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The Amoeba distributed operating system has been in development and use for over eight years now, which is 
a long enough period to warrant taking a look back at its successes and failures. We will first describe the 
current version of the system in some detail, as it has evolved considerably since the first publication about it. 
We will emphasize those aspects of the system that we consider novel, interesting, and not present in many 
other systems of its type. Then we will look at the measured performance of Amoeba and compare it to the 
performance of other systems. Finally we will specifically discuss a number of the critical design choices we 
have made, and point out those we consider successful and those we consider unsuccessful. 
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1; INTRODUCTION 

lllie Amoeba project is a research effort aimed at understanding how to connect multiple computers 
tqgether in a seamless way [Mullender and Tanenbaum, 1986; Tanenbaum and van Renesse, 1985; 
Tanenbaum, Mullender, and van Renesse, 1986]. The basic idea is to provide the users with the illu
si9n of a single powerful timesharing system, when, in fact, the system is implemented on a collection of 
~achines, potentially distributed among several countries. This research has led to the design and 
implementation of the Amoeba distributed operating system, which is being used as a prototype and 
vehicle for further research. In this paper we will describe the current state of the system (Amoeba 3.0), 
and tell some of the lessons we have learned designing and using it over the past eight years. We will 
also discuss how this experience has influenced our plans for the next version, Amoeba 4.0. 

Amoeba was originally designed and implemented at the Vrije Universiteit in Amsterdam, and is now 
~ing jointly developed there and at the C.entre for Mathematics and Computer Science, also in Amster
dam. The chief goal of this work is to build a distributed system that is transparent to the users. This 
concept can best be illustrated by contrasting it with a network operating system, in which each 

1. 1bis research was supponcd in part by the Netherlands Organization for Scientific Research (N.W.O.) under grant 125-30-10. 
2. The research at CWI was supported in part by a grant from Digital Equipment Corporation. 

Report CS-R8929 
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2 Tanenbaum et al. 

machine retains its own identity. With a network operating system, each user logs into one specific 

machine, his home machine. When a program is started, it executes on the home machine, unless th~ 

user gives an explicit command to run it elsewhere. Similarly, files are local unless a remote file syste~ 

is explicitly mounted or files are explicitly copied. In short, the user is clearly aware that multipl~ 

independent computers exist, and must deal with them explicitly. · 

In a transparent distributed system, in contrast, users effectively log into the system as a whole, an~ 

not to any specific machine. When a program is run, the system, not the user, decides the best place to 

run it. The user is not even aware of this choice. Fmally, there is a single, system wide file system. The 

files in a single directory may be located on different machines possibly in different countries. There iii 

no concept of file transfer, uploading or downloading from servers, or mounting remote file systems. 

The fact that a file is remote is not visible to the user at all. 
The remainder of this paper will describe Amoeba and the lessons we have learned from building it. 

In Section 2, we will give a technical overview of Amoeba as it currently stands. Since Amoeba uses the 

client-server model, in Section 3 we will describe some of the more important servers that have been 

implemented so far. This is followed by a description of how wide-area networks are handled, in Section 

4. In Section 5 we will discuss a number of applications that run on Amoeba. Measurements have 

shown Amoeba to be extremely fast, so in Section 6 we will present some of these measurement!. 

Finally, in Section 7, we will discuss the successes and failures that we have encountered over the past 5 

years, so that others may profit from those ideas that have worked out well and avoid those that have 

not. 

2. TECHNICAL Ovmtvmw OF AMoEBA 

Before describing the software, it is worth saying something about the system architecture on which 

Amoeba runs. 

2.1. System Architecture 
The Amoeba architecture consists of four principal components, as shown in FIGURE 1. Fmt are the 

workstations, one per user, on which users can carry out editing and other tasks that require fast interac

tive response. The workstations are primarily used as intelligent terminals that do window management, 

rather than as computers for running complex user programs. We are currently using SUN-3s ~ 
V AXstations as workstations. 

Second are the pool processors, a group of CPUs that can be dynamically allocated as needed, used, 

and then returned to the pool. For example, the mah command might need to do six compilations, so 
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~ processors could be taken out of the pool for the time ncccssary to do the compilation and then 
~ed. Alternatively, with a five-pass compiler, 5 x 6 = 30 processors could be allocated for the six 
c:Ompilations, gaining even more spccdup. Many applications, such as heuristic search in AI applica
tions (e.g., playing chess), use large numbers of pool processors to do their computing. We currently 
have 48 single board VME-based computers using the 68020 and 68030 CPUs. We also have 10 VAX 
CPUs forining an additional processor pool. 

Third arc the speciaU7.cd servers, such as directory servers, file servers, data base servers, boot servers, 
and various other servers with spcciali7.cd functions. Each server is dedicated to performing a specific 
function. In some cases, there arc multiple servers that provide the same function, for example, as part 
oi the replicated file system. 

Fourth arc the gateways, which arc used to link Amoeba systems at different sites and different coun
tries into a single, unifonn system. The main function of the gateways is to isolate Amoeba from the 
~ties of the protocols that must be used over the wide-area networks. 

All the Amoeba machines run the same kcmcl, which primarily provides multithrcaded processcs, 
communication services, and little clsc. The basic idea behind the kernel was to keep it small, to 
crihancc its reliability, and to allow as much as possible of the operating system to run as user processcs, 
p~viding for ftcxibility and experimentation. 

2.2. Objects and Capabilities 
Ainocba is an object-based system. The system can be viewed as a collection of objects, on each of 
which there is a act of operations that can be pcrfonncd. For a file object, for example, typical opera
tions arc reading, writing, appending, and deleting. The list of allowed operations is defined by the pcr
soh who designs the object and who writes the code to implement it. Both hardware and software 
oojects exist. 

1Associated with each object is a capability [Dennis and Van Hom, 1966), a kind of ticket or key that 
allows the holder of the capability to pcrfonn some (not necessarily all) operations on that object. A 
user process might, for example, have a capability for a file that permitted it to read the file, but not to 
mPmrr it. Capabilities arc protected cryptographically to prevent users from tampering with them. 

Each user process owns some collection of capabilities, which together define the act of objects it may 
ac!cess and the type of operations he may pcrfonn on each. Thus capabilities provide a unified mechan
ism for naming, accessing, and protecting objects. From the user's perspective, the function of the 
oP,crating system is to create an environment in which objects can be created and manipulated in a pro-

1 
tected way. 

'This object-based model visible to the users is implemented using remote procedure call [Birrell and 
Nelson, 1984). Associated with each object is a server process that manages the object. When a user 
p~ wants to pcrfonn an operation on an object, it sends a request message to the server that 
mlmagcs the object. Thc message contains the capability for the object, a specification of the operation 
to! be perfonned, and any parameters the operation requires. The user, known as the client, then blocks. 
After the server has performed the operation, it sends back a reply message that unblocks the client. 
The combination of sending a request message, blocking, and accepting a reply message forms the 
rdnote procedure call, which can be encapsulated using stub routines, to make the entire remote opera-
tidn look like a local procedure call (although sec Tanenbaum and van Rcnessc [1988)). · 

·The structure of a capability is shown in FIGURE 2. It is 128 bits long and contains four fields. The 
liJit field is the server port, and is used to identify the process that manages the object. It is in effect a 
48-bit random number chosen by the server. 

