
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

M.I. Dessouky, B.J. Lageweg, J.K. Lenstra, S.L. van de Velde

Scheduling identical jobs on uniform parallel machines

Department of Operations Research, Statistics, and System Theory Report BS-R8915 August

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
1946, as a nonprofit institution aiming at the promotion of mathematics, com
puter science, and their applications. It is sponsored by the Dutch Govern
ment through the Netherlands Organization for the Advancement of Research
(N.W.0.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Scheduling Identical Jobs on Uniform Parallel Machines

M.I. Dessouky
Department of Mechanical and Industrial Engineering

University of Illinois at Urbana-Champaign
1206 West Green Street, Urbana, IL 61801, U.S.A.

B.J. Lageweg
Centre for Mathematics and Computer Science

P. 0. Box 4079, 1009 AB Amsterdam, The Netherlands

J.K. Lenstra
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
and

Centre for Mathematics and Computer Science
P. 0. Box 4079, 1009 AB Amsterdam, The Netherlands

S.L. van de Velde
•· Centre tor Mathematics and Computer Science

P. 0. Box 4079, 1009 AB Amsterdam, The Netherlands

We address the problem of scheduling n identical jobs on m uniform parallel machines to optimize
scheduling criteria that are nondecreasing in the job completion times. It is well known that this can
be formulated as a linear assignment problem, and subsequently solved in O(n3) time. We give a
more concise formulation for minsum criteria, and show that general minmax criteria can be minim
ized in O(n2) time. We present faster algorithms, requiring only O(n + mlogm) time for minimizing
makespan and total completion time, O(nlogn) time for minimizing total weighted completion time,
maximum lateness, total tardiness and the weighted number of tardy jobs, and O(nlog2 n) time for
maximum weighted tardiness. In the case of release dates, we propose an O(nlog n) algorithm for
minimizing makespan, and an O(mn2m+ 1) time dynamic programming algorithm for minimizing
total completion time.

(1980) Mathematics Subject Classific;:Jtion (1985 Revision): 90835.
Key words & phrases: parallel machine scheduling, uniform machines, identical jobs, matching,
dynamic programming.
Note: This paper will be submitted for publication.

Report BS-R8915
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

1

2

1. INTRODUCTION

The case of identical jobs within a batch is common in manufacturing systems, where the pro
ducts (corresponding to jobs) have identical designs or processing requirements. While all units
of the product require equal processing times on the same machine, individual products may
be subject to different constraints. For example, jobs may be required to meet unequal due
dates requested by customers, or they may be restricted by unequal release dates as a result of
being released at different times from preceding operations.

The scheduling problem arising from such a situation can be described as follows. A set of
independent jobs Jj (j = 1, ... , n) have to be scheduled on a set of parallel machines
Mi (i = 1, ... , m). Each job Jj (j = 1, ... , n) has one unit of uninterrupted processing require
ment and has a cost function fj, where fj(t) denotes the cost incurred if it is completed at time
t. In addition, each job Jj may have a due date dj, a release date rj, and a weight wj. Each
machine Mi (i = 1, ... , m) can process only one job at a time, and does so at a speed si, giving
rise to a processing time of 1 Is;. In such a situation the machines are called uniform.

A schedule is an assignment of each job to exactly one machine and a specification of the
completion time Cj of each job Jj. The objective is to minimize the scheduling cost, measured
either by f max = max.1 .,;;,j<:;,fj(Cj) or by "2.fj = "2.}=ifj(Cj)· In the terminology of Graham et
al. (1979), these problems are denoted as Q IPj = 1 If max and Q IPj = 11 "2.fj, respectively.

Lawler et al. (1982) point out that both problems can be formulated in O(mn 2) time as
linear assignment problems and solved accordingly in O(n 3) time. In this paper, we derive a
property that allows a more compact formulation, requiring only O(n 2) time and space. As an
immediate consequence, Q IPj = l I/ max is solvable in O(n 2) time. We give more efficient
algorithms for minimizing maximum completion time (makespan), total weighted completion
time, maximum lateness, total tardiness, maximum weighted tardiness, and the weighted
number of tardy jobs. In addition, we consider two problems with release dates. We give an
0 (n log n) time algorithm for minimizing makespan and an 0 (mn 2m + 1) time dynamic pro
gramming algorithm for minimizing total completion time, which is polynomial for any fixed
number of machines.

