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We address the problem of scheduling n identical jobs on m uniform parallel machines to optimize 
scheduling criteria that are nondecreasing in the job completion times. It is well known that this can 
be formulated as a linear assignment problem, and subsequently solved in O(n3 ) time. We give a 
more concise formulation for minsum criteria, and show that general minmax criteria can be minim­
ized in O(n2 ) time. We present faster algorithms, requiring only O(n + mlogm) time for minimizing 
makespan and total completion time, O(nlogn) time for minimizing total weighted completion time, 
maximum lateness, total tardiness and the weighted number of tardy jobs, and O(nlog2 n) time for 
maximum weighted tardiness. In the case of release dates, we propose an O(nlog n) algorithm for 
minimizing makespan, and an O(mn2m+ 1) time dynamic programming algorithm for minimizing 
total completion time. 
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1. INTRODUCTION 

The case of identical jobs within a batch is common in manufacturing systems, where the pro­
ducts (corresponding to jobs) have identical designs or processing requirements. While all units 
of the product require equal processing times on the same machine, individual products may 
be subject to different constraints. For example, jobs may be required to meet unequal due 
dates requested by customers, or they may be restricted by unequal release dates as a result of 
being released at different times from preceding operations. 

The scheduling problem arising from such a situation can be described as follows. A set of 
independent jobs Jj (j = 1, ... , n) have to be scheduled on a set of parallel machines 
Mi (i = 1, ... , m ). Each job Jj (j = 1, ... , n) has one unit of uninterrupted processing require­
ment and has a cost function fj, where fj(t) denotes the cost incurred if it is completed at time 
t. In addition, each job Jj may have a due date dj, a release date rj, and a weight wj. Each 
machine Mi (i = 1, ... , m) can process only one job at a time, and does so at a speed si, giving 
rise to a processing time of 1 Is;. In such a situation the machines are called uniform. 

A schedule is an assignment of each job to exactly one machine and a specification of the 
completion time Cj of each job Jj. The objective is to minimize the scheduling cost, measured 
either by f max = max.1 .,;;,j<:;,fj(Cj) or by "2.fj = "2.}=ifj(Cj)· In the terminology of Graham et 
al. (1979), these problems are denoted as Q IPj = 1 If max and Q IPj = 11 "2.fj, respectively. 

Lawler et al. (1982) point out that both problems can be formulated in O(mn 2 ) time as 
linear assignment problems and solved accordingly in O(n 3) time. In this paper, we derive a 
property that allows a more compact formulation, requiring only O(n 2) time and space. As an 
immediate consequence, Q IPj = l I/ max is solvable in O(n 2) time. We give more efficient 
algorithms for minimizing maximum completion time (makespan), total weighted completion 
time, maximum lateness, total tardiness, maximum weighted tardiness, and the weighted 
number of tardy jobs. In addition, we consider two problems with release dates. We give an 
0 ( n log n) time algorithm for minimizing makespan and an 0 ( mn 2m + 1) time dynamic pro­
gramming algorithm for minimizing total completion time, which is polynomial for any fixed 
number of machines. 

2. FUNDAMENTALS 

Problem 1: Minimize maximum completion time C max 

Given n independent identical jobs ~d m uniform parallel machines, find a schedule which 
minimizes the maximum job completion time, C max = max 1.,;;,j .,;;,n Cj. 

If the decision variable xi denotes the number of jobs that is to be assigned to machine M;, 
for i = 1, ... , m, then the problem is to minimize 

subject to 

Cmax 

~r=l Xj = n, 

X; E z+, 

i = 1, ... ,m, 

i = 1, ... ,m. 

(P) 

(1) 

(2) 

(3) 
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Given a feasible solution to this problem, the value of C max can be reduced only if for each M; 
with the largest completion time, that is, with x; Is; = C max in (1 ), there is another machine Mh 
for which (xh + 1)/ sh < Cmax. Accordingly, a sufficient condition for the optimality of a 
schedule is that for any two machines Mh and M; with xh I sh < x; Is;, we have 
(xh+l)lsh ;;;;t::x;ls;. 

The following procedure, which requires O(nlogm) time, takes advantage of this sufficient 
condition. It keeps a priority queue of the m current machine completion times. Each succes­
sive job is matched with the earliest completion time in the queue, and this time is replaced in 
the queue by the new completion time of the machine in question. The matching and updating 
of the queue is repeated until all n jobs have been scheduled. Since the queue can be initialized 
in O(mlogm) time and updated in O(logm) time, the entire procedure runs in O(nlogm) 
time. Note that this procedure returns the job completion times in non-decreasing order. In the 
remainder of this paper we refer to these completion times as t 1, ••• , tn, with t 1 E;; • • • E;; tn. 