0

The second field is the object number, which is used by the server to identify which of its objects is 
bciing addressed. Together, the server port and object number uniquely identify the object on which the 
operation is to be performed. 

The third field is the rigltb field, which contains a bit map telling which operations the holder of the 
capability may perfonn. H all the bits arc ls, all operations arc allowed. However, if some of the bits 
are Os, the holder of the capability may not perform the corresponding operations. 

-- ·'· -·---
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To prevent users from just turning all the 0 bits in the rights field into 1 bits, a cryptographic protcb

tion scheme is used. When a server is asked to create an object, it picks an available slot in its intcrnal 

tables, puts the information about the object in there along with a newly generated 48-bit randofll 

number. The index into the table is put into the object number field of the capability, the rights bits 

arc all set to 1, and the newly-generated random number is put into the check field of the capabilify. 

This is an owner capability, and can be used to perfonn all operations on the object. · 

The owner can construct a new capability with a subset of the rights by turning off some of the rights 

bits and then XOR-ing the rights field with the random number in the check field. The result of tiiis 
operation is then run through a (publicly-known) one-way fanctUm to produce a new 48-bit number ~t 

is put in the check field of the new capability. 
The key property required of the one-way function, f, is that given the original 48-bit number, fl 

(from the owner capability) and the unencrypted rights field, R, it is easy to compute C = .f(N XOR ~), 

but given only C it is nearly impossible to find an argument to f that produces the given C. Such func-

tions arc known [Evans, Kantrowitz, and Weiss, 1974]. 
1 

When a capability arrives at a server, the server uses the object field to index into its tables to locate 

the information about the object. It then checks to sec if all the rights bits arc on. If so, the serJer 

knows that the capability is (or is claimed to be) an owner capability, so it just compares the origUki 

random number in its table wi.th the contents of the check field. If they agree, the capability is con

sidered valid and the desired operation is perfonned. 
If some of the rights bits arc 0, the server knows that it is dealing with a derived capability, so ~r

fonns an XOR of the original random number in its table with the rights field of the capability. This 
number is then run through the one-way function. If the output of the one-way function agrees with the 

contents of the check field, the capability is deemed valid, and the requested operation is perfonned if its 

rights bit is set to 1. Due t~ the fact that the one-way function cannot be inverted, it is not possible for 

a user to 'decrypt' a capability to get the original random number in order to generate a false capability 

with more rights. 

2 .3. Remote Operations 
The combination of a request from a client to a server and a reply from a server to a client is called a 

remote operation. The request and reply messages consist of a header and a buffer. Headers arc 32 byt~, 
and buffers can be up to 30 kilobytes. A request header contains the capability of the object to be 
operated on, the operation code, and a limited area (8 bytes) for parameters to the operation. For 

example, in a write operation on a file, the capability identifies the file, the operation code is write, and 

the parameters specify the size of the data to be written, and the offset in the file. The request buffer 

contains the data to be written. A reply header contains an error code, a limited area for the result of 

the operation (8 bytes), and a capability field that can be used to return a capability (e.g., as the result 

of the creation of an object, or of a directory search operation). ' 

The primitives for doing remote operations arc listed below: 

get request<req-header, req-buffer, req-size> 
put-reply(rep-header, rep-buffer, rep-size> 
do_operation<req-header, req-buffer, req-size, rep-header, rep-buffer, rep-size> 

When a server is prepared to accept requests from clients, it executes a get_request primitive, which 

causes it to block. When a request message arrives, the server is unblocked and the formal paramet~ · 

of the call to get_request arc filled in with information from the incoming request. The server than 



Experiences with the Amoeba Distributed Operating System 5 

perfonns the work and sends a reply using put_reply. 

1 
On the client side, to invoke a remote operation, a process uses do_ operation. This action causes the 

request message to be sent to the server. The request header contains the capability of the object to be 
rhanipulated and various parameters relating to the operation. The caller is blocked until the reply is 
rb:eived, at which time the three rep- parameters are filled in and a status retwned. The retwn status 
of do_ operation can be one of three possibilities: 

11. Tite request was delivered and has been executed . 
• 2. Tite request was not delivered or executed (e.g., server was down). 

3. Tite status is unknown. 

The third case can arise when the request was sent (and possibly even acknowledged), but no reply was 
forthcoming. This situation can arise if a server crashes part way through the remote operation. Under 
~l conditions of lost messages and crashed servers, Amoeba guarantees that messages are delivered at 
J!lOSt once. H status 3 is returned, it is up to the application or run time system to do its own fault 
recovery. 

2.4. Remote Proudare Calls 
A remote procedure call actually consists of more than just the request/reply exchange described 
above. The client has to place the capability, operation code, and parameters in the request buffer, and 
on receiving the reply it has to unpack the results. The server has to check the capability, extract the 
~peration code, and parameters from the request and call the appropriate procedure. The result of the 
P.rocedure has to be placed in the reply buffer. Placing parameters or results in a message buffer is 
called marshalling , and has a non-trivial cost. Different data representations in client and server also 
have to be handled. All of these steps must be very carefully designed and coded, lest they introduce 
t.µlacceptable overhead. 

To hide the marshalling and message pas&ng from the users, Amoeba uses stub routines [Birrell and 
Nelson, 1984). For example, one of the file system stubs might be: 

int read_file<file_cap, 
capability t 
long -
long 
char 

off set, nbytes, 
•file cap; 
off set; 
•nbytes; 
•buffer; 

buffer> 

~ call reads nbytes starting at offset from the file identified by capabH i ty into buffer. It returns 
the number of bytes read and a code indicating success or an error number. A hand-written stub for 
this code is simple to construct: it will produce a request header containing capability, the operation 
d:xie for read_fi le, offset, and nbytes, and invoke the remote operation: 

do_operation<req_header, NULL, O, repader, buffer, nbytes>; 

Automatic generation of such a stub from the procedure header above is im~ible. Some essential 
~ormation is missing. TI1C author of the hand-written stub used several pieces of derived information 
to do the job. 

1,. Tite buffer is used only to receive information from the file server; it is an output parameter. 

2~ The maximum length of the buffer is given in the nbytes parameter. The actual length of the buffer 
is the returned value if there is no error and zero otherwise. 

3~ Capability is special; it defines the service that must carry out the remote operation. 

4~ Tite stub generator does not know what the server's operation code for read_fHe is. This requires 
extra information. But, to be fair, the human stub writer needs this extra information too. 

In order to be able to do automatic stub generation, the interfaces between client and servers have to 
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I 
contain the information listed above, plus information about type representation for ali 
language/machine combinations used. In addition, the interface specifications have to have an inheriJ 
lance mechanism which allows a lower-level interface to be shared by several other interface5. The 
read_fHe operation, for instance, will be defined in a low-level interface which is then inherited by all 
file-server interfaces, the terminal-server interface, and the segment-server interface. 

