3. Multigroup proportionate mixing 
An obvious mathematical generalization of proportionate mixing is to assume that K (S) has a finite 
dimensional range. In general, however, this does not make biological sense. Therefore we restrict our 
elaboration to a special example in this category which does allow a biological interpretation. 

Let ~ be of the form (i,~;), where i can take the values 1,2, ... ,n and ~; takes values in O;. So 
n 

O= U {i}X01• Assume that 
i=l 

co 

J A (T,(i, E1), (j, ~j))dT = a1(E;)b1j(~j) (3.12) 
0 

which one could call a local form of proportionate mixing since, with the normalization 

f a;(~1)S ((i, ~1))d~1 = 1 (3.13) 
ll 
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the conditional (on the first component being i) probability density function for h-state at infection is 
independent of the h-state of the one who infects and given by a;(·)S((i, ·)).Then 

(K(S')q>Xi,~;) =S(i,~;)ai(~;)~j bij(tj'M>{(j,~j))d~j (3.14) 
j 01 

and we conclude that, in order to be an eigenvector, necessarily 

(3.15) 

Substituting (3.15) into (3.14) we deduce that in addition the vector a should be an eigenvalue of 
the matrix M with entries 

mij = f bij(~j)S(j,~j)aj{~j)d~j (3.16) 
D1 

In particular R 0 is the dominant eigenvalue of the matrix M. 

4. ExAMPLES 
I 

4.1. Discrete and static h-state 
In this case the operator K(S) is represented by a matrix. We shall first show how this matrix can be 
derived in the special case of the conventional S-E-I-R compartment models. 

Let M be the diagonal matrix of the per capita standard death rates of the various types. After 
infection individuals enter the exposed class E. From there they make the transition to the infective 
class I at a rate described by the diagonal matrix l.: whereafter they are removed at a rate described 
by the diagonal matrix D. Finally, let T(S) be the transmission matrix, i.e. the matrix such that 
(beware: I denotes the vector of infectives, not the identity matrix) 

E = T(S)I - MI - "2.I 

We claim that 

K(S) = T(S)~(~+M)- 1 (D+M)- 1 (4.1) 

The (easy) argument goes as follows. The fraction of the infected individuals which enters I (before 
dying) is the diagonal of l:(l: + M)-1• The mean time of staying in I is the diagonal of (D + M)- 1• 
While in I the transmission is described by T(S). 

If M = 0 ( 4.1) simplifies to 

K(S) = T(S)D- 1 (4.2) 

(In section 9 of the paper by JACQUEZ et al. (1988), a special case of this matrix is introduced with 
T(S) written out in some more detail.). Note that, as to be expected, l: is irrelevant for the computa
tion of R 0 in case M=O even though it may, of course, have substantial influence on the magnitude 
of A.d. 

In the proportionate mixing case the entries of T(S) are of the form 

a;S;bj 

and according to (3.6) Ro equals the trace of the matrix K(S). See HETHCOTE & YORKE (1984) for 
another derivation of this fact. 

4.2 Sexuatly transmitted diseases 

4.2.1. Heterosexual transmission only. Let the index 1 refer to females and the index 2 to males. For 
each sex we distinguish individuals according to some variable~; which is static (the interpretation of 
~1 may or may not be the same as the interpretation of ~2). Adopting the local proportionate mixing 
assumption and neglecting homosexual transmission we arrive at the matrix 



where 

M = [ 0 m12] m21 0 

m 12 = f b 12(E2)S 2(E2>a2(t2)dE2 
0. 

m21 = j b21(i;i)S1(1i1)a1(t1)d~1 
-n, 

We conclude that 

Ro = Vm12m21 · 

(See HETHCOTE & YORKE (1984) for a "discrete" version of this result) 
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(4.3) 

(4.4) 

(4.5) 

Distinguishing not only males and females, but on top of that hetero -, bi - and homosexuals one 
easily arrives at a six by six matrix whose spectral radius one has tcl compute to obtain R 0 . 