It is possible to reduce the effort to solve Q lp1= l I Cmax to O(n +mlogm) time. This is 
achieved by solving the linear programming relaxation of (P), through a procedure suggested 
by Palekar (1989), and then rounding the resulting fractional variables appropriately. Ignoring 
the integrality requirement of-x; (i = 1, ... , m) in (3), an optimal allocation must satisfy 

(4) 

Substituting the values of :X; from (4) in (2), we get Cmax = n 1~7'=l s;, and x; = ns;l~f1=, 1 s;. 
Let Lx;J be the largest-integer no greater than x;, and let nx = ~7'=t Lx;J. Since the mak­

espan given in (4) is a lower bound on the optimal makespan and the jobs are identical, we 
know that in each optimal schedule machine M; ( i = 1, ... , m) will accommodate at least L x;J 
jobs. If x; is integer for each i = 1,; .. ,m, then nx = n and we have found an optimal alloca­
tion. Otherwise, there are n - nx unallocated jobs, with 1 E;; n - nx E;; m - 1; these are 
scheduled in O(mlogm) time by making use of a priority queue in the same fashion as 
described above. Since scheduling the nx jobs takes O(n) time, the procedure requires 
0 (n + m log m) time. It does not sort the job completion times, however. 

Analysis of the O(nlogm) time procedure for Q lp1= l I Cmax reveals that at no point a job 
will be assigned to a machine in such a manner that its completion time can be reduced by a 
shift to another machine. The times t 1, ••• , tn are the earliest possible completion times. 
Hence, we have the following. 

MINIMALITY PROPERTY. No schedule· exists with completion times t 1' E;; • • • E;; tn' such that 
tk' < tkforany k = 1, ... ,n. 

This property has significant implications. We can solve any problem with an objective func­
tion that is non-decreasing in the job completion times by matching the jobs J1 (j = 1, ... , n) 
with the completion times tk (k = l, ... ,n). We now first show how to solve the general prob­
lems Q IP1= l I ~Jj and Q lp1= l l/max; we will assume that each cost function evaluation 
requires unit time. Thereafter, in Section 3, we discuss objective functions that allow faster 
algorithms. 
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Problem 2: Minimize "2.Jj 
The general problem Q IPi = 11 "2.fj can be formulated and solved as a linear assignment prob­
lem, if the fj's (j = 1, ... , n) are non-decreasing in the job completion times. The generic form 
is as follows. Let cik = Jj(tk) denote the cost of matching job Ji with completion time tk. Intro­
duce assignment variables xik (j = 1, ... ,n, k = 1, ... ,n) such that xik = 1 if job Ji is 
matched with time tk, and xik = 0 otherwise. The problem is then to minimize 

}.:; = l }.:~ = l CikXik 

subject to 

}.:;=! Xik = 1, k = 1, ... ,n, 

}.: ~ = I Xik = 1, j = 1, ... , n, 

xik E {O,l}, j = 1, ... ,n, k = 1, ... ,n. 

This linear assignment problem is formulated in O(n 2) time and solved in O(n 3 ) time. 

Problem 3: Minimize maximum cost f max 

The Minimality Property justifies the application of Lawler's algorithm for l I If max (Lawler, 
1973) to Q IPi = l If max. Starting with the largest unmatched job completion time tk 
( k = n, ... , 1 ), we detei:_mine a job J h from among the set of unscheduled jobs V for which 

fh(tk) = minJJ E V Jj(tk), 

and match Jh with completion time tk. This algorithm runs in 0 (n 2) time. 

3. MORE EFFICIENT ALGORITHMS 

There are some objective functions for which the matching can be found faster than by the 
methods given in the previous section. 

Problem 4: Minimize total completion time "2.Ci or any other problem with identical fj's 
Since the completion times t 1, ••. , tn are minimum and the jobs have identical cost functions, 
we can arbitrarily match the jobs with the completion times. Therefore, Problem 4 can be 
solved in O(n +mlogm) time, the time required to find the set of minimum completion times. 