1 

AIL (Amoeba Interface Language) is a language in which the extra information for the generation of 
efficient stubs can be specified, so that the AIL compiler can produce stub routines automatically 

[van Rcmum, 1989). The read_file operation could be part of an interface (called class in AIL) whose 
definition could look something like 

class simple file server [1000 •• 1999] < 

}; 

read-file(•, in unsigned offset, in out unsigned nbytes, 
- out char bufferCnbytes:NBYTESJ>; 

write_fi le<•, ••• >; 

From this specification, AIL can generate the C client stub of the example above with the correct 
marshalling code. The AIL specification tells AIL that the operation codes for the simple file server 
can be allocated in the range 1000 to 1999; it tells which parameters are input parameters to the-server 
and which are output parameters from the server, and it tells that the length of buffer is at most NBYTES 
(which may be a constant or a variable) and that the actual length is nbytes. 

The Bullet File Server, one of the file servers operational in Amoeba, inherits this interface, making it 
part of the Bullet File Server interface: I 

class bullet server [2000 •• 2999] < 
inherit simple file server; 
creat_ file(*, : •• >; 

}; 

AIL can do multiple inheritance so the Bullet server interface can inherit both the simple file interface and 
a capability managemeni interface, for instance, for restricting rights on capabilities. 

2.5. Threads 
A process in Amoeba consists of one or more threads that run in parallel. All the threads of a proc~ 
share the same address space, but each one has a dedicated portion of that address space for use as its 

private stack, and each one has its own program counter. From the progranuner's point of view, each 
thread is like a traditional sequential process, except that the threads of a process can communicat~ 
using shared memory. In addition, the threads can synchronize with each other using semaphores. 

The purpose of having multiple threads in a process is to increase performance through parallelism, 
and still provide a reasonable semantic model to .he progranuner. For example, a file server could ~ 
programmed as a process with multiple threads. When a request comes in, it can be given to some 
thread to handle. That thread first checks an internal (software) cache to see if the needed data are 

present. If not, it performs an RPC with a remote disk server to acquire the data. 
While waiting for the reply from the disk, the thread is blocked and will not be able to handle any 

other requests. However, new requests can be given to other threads in the same process to work on 
while the first thread is blocked. In this way, multiple requests can be handled simultaneously, while 
allowing each thread to work in a sequential way. The point of having all the threads share a common 
address space is to make it possible for all of them to have direct access to a common cache, something 

that is not possible if each thread is its own address space. 
The scheduling of threads within a process is done by code within the process itself. When a threa4 

blocks, either because it has no work to do (i.e., on a get_request) or because it is waiting for a remot~ 
reply (i.e., on a do_operation), the internal scheduler is called, the thread is blocked, and a new threa4 
can be run. Threads are not pre-empted, that is, the currently running thread will not be stopped 
because it has run too long. This decision was made to avoid race conditions. A thread need not worr)' 
that when it is halfway through updating some critical shared table it will be suddenly stopped and 
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some other thread will start up and try to use the table. It is assumed that the threads in a process were 
all, written by the same programmer and arc actively co-operating. 1bat is why they arc in the same 
process. Thus the interaction between two threads in the same process is quite different than the 
interaction between two threads in different processes, which may be hostile to one another and for 
wlilch hardware memory protection is required and used. 

3. SERVERS 

1qe Amoeba kernel, as described above, basically handles communication and some process managc
mc:nt, and little else. The kernel takes care of sending and receiving messages, scheduling processes, and 
some low-level memory management. Everything else is done by user processes. Even capability 
mkgcment is done entirely in user space, since the cryptographic technique discussed earlier makes it 
viituauy impossible for users to generate counterfeit capabilities. 

All of the remaining functions that are normally associated with a modern operating system environ
ment are performed by servers, which are just ordinary user processes. The file system, for example, 
co~ts of a collection of user processcs. Any user who is not happy with the standard file system is free 
to write and use his own. This situation can be contrasted with a system like UNIX, t in which there is a 
single file system that all applications must use, no matter how inappropriate it may be. Stonebraker 
[1~81) for example, discusses the numerous problems that UNIX creates for database systems. 

In the following sections we will discuss the Amoeba memory server, process server, device servers, file 
setver, directory server, and boot server as examples of typical Amoeba servers. Many others exist as 
well. 

3.Jl T1ie Memory Server 
In 1many applications, processes need a way to create subprocesscs. In UNIX, a subprocess is created by 
the fork primitive, in which an exact copy of of the original process is made. This process can then run 
for~ a while, attending to housekeeping activities, and then issue an exec primitive to overwrite its core 
im~gc with a new program. 

In a distributed system, this model is not attractive. The idea of first building an exact copy of the 
pnkcss, possibly rcniotely, and then throwing it away again shortly thereafter is inefficient. Conse
quently, Amoeba uses a different strategy. Each Amoeba machine runs a memory server process, whose 
joti is to manage memory. It offers primitives to allocate, free, read and write chunks of memory called 
se~ts. These primitives, together with those of the Process Server below, are used instead of UNIX's 
fiork and exec. 

I 

3.2l T1ie Process Server 
A typical scenario for creating a new process is as follows. The process wanting to create a subprocess 
firSt does an RPC with the process server telling it that it wants to create a process, specifying the infor
mation about the new process, such as machine .cquirements (e.g., is floating point hardware needed, 
h~ much memory is required) and the name of the program to be run. The process server then 
chJoses a machine to run the new process on, based on its information about system load, location of 
inP,ut data, and other relevant factors that might affect performance. 

9nce the process server has made a choice, it contacts the memory server on the chosen machine. It 
th~ asks the memory server to create segments for the text, data, and stack of the new process, and pos
sibly other segments, as needed. For each segment it creates, the memory server returns a capability to 
th~ process server. The process server then uses these capabilities to perform write operations, that is, to 
fill 1the segments with the initial code, data, and stack values. 

When all the segments have been loaded, the process server asks the memory server to execute a 
build-process operation, with the segment capabilities as the input parameters. The memory server 
rcsPonds by returning a capability for a newly-minted process. The process server can then issue an 

t UNIX is a Trademark of AT&T Bdl Laboratories. 



8 Tanenbaum et.al. 

execute operation using this capability to start the new process going. When the process tenninates, it 
I 

returns a status value to the process server. 

3.3. T1ie Device Servers 
For most pieces of peripheral equipment, such as disks and printers, there is a device server tQat 

manages the device. These servers are embedded in the kernels of the machines to which the devices 

are connected, but otherwise are like ordinary processes, communicating using capabilities and RPC. 

For example, a printer spooler could be located on any machine to manage a queue of files to !be 

printed. Physical storage of queued files could be local or remote, as is most convenient. When the first 

file appeared for printing, one of the print spooler's threads could send a block of text to the prin~er 
server, getting a reply back when the block had been printed, at which time it could send the next block 

of text. The spooler could obviously handle queueing for multiple printers at different locations, eJen 

though it itself ran on a diskless machine not connected to any printer or disk. 