4.2.2. Sexual activity. 
Frequently the variables E; are used to describe sexual activity (in the sense of: propensity to make 

sexual contacts), and a; and bji are taken to be proportional to E;. In the context of the heterosexual 
transmission model above we would, more precisely, take 

e1 
a1(~1) =-----

/ /i2S 2(E2)d~2 
D, 

b 12Ce2) = fJ12E2 

(4.6) 

(with formulas for a 2 and b21 obtained by interchanging l's and 2's; one may argue that 
fo,e1S1(e1)de1 = fn,t2S2(e2)de2 is required if€ is interpreted as the actual number of sexual contacts 
per unit of time). Thus one arrives at 

and 

f EtS1(E1)dE1 f E~S2(t2)dE2 
Ro= 

D D, 
/312 /321 --·'------ --------! E1s1 <~1)dii1 f e2s 2(/i2)d~2 

'3, D, 

Recalling that 

j e~ S;(€;)d~; 
a variance --'---- = mean + ---
f e;s;(e;)d/i, mean 

o, 

112 

(4.7) 

(4.8) 

we realize that this result is analogous to a result of Dietz (1980) and identical to formula (5.7) in 
May & Anderson (1988). 
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4.2.3. Two is worse than one. 
Stimulated by work of May & Jose (to appear), as reported in MAY & ANDERSON (1988), we now 
investigate how the presence of some sexually transmitted disease causing ulcers and the like may 
enhance the possibility of the successful invasion of another sexually transmitted disease like HIV. 

Assume that disease dis in an endemic steady state. We want to calculate R 0 for a disease D, 
assuming that the susceptibility to D is, for individuals having d, v times as large as for individuals 
without d. What we have in mind is that encounter rates are totally random, but that the success ratio 
for disease transmission, given that contact takes place, is enlarged by a factor v. Then the propor
tions of 0 (: = free of d ) and + ( : = having d ) individuals that will be infected by D in the linear 
initial phase of an epidemic are described by the vector 

[.~: l 
where S 0 and S + are the steady (with respect to d) state population sizes of 0 and + individuals. As 
we will show below, this vector indeed spans the range of the opefator K(S). 

Let r denote the force of d-infectlon in the steady state and let y denote the probability per unit of 
time that d is cured (whereupon susceptibility to d returns). The dynamics of d a.re completely 
described by these parameters randy. Letµ. denote the natural death rate. 
Since 

dS+ 
~ = tSo - yS+ - p.S+ 

S+ t 
we deduce that in steady state -S = -- or 

0 y+µ 

So = y+µ S S + t S 
y+µ+t ' y+µ+t 

where S denotes the total population size. 
Any individual undergoes, as long as it does not die, transitions between 0 and + according to the 

matrix of rates 

T - ,. - [-r 'Y] 
) -y 

So this is an example of a discrete but dynamic h-state. 
We describe the success ratio's for D transmission by the matrix .. 

p [~ .:] 

Here p is the success ratio when both individuals involved in the contact are free of d and w> l is the 
factor by which the success ratio is enlarged when the D infectious individual is suffering from d. 
Note that we have to satisfy the requirement pwv .s;;; 1. 

We assume that encounters occur independently of the 0 + distinction and that the rate is given by 
of S (i.e., the number of contacts per unit of time is independent of the population size). 

Finally, assume that D causes an extra death rate p. 

Then 

[
So wSo l oo 

K(S) = !!I!.. j e<T-µ-p)'rdT 
S vS + wvS+ 

0 

With the notation 
00 

M:= j e<r-,.-py,dT = (µ+p-T)-1 = 
0 



1 [µ+p+y y ] 
- (µ+pXJL+p+r+n r .u+p+r 

we now can express R 0 as 

Ro= y+'i+t [!]' M[:t'] 
(where xT denotes the transpose of a vector x) or, written out in detail, 

op{(y+µ)(µ+p+y+rw) +!vw(.1..+µ+p+O} 
R - w 

o - (y+µ+O(J.&+pXJL+p+r+O 
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Note that the special case w =v = 1 yields R 0 =_!!I!_+ as to be expected (since in that case the 0 + 
µ p 