Problem 5: Minimize total weighted completion time "2.wiCi 
Q IPi = 1 J "2.wiCi is solved by arranging the jobs in order of non-increasing weights and match­
ing them accordingly with non-decreasing job completion times. The correctness of the algo­
rithm is easily established by the same argument that validates Smith's shortest weighted pro­
cessing time rule (Smith, 1956) for 11 I "2.wiC/ interchanging two adjacent jobs that are not 
scheduled in compliance with the indicated order reduces the cost of the schedule. 

Problem 6: Minimize maximum lateness Lmax 
Maximum lateness is defined as Lmax = max 1 ,,;;;, i.;;, n ( Ci -di). The Q I Pi= 1 I L max problem is 
solved by sorting the jobs in order of non-decreasing due dates, and matching them 
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accordingly with non-decreasing completion times. This procedure is an extension of Jackson's 
earliest due date rule (Jackson, 1955) for minimizing maximum lateness on a single machine, 
and runs in O(nlogn) time. The algorithm is again justified by an interchange argument. 

Problem 7: Minimize the weighted number of tardy jobs ~wj Uj 
Define Uj as the incidence of tardiness of job Jj, that is, Uj = l if Cj-dj > 0 and Uj = 0 oth­
erwise. We seek a schedule that minimizes the weighted number of tardy jobs, ~ J = 1 wj Uj. 

If all w/s are equal, then the problem is solved in O(nlogn) time through an obvious exten­
sion of Moore and Hodgson's algorithm for l I I ~u1 (Moore, 1968). Lawler (1989) proposes 
the following algorithm for the case of general weights. Starting with the largest unmatched 
completion time tk (k = n, ... , 1), determine the set of unscheduled jobs V that would be in 
time if matched with tk. If V =I= 0, determine a job Jh E V for which wh = maxJ1 E vwj, and 

match it with completion time tk. Ultimately, we find a set of tardy jobs, and they are matched 
arbitrarily with the unmatched completion times. The algorithm is justified by an interchange 
argument and can be implemented to run in O(nlogn) time. 

Problem 8: Minimize total taroiness ~ Tj 
The tardiness of job Jj is defined as Tj = max{ Cj-dj, O}. It is easy to establish through an 
interchange argument that Q lh = l I ~Tj is solved as follows: renumber the jobs in order of 
non-decreasing due dates, and match them accordingly with the completion times t 1, .•. , tn. 

It is noteworthy that this problem can be viewed as a Gilmore-Gomory matching problem. 
When we define aj = dj, f3k = tk, g(y) = l, and h(y) = 0, we can write the cost cjk of matching 
job Jj with completion time tk as 

- {1:k g(y )dy, 
C·k -

J ft2 h (y )dy, 

If the jobs and completion times have been indexed in order of non-decreasing values of a.j and 
fik, respectively, a minimum-weight matching is found by matching Jj with tj for j = l, ... , n 
(Lawler, 1976). · 

Note that among other problems, Q lpj= l I ~Jj withfj = I Cj-dj I can be formulated and 
solved as a Gilmore-Gomory matc~g problem. This is true only subject to the condition that 
the jobs must be completed at times t 1, ... , tn, as these cost functions are not monotone. More 
generally, the same matching optimizes the minsum criteria with Jj = Tf and Jj = I Cj -dj IP 
for any p > 0 (Dessouky, 1989). 

Problem 9: Minimize maximum weighted tardiness max wj Tj 
Recently, Hochbaum and Shamir (1989) have presented an intricate O(nlog2n) time algorithm 
for l I I max w1Tj, which can readily be transferred to Q lpj= l I max wjTj. We propose a 
simpler algorithm, which is slightly less efficient in case the weights are large. 

Without loss of generality we may assume that min; s; = 1 and that all wj·max{O, tk -dj} are 
integral. The problem of deciding whether there exists a matching with max wj Tj ~ K for a 
given KE 1\10 can be answered in O(nlogn) time as follows. An upper bound K on the 
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maximum weighted tardiness induces a deadline di+ K I w1 for each Ji. Hence, the decision 
problem has an affirmative answer only if each job can be scheduled to meet its deadline. This 
is verified in O(nlogn) time by solving the corresponding Q Jpi= 1 J Lmax problem. 

Since 0 ~ maxwiTJ ~ Wmaxtn for any matching, where Wmax =maxi wi, and tn ~ nlm + 1, 
the optimal maximum weighted tardiness can be determined by binary search over the interval 
[O, Wmax(nl m + l)]. Hence, the algorithm runs in O(nlogn(logwmax + log(n/m))) time. 