3.4. T1ie File Server 
As far as the system is concerned, a file server is just another user process. Consequently, a variety of 

file servers have been written for Amoeba in the course of its existence. The first one, FUSS (lfree 

Universi~ Storage System) [Mullender and Tanenbaum, 1985] was designed as an experiment in mana~g 

concurrent a~ using optimistic concurrency control. The second one was designed for UNIX em~
tion, and is currently heavily used. The third one, the bullet server was designed for extremely high ~r

formance. It is this one that we will describe below. 
The decrease in the cost of disk and RAM memories over the past decade has allowed to use a ra:cti

cally different design than is used in UNIX and most other operating systems. In particular, we have 

abandoned the idea of storing files as a collection of fixed size disk blocks. All files are stored contigu

ously, both on the disk and in the server's main memory. While this design wastes some disk space ind 

memory due to fragmentation overhead, we feel that the enormous gain in performance (described! in 

section 6) more than offiiets the extra cost of having to buy, say, an 800 MB disk instead of a 500 MB 

disk in order to store 500 MB worth of files. 
The bullet server is an immutable file store, with as principal operations read-:file and create-:file. (For 

garbage collection pwposes there is also a tklete-:file operation.) When a process issues a read-:file requb:, 

the bullet server can transfer the entire file to the client in a single RPC, unless it is larger than fue 

maximum size (30K), in which case multiple RPCs are needed. The client can then edit or othenJise 

modify the file locally. When it is finished, the client issues a create-:file RPC to make a new versiOn. 

The old version remains intact until explicitly deleted or garbage collected. Note that different versions 

of a file have different capabilities, so they can co-exist, making it simple to implement source code c~n
trol systems. 

The files are stored contiguously on disk, and are cached in memory (currently 16 Mbytes). Whe~ a 

requested file is not available in this memory, it is loaded from disk in a single large DMA operation 

and stored contiguously in the cache. (Unlike conventional file systems, there are no 'blocks' used ahy

where in the file system.) In the create-:file operation one can request the reply before the file is writtetj to 

disk (for speed), or afterwards (to know that it has been successfully written). 
When the bullet server is booted, the entire 'i-node table' is read into memory in a single disk opera

tion and kept there while the server is running. When a file operation is requested, the object numlier 

field in the capability is extracted, which is an index into this table. The entry thus located gives the 

disk address as well as the cache address of the contiguous file (if present). No disk access is needed to 
' fetch the 'i-node' and at most one disk access is needed to fetch the file itself, if it is not in the cache. 

The simplicity of this design trades off some space for very high performance. We will discuss the ~r
formance of this server in Section 6. 
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3.5. The Direclllry Server 
The bullet server does not provide any naming services. To access a file, a process must provide the 
4levant capability. Since working with 128-bit binary numbers is not convenient for people, we have 
designed and implemented a directory server to manage names and capabilities. 

The directory server manages multiple directories, each of which is a normal object. Stripped down 
tb its barest essentials, a directory maps ASCII strings onto a capabilities. A process can present a 
siring, such as a file name, to the directory server, and the directory server returns the capability for 
$it file. Using this capability, the process can then access the file. 

In UNIX terms, when a file is opened, the capability is retrieved from the directory server for use in 
subsequent read and write operations. After the capability has been fetched from the directory server, 
subsequent RPOi go directly to the server that manages the object. The directory server is no longer 
ibvolved. 

It is important to realize that the directory server simply provides a mapping function. The client 
provides a capability for a directory (in order to specify which directory to search) and a string, and the 
directory server looks up the string in the specified directory and returns the capability associated with 
the string. The directory server has no knowledge of the kind of object that the capability controls. 

In particular, it can be a capability for another directory on the same or a different directory server, 
a1 file, a mailbox, a database, a process capability, a segment capability, a capability for a piece of 
tlardware, or anything else. Furthermore, the capability may be for an object located on the same 
machine, a different machine on the local network, or a capability for an object in a foreign country. 
'The nature and location of the object is completely arbitrary. Thus the objects in a directory need not 
~l be on the same disk, for example, as is the case in many systems that support 'remote mount' opera
tions. 

Since a directory may contain entries for other directories, it is possible to build up arbitrary directory 
structures, including trees and graphs. As an optimization, it is possible to give the directory server a 
complete path, and have it follow it as far as it can, returning a single capability at the end. 

1 Actually, directories are slightly more general than just simple mappings. It is commonly the case 
~t the owner of a file may want to have the right to perform all operations on it, but may want to 
~t others read-only access. The directory server supports this idea by structuring directories as a 
series of rows, one per object, as shown in FIGURE 3. 

Object name Capability Owner Group Other 
capl 11111 11000 10000 

games dir cap2 11111 10000 10000 
paper.t cap3 11111 ()()()()() ()()()()() 

prog.c cap4 11111 11100 10000 

F10UIU! 3. A directory with three mer clamics, four entries, and five rights. 

1 
The first column gives the string (e.g., the file name). The second column gives the capability that 

goes with that string. The remaining columns each apply to one user class. For example, one could set 
up a directory with different access rights for the owner, the owner's group, and others, as in UNIX, but 
other combinations are also possible. 

The capability for a directory specifies the columns to which the holder has access as a bit map in 
part of the rights field (e.g., 3 bits). Thus in the above example, the bits 001 might specify access to 
o~y the Other column. In Sec. 2.2 we discussed how the rights bits are protected from tampering by 
uSe of the check field. 

To understand how the use of multiple columns works, let us consider a typical access. The client 
provides a capability for a directory, a string, and a column. The string is looked up in the directory to 
fihd the proper row. Next, the column is checked against the bit map in the rights field, to see which · 
column should be used. Then the entry in the selected row and column is extracted. This entry is a bit 
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map, with one bit per operation. The directory server can then ask the server that manages the object 

to return a new capability with only those rights the client is pennitted to have. This new capability is 

cached for future use, to reduce calls to the server. Furthermore, if the capability in the row is th~ 
owner capability, which in practice it nearly always is, the directory server can do the rights restrictio~ 
itself, without calling the server, as described above. 

1 

The directory server supports a nwnber of operations on directory objects. These including looking 

up capabilities, adding new rows to a directory, removing rows from directories, listing directories, 

inquiring about the status of directories and objects, and deleting directories. There is also provision for 

performing multiple operations in a single atomic action, to provide for fault tolerance. 

Furthermore, there is also support of handling replicated objects. The capability field in can actually 

hold a set of capabilities for multiple copies of each object. Thus when a process looks up an object, it 

can retrieve the entire set of capabilities for all the copies. Hone of the objects is unavailable, the other 

ones can be tried. In addition, when a new object is installed in a directory, an option is available t~ 
have the directory server itself request copies to be made, and then store all the capabilities, thus freeing 

the user from this administration. 

4. WmE-AilEA AMOEBA 

Amoeba was designed with the idea that a collection of machines on a local network would be able to 

communicate over a wide-area network with a similar collection of remote machines. The key problem 

here is that wide-area networks are slow and unreliable, and furthermore use protocols such as X25
1
, 

TCP/IP, and OSI, in any event, not RPC. The primary goal of the wide-area networking in Amoe~ 
has been to achieve transparency without sacrificing performance. In particular, it is undesirable duit 

the very fast local RPC be slowed down in any way due to the existence of wide-area communication. 