distinction is totally irrelevant). ; 
Next, let us consider the variant of this model in which the sexual activity level figures as another 

component of the h-state. We now take, for a change, the sexual activity level as a discrete variable. 
The possible h-states are then (i, 0) and (i, +)with i =O, 1,2,3,... Assuming 

we find 

dS(;, +> 
dt = ir sc;,o> - rs(i. +> - tJSc;, +> 

s<;. +> = 

y+µ 
y+µ.+ir S; 

tr S· 
y+µ.+is I 

where S; denotes the size of class i. The relevant proportions are therefore described by the countably 
many two vectors 

[y+µ] 
ip; tvs 

S· 
wherep;:=-f with S:="'i'..;S;, the total population size. 

The transitions of the h-state are governed by the matrices 

[-tr r] 
T; = if -y 

The encounter rate of an i individual with a j individual is assumed to be 

aij 

The operator 

_ api [S (i, O) wS (i, O) l . Joo (T-µ,-p}r 

K(S) - ~ kSk vSc;, +) wvSc;, +> 7 J o e J dT 
k 

acts on a sequence of two vectors. Its range is spanned by the sequence 

i [.~:::,] - y+!~i! [1~~1 
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Consequently 

op [l] T ·2 -I [ s(j,O) l 
Ro = t kSk w fi (µ.+p-Tj) vSu. +) 

(y+µ)(µ.+p+y+ JwO + j~vw(L+µ.+p+ JO 
op ~ ·2 w 

2: kpk 1 11 (JJ.+p)(µ.+p+y+JO<-Y+µ+JO 
"k 

Formula (4.32} in MAY & ANDERSON (1988) is the analogue of this expression when one starts from 
(2.5) in this paper to find the initial growth rate A.d. 

4.3. Age dependence 
We now tum our attention to a continuous dynamic h-state variable. 

Let '?j(a) denote the survival probability as a function of age a~ the absence of the disease. Then, 
at population dynamical equilibrium 

S(a) = S(O)'?J(a) (4.9) 

Let y(r,a,a) be the average infectivity of an infected individual of age a and d-age r towards a suscep
tible individual of age a. Then 

_ 'B{a+r) 
A(r,a,a) - y(T,a,a+r) '?J{a) (4.10) 

and 

coco ~+} 
(K(S)4>Xa) = S(O)'?J(a) j J y(r,a,a+T) ~ )T 4>(.a)dadr 

0 0 Cl. 

(4.11) 

4.3.1. Proportionate mixing. 
Under the proportionate mixing assumption 

y(r,a,a) = f(a)g(T,a) (4.12) 

we find 
co co 

R 0 = S(O) J J g(r,a+r)'?J{a+T)j(a)dad'T (4.13) 
0 0 

4.3.2. Endemic steady states. 
Recalling Remark 3 at the end of section 2 we shall now consider an endemic steady state. Let 

A.(a) = age specific force of infection · (4.14) 

i.e. the age specific probability per unit of time of becoming infected. The survival function . 
-[Af.a)da 

§!(a) = e 

describes the probability of being susceptible for those who did not die. Hence 

S(a) = S(O)'?J(a)§j(a) 

The age specific incidence rate is A.(a)S(a) and consistency now requires that 
co co 

A.(a) = J J A(T,a,a)A.(a)S(a)dadT 
0 0 

(4.15) 

(4.16) 