4. RELEASE DATES 

Suppose now that each job J1 (j = 1, ... , n) becomes available at a given release date ri ;_;;;:,: 0. 
This makes it impossible to specify a set of earliest completion times in advance and to invoke 
some procedure that matches jobs with completion times. Nonetheless, we give an O(nlogn) 
time procedure for minimizing makespan, and an 0 ( mn Zm + 1) time dynamic programming 
algorithm for minimizing total completion time. 

Problem 10: Minimize makespan C max subject to release dates 
For minimizing makespan, Lageweg et al. (1982) use the symmetry between Q Jpi=l JLmax 
and Q I ri,Pi = 1 J C max to solve Qie latter problem. This boils down to the following. 

Imagine a tentative deadline d at which all jobs have to be_!inished. We can identify a set of 
latest start times for the jobs in order to meet this deadline d. Since t 1, ..• , tn obtained in the 
~rward c~mputation for Q IPJ = 1 J C max are the earliest job completion times, 
d-tn, ... ,d-t1 must be the latest start times of QI ri,pi= 1 J Cmax· The procedure is as fol­
lows: match the jobs in ord:_r of non-decreasing release dates with non-decreasing latest start 
times. If we initially choose d = tn, which is an evident lower bound_on the optimal makespan, 
then the entire schedule needs to be delayed by A = max 1,,,;;,i ,,,;;,n (ri -d + tn _ i + 1) in order not to 
violate any of the job release dates. The resulting schedule is optimal, and the maximum job 
completion time is C max = tn + A. The procedure is easily validated through an interchange 
argument. The running time is O(nlogn). 

Problem 11: Minimizing total completion time '2.Ci subject to release dates 
We propose a dynamic programming algorithm that requires 0 (mn Zm + 1) time, which is poly­
nomial for any fixed number of machines. Without loss of generality we may assume that all ri 
and l Is; are integral. It is obvious that there is an optimal solution in which all the jobs allo­
cated to the same machine are sc~eduled in non-decreasing order of their release dates. 
Renumber now the jobs in order of non-decreasing release dates. 

Let F/q 1, ... , qm) denote the optimal total completion time for Ji, ... ,Ji subject to the 
condition that M; is available up to time q;, for i = 1, ... , m, j = 1, ... , n. In addition, let 
Pi = l Is; for i = 1, ... , m. 

Since each job starts as early as possible, the completion time of Ji on M; is contained in the 
set Q; = {rh + kp; I h = 1, ... ,n, k = l, ... ,n + 1-h }. If M; is available up to time q, the 
latest admissible completion time of any job on M; is I;( q) = max { q' E Q; I q' :s;;; q}. If Ji is 
completed on M; at time q; E Q;, it contributes q; to the total completion time; furthermore, its 
predecessor on M; must be finished by l;(q;-p;). Note that l;(q;-p;) = q;-p;, unless 
q; = rh + p; for some h E {l, ... , n}. 

We now can set up the recursion to compute Fi for j = 0, 1, ... , n. After the initialization 
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Fo(q1, · · · ,qm) = 0 

for all q; E Q; (i = 1, ... ,m), we determine Fj(q 1, ... ,qm) by 

_ . { q; + F1-1(q1, ... ,q;-i.l;(q;-p;),q;+i. ·. · ,qm),} 
Fj(qi. ... ,qm)-mm1°"';..;;m F( l( -1) ) j qi.··· ,q;-i. i q; ,q;+i. · · · ,qm • 

for all q; E Q;, q; ~ r1+ p; (i = 1, ... ,m), and for j = 1, ... ,n. All undefined values are taken 
to be infinity. The optimal total completion time is given by Fn(maxQ 1, ••• , maxQm), and the 
corresponding schedule can be identified by backtracing. 

After appropriate preprocessing, the values I;( q; - p;) and l;( q; - l) can be found in constant 
time, and the computation of Fj(qi. ... ,qm) for given} and (qi. ... ,qm) requires O(m) time. 
Since each IQ; I = O(n 2), we have to consider O(n2m) combinations of (q 1, ••• ,qm) for each 
j = 1, ... , n. Hence, the procedure runs in 0 (mn 2m + 1) time for m ~ 2. 

In the preprocessing phase, the elements of each set Q; are sorted in nondecreasing order. 
For each q; E Q;, the value l;(q;-p;) is determined in O(logn) time and stored; the value 
l;(q;-1) is simply the largest value in Q; smaller than q; and can be found in 0(1) time. The 
preprocessing phase requires O{mn 2 log n) time. 
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