We believe this goal has been achieved. ' 

The Amoeba world is divided up into thmtJins, each domain being an interconnected collection of 

local area networks. The key aspect of a domain (e.g., a campus), is that broadcasts done from ant 

machine in the domain are received by all other machines in the domain, but not by machines outside 

the domain. 
The importance of broadcasting has to do with how ports are located in Amoeba. When a proce:sS 

does an RPC with a port not previously used, the kernel broadcasts a locate message. The server 

responds to this broadcast with its ad~, which is then used and also cached for future RPCs. 

This strategy is undesirable with a wide-area network. Although broadcast can be simulated using a 

minimwn spanning tree [Dalal, 1977] it is expensive and inefficient. Furthermore, not every servic~ 

should be available worldwide. For example, a laser printer server on the third floor of the physics 

building at a university in California may not be of much use to clients in New York. 

Both of these problems are dealt with by introd1,cing the concept of publishing. When a service wishes 

to be known and accessible outside its own domain, it contacts the Service for Wide-Area Networks (SWAN) 

and asks that its port be published in some set of domains. Tiie SW AN publishes the port by doing 

RPCs with SW AN processes in each of those domains. 
When a port is published in a domain, a new process called a server agent is created in that domain. 

The process typically runs on the gateway machine, and does a get_request using the remote server:s 

port. It is quiescent until its server is needed, at which time it comes to life and performs an RPC with 

the server. 
Now let us consider what happens when a process tries to locate a remote server whose port has been 

published. The proces,,' kernel broadcasts a locate, which is received by the server agent. The clierlt 

agent then builds a message and hands it to the link process on the gateway machine. The link process 

forwards it over the wide-area network to the server's domain, where it arrives at the gateway, causing a 

client agent process to be created. This client agent then makes a normal RPC to the server. Tiie set ~f 
processes involved here is shown in FIGURE 4. 

1 

The beauty of this scheme is that it is completely transparent. Neither user processes nor the kernel 

know which processes are local and which are remote. The communication between the client and thC 

server agent is completely local, using the normal RPC. Similarly, the communication between ilie 
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Client Gateway Gateway 

© 80 Wide-area network 0@ 0 

LAN 1 LAN2 
FiGUllE 4. Wide-area communication in Amoeba involves six prooesaes. 

client agent and the server is also completely normal. Neither the client nor the server knows that it is 
talking to a distant process. 

Or course, the two agents are well aware of what is going on, but they are automatically generated as 
neCded, and are not visible to users. The link processes are the only ones that know about the details of 
the wide-area network. They talk to the agents using RPC, but to each other using whatever protocol 
th~ wide-area network requires. The point of splitting off the agents from the link processes is to com
pletely isolate the technical details of the wide-area network in one kind of process, and to make it easier 
to ~have multiway gateways, which would have one type of link process for each wide-area network type 
to ~hich the gateway is attached. 

It is important to note that this design causes no performance degradation whatsoever for local com
munication. An RPC between a client and a server on the same LAN proceeds at full speed, with no 
rel~ying of any kind. Clearly there is some performance loss when a client is talking to a server located 
on a distant network, but the limiting factor is invariably the bandwidth of the wide-area network, so 
the extra overhead of having messages being relayed several times is negligible. 

Another useful aspect of this design is the management controls it allows. To start with, services can 
only be published with the help of the SWAN server, which can check to see if the system administra
tion wants the port be to published. Another important control is the ability to prevent certain 
p~esses (e.g., those owned by students) from accessing wide-area services, since all such traffic must 
pass through the gateways, and various checks can be made there. Fmally, the gateways can do 
acc;ounting, statistics gathering, and monitoring of the wide-area network. 

5. APPLICATIONS 

Aliioeba has been used to program a variety of applications. In this section we will describe several of 
thdin, including UNIX emulation, parallel make, traveling salesman, and alpha-beta search. 

5.1. UNIX Emulation 
0ne of the goals of Amoeba was to make it useful as a program development environment. For such 

an environment, one needs editors, compilers, and numerous other s~dard software. It was decided 
that the easiest way to obtain this software was to emulate UNIX and then to run UNIX and MINIX 
[Tkenbaum, 1987) software on top of it. 

'Pie UNIX emulation is done mostly by a UNIX Version 7 compatible file server (derived from the 
Mihix file server). This file server accepts request messages asking for system calls such as read and 
write, and carries them out, returning the results in reply messages. In addition, there is another server 
tha'.t handles those V7 system calls that do not relate to the file system, such as fork and exec. 

Using a special set of library procedures that do RPCs with these servers, it has been possible to con
struct an emulation of the UNIX system call interface that is good enough that about 100 of the most 
common utility programs have been ported to Amoeba. The Amoeba user can now use most of the 
standard editors, compilers, file utilities and other programs in a way that looks very much like UNIX, 
although in fact it is really Amoeba. 
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5.2. Parallel Make 
As shown in Figure 1, the hardware on which Amoeba nms contains a processor pool with several doz.en 

68020 and 68030 processors. One obvious application for these processors in a UNIX environment is a 

parallel version of make [Feldman, 1985). The idea here is that when make discovers that multiple coµi

pilations are needed, they are run in parallel on different processors. 

Although this idea sounds simple, there are several potential problems. For one, to make a single tar

get file, a sequence of several commands may have to be executed, and some of these may use files 

created by earlier ones. The solution chosen is to let each command execute in parallel, but block when 

it needs a file not yet available. 
Other problems relate to technical limitations of the make program. For example, since it exPCfts 

commands to be run sequentially, rather than in parallel, it does not keep track of how many processes 

it has forked off, which may exceed various system limits. 

Finally, there are programs, such asyacc Uohnson, 1978] that write their output on fixed name files, 

such as y.tab.c. When multiple yaccs are running in the same directory, they all write to the same flle, 

thus producing gibberish. All of these problems have been dealt with by one means or another, as 

described in Baalbergen [1988). 
The parallel compilations are directed by a new version of make, called pmalce, based on the UNIX <?ne 

but with additional code to handle parallelism. The malcejiles accepted by this program are compatible 

with the standard one. ' 

The performance of pmalce depends strongly on the input. When making a program consisting of 

many medium-sized files, considerable speedup can be achieved. However, when a program has one 

large source file and many small ones, the total time can never be smaller than the compilation timJ of 

the large one. Furthermore, the time required by pmalce itself cannot be neglected. All in all, a speedup 

of about a factor of 4 over sequential make has been observed in practice. 

5.3. TM Traveling Salesman Problem 
In addition to various experiments with the UNIX software, we have also tried programming some appli

cations in parallel. Typical applications are the traveling salesman problem [Lawler and Wood, 1966] 

and alpha-beta search [Marsland and Campbell, 1982) We briefly describe these below. More de~ls 
can be found in [Bal, van Renesse, and Tanenbaum, 1987]. 

In the traveling salesman problem, the computer is given a starting location and a list of cities to be 

visited. The idea is to find the shortest path that visits each city exactly once, and then returns to tlte 

starting place. Using Amoeba we have programmed this application in parallel by having one pool 

processor act as coordinator, and the rest as slaves. 
Suppose, for example, that the starting place is London, and the cities to be visited include New York, 

Sydney, Nairobi, and Tokyo. The coordinator might tell the first slave to investigate all paths starting 

with London-New York, the second slave to investigate all paths starting with London-Sydney, the ili,iro 
slave to investigate all paths starting with London-Nairobi, and so on. All of these searches go on. in 

parallel. When a slave is finished, it reports back to the coordinator and gets a new assignment. 