2. FUNDAMENTALS

Problem 1: Minimize maximum completion time C max

Given n independent identical jobs ~d m uniform parallel machines, find a schedule which
minimizes the maximum job completion time, C max = max 1.,;;,j .,;;,n Cj.

If the decision variable xi denotes the number of jobs that is to be assigned to machine M;,
for i = 1, ... , m, then the problem is to minimize

subject to

Cmax

~r=l Xj = n,

X; E z+,

i = 1, ... ,m,

i = 1, ... ,m.

(P)

(1)

(2)

(3)

3

Given a feasible solution to this problem, the value of C max can be reduced only if for each M;
with the largest completion time, that is, with x; Is; = C max in (1), there is another machine Mh
for which (xh + 1)/ sh < Cmax. Accordingly, a sufficient condition for the optimality of a
schedule is that for any two machines Mh and M; with xh I sh < x; Is;, we have
(xh+l)lsh ;;;;t::x;ls;.

The following procedure, which requires O(nlogm) time, takes advantage of this sufficient
condition. It keeps a priority queue of the m current machine completion times. Each succes
sive job is matched with the earliest completion time in the queue, and this time is replaced in
the queue by the new completion time of the machine in question. The matching and updating
of the queue is repeated until all n jobs have been scheduled. Since the queue can be initialized
in O(mlogm) time and updated in O(logm) time, the entire procedure runs in O(nlogm)
time. Note that this procedure returns the job completion times in non-decreasing order. In the
remainder of this paper we refer to these completion times as t 1, ••• , tn, with t 1 E;; • • • E;; tn.

It is possible to reduce the effort to solve Q lp1= l I Cmax to O(n +mlogm) time. This is
achieved by solving the linear programming relaxation of (P), through a procedure suggested
by Palekar (1989), and then rounding the resulting fractional variables appropriately. Ignoring
the integrality requirement of-x; (i = 1, ... , m) in (3), an optimal allocation must satisfy

(4)

Substituting the values of :X; from (4) in (2), we get Cmax = n 1~7'=l s;, and x; = ns;l~f1=, 1 s;.
Let Lx;J be the largest-integer no greater than x;, and let nx = ~7'=t Lx;J. Since the mak

espan given in (4) is a lower bound on the optimal makespan and the jobs are identical, we
know that in each optimal schedule machine M; (i = 1, ... , m) will accommodate at least L x;J
jobs. If x; is integer for each i = 1,; .. ,m, then nx = n and we have found an optimal alloca
tion. Otherwise, there are n - nx unallocated jobs, with 1 E;; n - nx E;; m - 1; these are
scheduled in O(mlogm) time by making use of a priority queue in the same fashion as
described above. Since scheduling the nx jobs takes O(n) time, the procedure requires
0 (n + m log m) time. It does not sort the job completion times, however.

Analysis of the O(nlogm) time procedure for Q lp1= l I Cmax reveals that at no point a job
will be assigned to a machine in such a manner that its completion time can be reduced by a
shift to another machine. The times t 1, ••• , tn are the earliest possible completion times.
Hence, we have the following.

MINIMALITY PROPERTY. No schedule· exists with completion times t 1' E;; • • • E;; tn' such that
tk' < tkforany k = 1, ... ,n.

This property has significant implications. We can solve any problem with an objective func
tion that is non-decreasing in the job completion times by matching the jobs J1 (j = 1, ... , n)
with the completion times tk (k = l, ... ,n). We now first show how to solve the general prob
lems Q IP1= l I ~Jj and Q lp1= l l/max; we will assume that each cost function evaluation
requires unit time. Thereafter, in Section 3, we discuss objective functions that allow faster
algorithms.