(4.17) 
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co co 

= S(O) J J y(T,a,a+T)'F(a+T)C}f;(a)i\(a)drufr 
0 0 

which can be considered as a nonlinear (recall (4.15)) integral equation for the (unknown) function i\. 
Note that linearization at the trivial solution i\ = 0 and the transformation ~qn lead us back to the 
eigenvalue problem for K(S), as to be expected. If we make the proportionate mixing assumption 
( 4.12) we find that necessarily 

i\(a) =: Qf (a) (4.18) 

where the scalar Q has to satisfy . 
co co -Q[f(<J)da 

1 = S(O) J J g('r,a+T)'F(a+T)e f(a)dadT (4.19) 
0 0 

4.3.3. Vaccination. I 
D:mrz & ScHENZLl! (1985) consider the effect of vaccination and take 

S(a) = S(O)<F(a)'ffv(a)C}f;(a) (4.20) 

where 'ffv(a) denotes the probability that an individual which did not die is immune due to vaccina
tion. The analogue of ( 4.19) now is . 

co co -Q[f(a)da 

1 = S(O) J J g(T,a+T)'F(a+r)'if,.(a)e f (a)dadT (4.21) 
0 0 

which alternatively can be written as 

·-· 
co co -Q [ f(a)da 

1 = S(O) j j g(T,IJ)'F(IJ)6.fv(fJ--r)e j(fJ--r)d-rd8 (4.22) 
0 0 

If we adopt the further assumption that 

g(T,a) = h(a)k(T)6.f7('1") (4.23) 

where k describes the infectivity as a function of d-age and <F,. the "removal" from the infected class, 
we finally arrive at 

co 8 -Q [ f(a)da 

l = S(O) J h(IJ)'F(IJ)jk(T)6.f7(T)'if,.(IJ-T)e j((J-1-)dTdfJ (4.24) 
0 0 

which is, apart from the notation, identical to formula (3) in D:mrz & SCHENZLl! (1985). These 
authors introduce yet two other simplifications: 
(i) h = J, i.e. susceptlbles and infectives have the same age dependence in activity level 
(ii) the duration of the disease is short on the time scale of ageing 
Then ( 4.24) can be approximated by 

• 
co -Q[f(a)da 

l = c s (0) f /'(IJ)'F(fJ)6Jy(fJ)e d() ( 4.25) 
0 

where C is a constant (describing the "magnitude" of the total infectivity). One can now use data 

about the endemic state to estimate f, Q and 6J and subsequently calculate whether or not a given 6.fv 

suffices to eradicate the disease. We refer once more to DmTZ & SCHENZLE (l 985) for some more 
details. 
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4.3.4. Proportionate mixing with enhanced within age group infection. 
To conclude this subsection we show how to compute the analogue of the threshold condition (3.10) 
(ii) in the case of age dependence (recall that in deriving (3.10) we assumed that the h-state is constant 
which it is not if we consider age). Assume that 

y(T,a,a) = f(a)g(T,a) + h(T,a')B(a -a) 

where 8 denotes Dirac's delta "function". Then 

coco <§{+) 
(K(S')tp)(a) = S(a){f (a) J J g(T,a+.,.); ).,. "1(.a)dadT 

o o a 

+ lh(T,a) 'ff(_!~.,.) "1(.a -.,.)d.,.} 

We define an operator L by 

(Lt[l)(a) = lh(a -a,a) ~:~ o/(a)da 

I 

and rewrite the eigenvalue problem K(S'}tp=P'/> as 

fJ(4')Sf + Lt/> = P4> 

where() is the C-valued mapping defined by 

coco <§{+) 
fJ(t[I) = J J g(T,ot+T); )T o/(ot)dad'T 

0 0 Cl 

For p real and sufficiently large we can invert pi - L. In fact one has the series expansion 

co L<n> 
( J-L)-1 = ~ --P .&J n+I 

n=O P 

Substituting 4>=(pl - L)- 16('/>)Sf in the definition of IJ we find the characteristic equation 

1 = j jg(T,ot+T)'§{;+t((pl-L)- 1Sf)(a)dadT 
o o a 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

Assuming that (4.31) keeps converging up top= 1 (this is the analogue of the assumption c(.E)S(.E)<l 
for all ~eO in section 3) we find that R 0 > 1 if and only if 

coco <§{+)co J J g(.,.,a+r); ).,. ~ (L<n>sf)(a)dadT > 1 (4.33) 
o o a n=O 

This condition allows an interpretation similar to the one of (3.11). 
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