The algorithm can be applied recursively. For example, the first slave could allocate a processor to 

investigate paths starting with London-New York-Sydney, another processor to investigate London-New 

York-Nairobi, and so forth. At some point, of cowse, a cutoff is needed at which a slave actually does 

the calculation itself and does not try to farm it out to other processors. 

The performance of the algorithm can be greatly improved by keeping track of the best total path 

found so far. A good initial path can be found by using the 'closest city next' heuristic. Whenever a 

slave is started up, it is given the length of the best total path so far. If it ever finds itself working on a 

partial path that is longer than the best-known total path, it immediately stops what it is doing, rep<:>rts 

back failure, and asks for more work. Experiments have shown that about 75 percent of the theorerlcal 

maximum speedup can be achieved using this algorithm, the remaining 1I4 being lost to communi'ca

tion and other overhead. 
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5.4. Alpha-Beta Search 
~other application that we have programmed in parallel using Amoeba is game playing using the 
alpha-beta heuristic for pruning the search tree. The general idea is the same as for the traveling sales
man. When a processor is given a board to evaluate, it generates all the legal moves ~hie starting at 
that board, and hands them off to others to evaluate in parallel. 

The alpha-beta heuristic is commonly used in two-person, zero-sum games to prune the search tree. 
A window of values is established, and positions that fall outside this window are not examined because 
better moves are known to exist. In contrast to the traveling salesman problem, in which much of the 
tree has to be searched, alpha-beta allows a much greater pruning if the positions are evaluated in a 
well chosen order. 

For example, on a single machine, we might have three legal moves A , B, and C at some point. As 
a result of evaluating A we might discover that looking at its siblings in the tree, B and C was pointless. 
~ a parallel implementation, we would do all at once, and ultimately waste the computing power 
devoted to B and C. The result is that much parallel searching is wasted, and the net result is not that 
much better than a sequential algorithm on a single processor. Our experiments running Othello 
(Reversi) on Amoeba have shown that we were unable to utilize more than 40 percent of the total pro
cessor capacity available, compared to 75 percent for the traveling salesman problem. Work is in pro
gress to improve this result. 

6. J>ERFoRMANCE 

~oeba was designed to be very fast. Measurements show that this goal has been achieved. In this 
~tion, we will present the results of some timing experiments we have done. These measurements were 
performed on 16 MHz Motorola 68020 processors (Tadpole VME boards) running Amoeba on the bare 
hardware (no UNIX), and for comparison purposes, on SUN 3/50 workstations running SUN OS 3.5 
BmX to whose kernel the Amoeba driver was added. All processors were connected over a 10 Mbps 
Ethernet using LANCE chip interfaces. We measured the performance for three different 
eonfigurations: 

1. Two user processes running on Amoeba. 
I 
~· Two user processes running on SUN UNIX but using the Amoeba primitives. 

3. Two user processes running on SUN UNIX and using SUN RPC. 

Furthermore, we ran tests for the local case (both processes on the same machine) and for the remote 
Ca.se (each process on a separate machine, with communication over the Ethernet). In all cases com
munication was from process to process, all of which were running in user mode outside the kernel. 

For each configuration (pure Amoeba, Amoeba primitives on UNIX, SUN RPC on UNIX), we tried 
~ run three test cases: a 4-byte message (1 integer), an 8 Kbyte message, and a 30 Kbyte message. 
The 4-byte message test is typical for short control messages, the 8-Kbyte message is typical for reading 
' ~ medium-sized file from a remote file, and the 30-Kbyte test is the maximum the current implementa-

tj.on of Amoeba can handle. Thus, in total we should have 9 cases (3 configurations and 3 sizes). How
ever, the standard SUN RPC is limited to BK, so we have measurements for only eight of them. 
' In FIGURE 5 we give the delay and the bandwidth of these eight cases, both for local processes (same 

i:µachine) and remote processes (different machines). The delay is the time as seen from the client, run
J!ing as a user process, between the calling of and returning from the RPC primitive. The bandwidth is 
the number of data bytes per second that the client receives from the server, excluding headers. The 
rlteasurements were done for both local RPCs, where. the client and server processes were running on the 
same processor, and for truly remote RPCs. 

'. The interesting comparisons in these tables are the comparisons of pure Amoeba and pure SUN 
lpNIX both for short communications, where delay is critical, and long ones, where bandwidth is the 
~e. A 4-byte Amoeba RPC takes 1.4 msec, vs. 12.2 msec for SUN RPC. Similarly, for 8 Kbyte 
iµ>e.s, the Amoeba bandwidth is 625 Kbytes/sec, vs. only 202 Kbytes for the SUN RPC. The conclu- · 
sion is that Amoeba's delay is 9 times better and its throughput is 3 times better. (For the record, we 
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pure Amoeba local 

pure Amoeba remote 

UNIX driver local 

UNIX driver remote 

SUN RPC lcxal 

SUN RPC remote 

(4 llfla) (8 Kb) (30 Kb) 

0.8 2.5 7.1 

1.4 13.1 44.0 

4.5 10.0 32.0 

7.0 36.4 134.0 

10.4 23.6 impca 

12.2 40.6 impcm. 

(a) 

lJanJUJidth ( K/rfasl u.) 

cue 1 cue 2 cue 3 

Tanenbaum et al. 
' 

(4 bfas) (8 Kb) (30 Kb) 

5.0 3277 4255 

2.9 625 677 

0.9 819 938 

0.6 225 224 

0.4 347 impca 

0.3 202 impca 

(b) 

FJGUU 5. RPC bmw:cn uaer proa:sscs in three conunon cases for three diJl'ercnt systems. Local 

RPCs arc RPCs where the client and acrvcr arc running on the same processor. (a) Delay in 
mace. (b) Bandwidth in Kbytea/11CC. The UNIX driver implements Amoeba RPCs and Amoeba 

protocol under SUN UNIX. 

should note that the Amoeba 68020s ran at 16 MHz vs. 15 MHz for the SUNs, but this only chang~ 

the results slightly.) 
While the SUN is obviously not the only system of interest, its widespread use and excellent perfor· 

mance makes it a convenient benchmark. We have looked in the literature for performance figim:s 
' from other distributed systems and have asked many other researchers, and to the best of our knowled~, 

no other operating s}'stem has a lower RPC delay or higher bandwidth on this class of hardware. I~ 
particular, our tests measure delay and throughput from user process to user process (not kernel to kcl

nel) and do not involve any tricks or special cases. 
Noteworthy are the performance of the V-system [Cheriton, 1988] and the Fll'Cfly RPC [Schroeder 

and Burrows, 1989] , V because it is widely thought to be the fastest distributed system currently in 

existence and the Firefly because it is a multiprocessor. For V we find that delay for null RPCs is 2.54 

msec [Cheriton, 1988] (vs. 1.4 mscc for Amoeba), and that the bandwidth for 8 Kbyte RPCs is 460 
I 

Kbytes/scc (vs. 625 Kbytcs/sec for Amoeba). For larger requests (up to 16 Kbytcs), the data rate 

increases to 550 Kbytes/scc (vs. 644 Kbytcs/sec for Amoeba). All of these figures represent a perfor· 

mance considerably worse than that of Amoeba, despite the fact that the V measurements were made oµ 

substantially faster hardware, namely SUN 3175s (vs. SUN 3/50s for Amoeba). 