4

Problem 2: Minimize "2.Jj
The general problem Q IPi = 11 "2.fj can be formulated and solved as a linear assignment prob
lem, if the fj's (j = 1, ... , n) are non-decreasing in the job completion times. The generic form
is as follows. Let cik = Jj(tk) denote the cost of matching job Ji with completion time tk. Intro
duce assignment variables xik (j = 1, ... ,n, k = 1, ... ,n) such that xik = 1 if job Ji is
matched with time tk, and xik = 0 otherwise. The problem is then to minimize

}.:; = l }.:~ = l CikXik

subject to

}.:;=! Xik = 1, k = 1, ... ,n,

}.: ~ = I Xik = 1, j = 1, ... , n,

xik E {O,l}, j = 1, ... ,n, k = 1, ... ,n.

This linear assignment problem is formulated in O(n 2) time and solved in O(n 3) time.

Problem 3: Minimize maximum cost f max

The Minimality Property justifies the application of Lawler's algorithm for l I If max (Lawler,
1973) to Q IPi = l If max. Starting with the largest unmatched job completion time tk
(k = n, ... , 1), we detei:_mine a job J h from among the set of unscheduled jobs V for which

fh(tk) = minJJ E V Jj(tk),

and match Jh with completion time tk. This algorithm runs in 0 (n 2) time.

3. MORE EFFICIENT ALGORITHMS

There are some objective functions for which the matching can be found faster than by the
methods given in the previous section.

Problem 4: Minimize total completion time "2.Ci or any other problem with identical fj's
Since the completion times t 1, ••. , tn are minimum and the jobs have identical cost functions,
we can arbitrarily match the jobs with the completion times. Therefore, Problem 4 can be
solved in O(n +mlogm) time, the time required to find the set of minimum completion times.

Problem 5: Minimize total weighted completion time "2.wiCi
Q IPi = 1 J "2.wiCi is solved by arranging the jobs in order of non-increasing weights and match
ing them accordingly with non-decreasing job completion times. The correctness of the algo
rithm is easily established by the same argument that validates Smith's shortest weighted pro
cessing time rule (Smith, 1956) for 11 I "2.wiC/ interchanging two adjacent jobs that are not
scheduled in compliance with the indicated order reduces the cost of the schedule.

Problem 6: Minimize maximum lateness Lmax
Maximum lateness is defined as Lmax = max 1 ,,;;;, i.;;, n (Ci -di). The Q I Pi= 1 I L max problem is
solved by sorting the jobs in order of non-decreasing due dates, and matching them

5

accordingly with non-decreasing completion times. This procedure is an extension of Jackson's
earliest due date rule (Jackson, 1955) for minimizing maximum lateness on a single machine,
and runs in O(nlogn) time. The algorithm is again justified by an interchange argument.

Problem 7: Minimize the weighted number of tardy jobs ~wj Uj
Define Uj as the incidence of tardiness of job Jj, that is, Uj = l if Cj-dj > 0 and Uj = 0 oth
erwise. We seek a schedule that minimizes the weighted number of tardy jobs, ~ J = 1 wj Uj.

If all w/s are equal, then the problem is solved in O(nlogn) time through an obvious exten
sion of Moore and Hodgson's algorithm for l I I ~u1 (Moore, 1968). Lawler (1989) proposes
the following algorithm for the case of general weights. Starting with the largest unmatched
completion time tk (k = n, ... , 1), determine the set of unscheduled jobs V that would be in
time if matched with tk. If V =I= 0, determine a job Jh E V for which wh = maxJ1 E vwj, and

match it with completion time tk. Ultimately, we find a set of tardy jobs, and they are matched
arbitrarily with the unmatched completion times. The algorithm is justified by an interchange
argument and can be implemented to run in O(nlogn) time.

Problem 8: Minimize total taroiness ~ Tj
The tardiness of job Jj is defined as Tj = max{ Cj-dj, O}. It is easy to establish through an
interchange argument that Q lh = l I ~Tj is solved as follows: renumber the jobs in order of
non-decreasing due dates, and match them accordingly with the completion times t 1, .•. , tn.