The Firefly is an experimental multi-processor under development at DEC SRC. A Fll'Cfly con~ 

five Micro Vax CPUs, each of which has about half the computing power of the SUN 3/50, but which 

collectively have much more. The null RPC time has been clocked at 2.66 mscc. The bandwidth for 

one client and one server is 228 Kbytcs/ sec. Using four threads in the client, the bandwidth can lie 

increased to 582 Kbytes/scc. To be able to achieve this good performance, the RPC subsystem his 
been carefully coded in VAX assembly language. In contrast, the Amoeba RPC code is written entirc\y 

in C, with no assembly code. Carefully recoding it in assembler would no doubt give a considcrab\e 

gain in performance. 
Like Amoeba itself, the bullet server was designed for extremely high performance. Below we present 

some mcasurcments of what has been achieved. FIGURE 6 gives the performance of the bullet server fJ r 

tests made with files of 1 Kbyte, 16 Kbytes, and 1 Mbyte. In the first column the delay and bandwidth 

for read operations is shown. Note that the test file will be completely in memory, and no disk access is 

necessary. In the second column a create and a delete operation together is measured, and the file is 

written to two disks (to provide fault tolerance and stable storage). Note that both operations involve 

disk requests. Moreover, the create operation has to generate a capability, which involves costly o~

tions such as generating a random number and encrypting it using a one-way function based on DFS . 
• 
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~ese operations alone account for a significant amount of time. 

F"ale Six 

I Kbyte 

16 Kbyte 

I Mbyte 

READ 

3 

25 

1550 

CREATE+ DEL 

130 

168 

4160 

(a) 

READ CREATE+ DEL 

341 7 

650 98 

677 379 

(b) 

Frauu 6. Performance of the Bullet file server fur read operations, and create and delete openl
tions together. (a) Delay in mscc. (b) Bandwidth in Kbytes/sec. 
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To compare this with the SUN NFS file system, we have measured reading and creating files on a 
SUN 3/50 using a remote SUN 3/180 file server (using 16.7 MHz 68020s and SUN OS 3.5), equipped 
with a 3 Mbyte buffer cache. The measurements were made on an idle system. To disable local cach
ing on the SUN 3/ 50, we have locked the file using the SUN UNIX loclif primitive. The read test con
sists of an /seek followed by a read system call. The write test consists of consecutively executing creat , 
unite, and close. The SUN NFS file server uses a write-through cache, but writes the file to one disk 
onJy. The results are depicted in F10URE 7 

Dtllg (ms«) 

F"de Size READ CREATE READ CREATE 

I Kbyte 10 97 98 II 

16 Kbyte 47 191 349 86 

I Mbyte 3345 15,850 313 66 

(a) (b) 

Frauu 7. 
Perfonnance of the SUN NFS file server for read and create operations. (a) Delay in mace. (b) 

Bandwidth in Kbytes/sec. 

Observe that reading and creating 1 Mbyte files result in lower bandwidths than reading and creating 
16 Kbyte files. The Bullet file server's performance for read operations is two to three times better than 
th~ SUN NFS file server. For create operations, the Bullet file server has a constant overhead for pro
ducing and encrypting capabilities. For small files we therefore observe a lower bandwidth than for 
SUN NFS. Although the Bullet file server replicates its files on two disks, for writing large files, the 
~dwidth is nevertheless four times that of SUN NFS . . , 

7. EVALUATION 

In this section we will take a critical look at Amoeba and its evolution and point out some aspects that 
we consider successful and others that we consider less successful. In areas where Amoeba 3.0 was found 
wanting, we have made improvements in Amoeba 4.0, which is currently under development. These 
improvements are discussed below. 

One area where little improvement is needed is portability. Amoeba started out on the 680xO CPUs, 
and has been easily moved to the VAX, NS 32016 and Intel 80386. The Amoeba RPC protocol also 
hall been implemented as part of MINIX Vl .3, and as such is in widespread use around the world. 
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7.1. Objects and Capabilities 
On the whole, the basic ideas of an object-based system has worked well. It has given us a framew<?rk 

which makes it easy to think about the system. When new objects or services are proposed, we hav~ a 

clear model to deal with and specific questions to answer. In particular, for each new service, we mpst 

decide what objects will be supported and what operations will be permitted on these objects. Tllls 
structuring technique has been valuable on many occasions. 

The use of capabilities for naming and protecting objects has also been a success. By using crypto

graphically protected capabilities, we have a unique system-wide fixed length name for each object, 

yielding a high degree of transparency. Thus it is simple to implement a basic directory as a set of 

(ASCII string, capability) pairs. As a result, a directory may contain names for many kinds of objects, 

located all over the world and windows can be written on by any process holding the appropriate capa

bility, no matter where it is. We feel this model is conceptually both simpler and more flexible ~ 

models using remote mounting and symbolic links such as SUN's NFS. Furthermore, it can be imple

mented just as efficiently. 
We are also satisfied with the low-level user primitives. In effect there are only three principal system 

calls, get_request, put_reply, and do_operation, each easy to understand. All communication' is 

based on these primitives, which are much simpler than, for example the socket interface in Berkeley 

UNIX, with its myriad of system calls, parameters, and options. 

Amoeba 4.0 uses 256-bit capabilites, rather than the 128-bit capabilities of Amoeba 3.0. The larger 

Check field is more secure against attack, and other security aspects have also been tightened, including 
l 

the addition of secure, encrypted communication between client and server. Also, the larger capabiliµes 

now have room for a localion hint which can be exploited by the SWAN servers for locating objects in the 

wide-area network. Third, all the fields of the new 256-bit capability are now all aligned at 32lbit 

boundaries which potentially may give better performance. 

7 2. Remote Procedure Call 
For the most part, RPC communication is satisfactory, but sometimes it gives problems [Tanenbaum 

and van Renesse, 1988]. In particular, RPC is inherently master-slave and point-to-point. Sometimes 

both of these issues lead to problems. In a UNIX pipeline, such as: 

pie file I eqn I tbl I troff >outfile 

for example, there is no inherent master-slave relationship, and it is not at all obvious if data movement 

between the elements of the pipeline should be read driven or write driven. We are still experimenting 

with various approaches here. 
RPC is also point-to-point, which gives problems in parallel applications like the traveling salesman 

problem. When a process discovers a path that is better than the best known current path, whit it 

really wants to do is send a multicast message to a large number of processes to inform all of them 

immediately. At present this is impossible, and must either be simulated with multiple RPCs' or 

designed around. 
Amoeba 4.0 fully supports broadcasting and multicasting, integrated into the RPC mechanism. In 

addition to the usual unicast ports, Amoeba 4.0 also supports multicast ports. A message sent to a multi

cast port is delivered to all of them, or at least an attempt is made. A higher-level protocol has 'bben 

devised to implement 1003 reliable multicasting with very low overhead. This protocol will be the s\.ib

ject of a forthcoming paper. 