It is noteworthy that this problem can be viewed as a Gilmore-Gomory matching problem.
When we define aj = dj, f3k = tk, g(y) = l, and h(y) = 0, we can write the cost cjk of matching
job Jj with completion time tk as

- {1:k g(y)dy,
C·k -

J ft2 h (y)dy,

If the jobs and completion times have been indexed in order of non-decreasing values of a.j and
fik, respectively, a minimum-weight matching is found by matching Jj with tj for j = l, ... , n
(Lawler, 1976). ·

Note that among other problems, Q lpj= l I ~Jj withfj = I Cj-dj I can be formulated and
solved as a Gilmore-Gomory matc~g problem. This is true only subject to the condition that
the jobs must be completed at times t 1, ... , tn, as these cost functions are not monotone. More
generally, the same matching optimizes the minsum criteria with Jj = Tf and Jj = I Cj -dj IP
for any p > 0 (Dessouky, 1989).

Problem 9: Minimize maximum weighted tardiness max wj Tj
Recently, Hochbaum and Shamir (1989) have presented an intricate O(nlog2n) time algorithm
for l I I max w1Tj, which can readily be transferred to Q lpj= l I max wjTj. We propose a
simpler algorithm, which is slightly less efficient in case the weights are large.

Without loss of generality we may assume that min; s; = 1 and that all wj·max{O, tk -dj} are
integral. The problem of deciding whether there exists a matching with max wj Tj ~ K for a
given KE 1\10 can be answered in O(nlogn) time as follows. An upper bound K on the

6

maximum weighted tardiness induces a deadline di+ K I w1 for each Ji. Hence, the decision
problem has an affirmative answer only if each job can be scheduled to meet its deadline. This
is verified in O(nlogn) time by solving the corresponding Q Jpi= 1 J Lmax problem.

Since 0 ~ maxwiTJ ~ Wmaxtn for any matching, where Wmax =maxi wi, and tn ~ nlm + 1,
the optimal maximum weighted tardiness can be determined by binary search over the interval
[O, Wmax(nl m + l)]. Hence, the algorithm runs in O(nlogn(logwmax + log(n/m))) time.

4. RELEASE DATES

Suppose now that each job J1 (j = 1, ... , n) becomes available at a given release date ri ;_;;;:,: 0.
This makes it impossible to specify a set of earliest completion times in advance and to invoke
some procedure that matches jobs with completion times. Nonetheless, we give an O(nlogn)
time procedure for minimizing makespan, and an 0 (mn Zm + 1) time dynamic programming
algorithm for minimizing total completion time.

Problem 10: Minimize makespan C max subject to release dates
For minimizing makespan, Lageweg et al. (1982) use the symmetry between Q Jpi=l JLmax
and Q I ri,Pi = 1 J C max to solve Qie latter problem. This boils down to the following.

Imagine a tentative deadline d at which all jobs have to be_!inished. We can identify a set of
latest start times for the jobs in order to meet this deadline d. Since t 1, ..• , tn obtained in the
~rward c~mputation for Q IPJ = 1 J C max are the earliest job completion times,
d-tn, ... ,d-t1 must be the latest start times of QI ri,pi= 1 J Cmax· The procedure is as fol
lows: match the jobs in ord:_r of non-decreasing release dates with non-decreasing latest start
times. If we initially choose d = tn, which is an evident lower bound_on the optimal makespan,
then the entire schedule needs to be delayed by A = max 1,,,;;,i ,,,;;,n (ri -d + tn _ i + 1) in order not to
violate any of the job release dates. The resulting schedule is optimal, and the maximum job
completion time is C max = tn + A. The procedure is easily validated through an interchange
argument. The running time is O(nlogn).

Problem 11: Minimizing total completion time '2.Ci subject to release dates
We propose a dynamic programming algorithm that requires 0 (mn Zm + 1) time, which is poly
nomial for any fixed number of machines. Without loss of generality we may assume that all ri
and l Is; are integral. It is obvious that there is an optimal solution in which all the jobs allo
cated to the same machine are sc~eduled in non-decreasing order of their release dates.
Renumber now the jobs in order of non-decreasing release dates.

Let F/q 1, ... , qm) denote the optimal total completion time for Ji, ... ,Ji subject to the
condition that M; is available up to time q;, for i = 1, ... , m, j = 1, ... , n. In addition, let
Pi = l Is; for i = 1, ... , m.

Since each job starts as early as possible, the completion time of Ji on M; is contained in the
set Q; = {rh + kp; I h = 1, ... ,n, k = l, ... ,n + 1-h }. If M; is available up to time q, the
latest admissible completion time of any job on M; is I;(q) = max { q' E Q; I q' :s;;; q}. If Ji is
completed on M; at time q; E Q;, it contributes q; to the total completion time; furthermore, its
predecessor on M; must be finished by l;(q;-p;). Note that l;(q;-p;) = q;-p;, unless
q; = rh + p; for some h E {l, ... , n}.

We now can set up the recursion to compute Fi for j = 0, 1, ... , n. After the initialization

7

Fo(q1, · · · ,qm) = 0

for all q; E Q; (i = 1, ... ,m), we determine Fj(q 1, ... ,qm) by

_ . { q; + F1-1(q1, ... ,q;-i.l;(q;-p;),q;+i. ·. · ,qm),}
Fj(qi. ... ,qm)-mm1°"';..;;m F(l(-1)) j qi.··· ,q;-i. i q; ,q;+i. · · · ,qm •

for all q; E Q;, q; ~ r1+ p; (i = 1, ... ,m), and for j = 1, ... ,n. All undefined values are taken
to be infinity. The optimal total completion time is given by Fn(maxQ 1, ••• , maxQm), and the
corresponding schedule can be identified by backtracing.

After appropriate preprocessing, the values I;(q; - p;) and l;(q; - l) can be found in constant
time, and the computation of Fj(qi. ... ,qm) for given} and (qi. ... ,qm) requires O(m) time.
Since each IQ; I = O(n 2), we have to consider O(n2m) combinations of (q 1, ••• ,qm) for each
j = 1, ... , n. Hence, the procedure runs in 0 (mn 2m + 1) time for m ~ 2.

In the preprocessing phase, the elements of each set Q; are sorted in nondecreasing order.
For each q; E Q;, the value l;(q;-p;) is determined in O(logn) time and stored; the value
l;(q;-1) is simply the largest value in Q; smaller than q; and can be found in 0(1) time. The
preprocessing phase requires O{mn 2 log n) time.

REFERENCES
M.I. DESSOUKY (1989). Bipartite weighted matching to minimize the distance norm, Report ORL

89-003, Operations Res~arch Laboratory, University of Illinois at Urbana-Champaign.
R.L. GRAHAM, E.L. LAWLER, J.K. LENSTRA, AND A.H.G. RINNOOY KAN (1979). Optimization

and approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete
Mathematics 5, 287-326.

D.S. HOCHBAUM AND R. SHAMIR (1989). AN O(nlog2n) algorithm for the maximum weighted
tardiness problem. Information Processing Letters 31, 215-219.

J.R. JACKSON (1955). Scheduling a production line to minimize maximum tardiness, Research
Report # 43, Management Science Research Project, UCLA.

B.J. LAGEWEG, E.L. LAWLER, J.K. LENSTRA, AND A.H.G. RlNNOOY KAN (1982). Computer
aided complexity classification of deterministic scheduling problems, Report BW 138, Centre
for Mathematics and Computer Science, Amsterdam.

E.L. LAWLER (1973). Optimal sequencing of a single machine subject to precedence con
straints. Management Science 19, 544-546.

E.L. LAWLER (1976). Combinatorial Op"timization: Networks and Matroids, Holt, Rinehart, and
Winston, New York.

E.L. LAWLER (1989). Private communication.
E.L. LAWLER, J.K. LENSTRA, AND A.H.G. RINNOOY KAN (1982). Recent developments in

deterministic sequencing and scheduling. Deterministic and Stochastic Scheduling, M.A.H.
Dempster, J.K. Lenstra, and A.H.G. Rinnooy Kan (eds.), Reidel, Dordrecht, 35-73.

J.M. MOORE (1968). Ann job, one machine sequencing algorithm for minimizing the number
oflate jobs. Management Science 15, 102-109.

U.S. PALE.KAR (1989). Private communication.
W.E. SMITH (1956). Various optimizers for single-stage production. Naval Research Logistics

Quarterly 3, 59-66.