7.3. Memory and Process Management 
Probably the worst mistake in the design of the Amoeba 3.0 process management mechanisms was the 

decision to have threads run to completion, that is, not be pre-emptable. The idea was that once a 

thread starting using some critical table, it would not be interrupted by another thread in the same clus

ter until it logically blocked. This scheme seemed simple to understand, and it was certainly easy to 

program. 
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Problems arose because programmers did not have a very good concept of when a process blocked. 
For example, to debug some code in a critical region, a programmer might add some print statements in 
the middle of the critical region code. These print statements might call library procedures that per
f6rmed RPQ with a remote terminal server. While blocked waiting for the acknowledgement, a thread 
could be interrupted, and another thread could access the critical region, wreaking havoc. Thus the 
sanctity of the critical region could be destroyed by putting in print statements. Needless to say, this 
property was very confusing to naive programmers. In Amoeba 4.0 a more explicit mechanism has 
been introduced for guarding critical region code. 
' The run-to-completion semantics of thread scheduling in Amoeba 3.0 also prevents a multiprocessor 

iip.plementation from exploiting parallelism and shared memory by allocating different threads in one 
p;rocess to different processors. Amoeba 4.0 threads can be run in parallel. No promises are made by 
tl_le scheduler about allowing a thread to run until it blocks before another thread is scheduled. Threads 
sharing resources must explicitly synchronize using the semaphores or mutexes that Amoeba 4.0 provides 
for the purpose. 

For Amoeba 4.0, we have thoroughly redesigned process-management and memory-management 
mechanisms. Under the Amoeba 3.0 regime, when a process started a new process (on a different 
~chine, usually), it had to fetch the code from the file system and send it to the new process' host 
machine. C.ocle would thus typically get copied over the network twice. In Amoeba 3.0, there were vir
~ly no facilities for debugging active processes and we considered the control that processes had over 
ti\eir address space insufficient. 

The Amoeba 4.0 process-management and memory-management mechanisms were designed to make 
process creation, migration, checkpointing and debugging all simple operations. Two key notions form 
tile basis of these mechanisms. The first is a data structure, called process descriptor, which describes the 
state of an active process. The second is the memory segment, an object consisting of an array of bytes in 
memory with a capability that can be read and written like a file and that can also form part of a pro
cbi• address space by being mapped into it. 

The idea of a process descriptor is that it describes a process in limbo, a process just before it starts to 
run, or a process being migrated from one machine to another, or a process suspended while being 
d~bugged. A process descriptor has four components. The first describes the requirements for the sys
t~m where the process must run: the class of machines, which instruction set, minimum available 
memory, use of special instructions such as floating point, and several more. The second component 
dbcribes the layout of the address space: number of segments and, for each segment, the size, the virtual 
a~dress, how it is mapped (e.g., read only, read-write, code/data space), and the capability of a file or 
~gment containing the contents of the segment. The third component describes the state of each thread 
of control: stack pointer, stack top and bottom, program counter, processor status word, and registers. 
Threads can be blocked on certain system calls (e.g., get request, acquire semaphore); this can also be 
d~ribed. The fourth component is a list of ports for which the process iS a server. This list is helpful 
t«? the kernel when it comes to buffering incoming requests and replying to port-locate operations. 

In Amoeba 4.0, to create a process, one needs to do the following. 

1. Get the process descriptor for the binary from the file system (command interpreters can cache pro
' cess descriptors for efficiency). 

2. Create a local segment or a file and initialize it to the initial environment of the new process. The 
environment consists of a set of named capabilities (a primitive directory, as it were), and the argu
ments to the process (in Unix terms, argc and argv; for Unix processes, one also adds the environment 
variables). 

3: Modify the process descriptor to make the first segment the environment segment just created. 

4. Send the process descriptor to the new process' host. 
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The host then allocates memory for local segments, reads the remote segments into the local ones, ini

tializes the required nwnbcr of threads and starts the process. 
To stop a process, one can send it a signal. The process is then stopped and a process descriptor ~ 

made which is then sent to the process' owner for debugging. The owner can examine the proccs.,, 

modify it and resume its execution, or kill it. Similar mechanisms arc used for checkpointing or migra'

tion. 
The new memory-management mechanisms allow code caching in pool pl"OCCS!IOrs. They also give 

processes more control over the management of their address space because they can map segments intp 

it or out of it. In particular, the mechanism allows the implementation of memory-mapped file i/o, 

shared libraries, and dynamic linking. 
The new process-management mechanism allows migration, checkpointing and debugging, code cach-

ing and process images need to be copied over the network only once at most. ' 

Using the Amoeba 4.0 process-management facilities, we plan to implement algorithms for code cacti

ing on the pool processors in conjunction with services that attempt to place processes on pool processors 

in such a way as to minimize proccss-startup times. Also, we intend to implement shared libraries and 

dynamic linking. 

7.4. File System 
One area of the system which we think has been eminently successful is the design of the file server an~ 

directory seivcr. We have separated out two distinct parts, the bullet SCJVer, which just handles storag~, 

and the directory SCJVer, which handles naming and protection. The bullet SCJVcr design allows it to~ 

extremely fast, while the directory server design gives a flexible protection scheme and also supports fiic 

replication in a simple and easy to understand way. The key clement here is the fact that files arc 

immutable, so they can be replicated at will, and copies regenerated if necessary. 

The entire replication process takes place in the background (lazy replication), and is entirely 

automatic, thus not bothering the user at all. We regard the file system as the most innovative part of 

the Amoeba 3.0 design, combining extremely high performance with reliability, robustness, and case of 

use. We have no plans to change it. 

7 .5. /ntemetworlcing 
We arc also happy with the way wide-area networking has been handled, using SCJVcr agents, clie~t 

agents, and the SWAN. In particular, the fact that the existence of wide-area networking docs not 

affect the protocols or performance of local RPCs at all is crucial. Many other designs (e.g., TCP/IP, 

OSI) start out with the wide-area case, and then use this locally as well. This choice results in 

significantly lower performance on a LAN than the Amoeba design, and no better performance ov~r 

wide-area networks. 
One configuration that was not adequately dealt with in Amoeba 3.0 is a system consisting of a large 

nwnber of local area networks interconnected by many bridges and gateways. Although Amoeba 3~0 

works on these systems, its performance is poor, partly due to the way port location and message~

dling is done. In Amoeba 4.0, we have designed and implemented a completely new low-level protoc()l 

called the Fast Local Internet Protocol (FLIP), that will greatly improve the performance in complex intcr

nets. Among other features, entire messages arc now acknowledged instead of individual packcti!I, 

greatly reducing the number of interrupts that must be processed. Port location is also done more 

efficiently, and a single SCJVer agent can now listen to an arbitrary nwnber of ports, enormously reduc

ing the number of quiescent server agents required in large systems. 

7.6. Unix Emulation 
The Amoeba 3.0 UNIX emulation primarily consists of having borrowed the MINIX file seiver. This 

was a quick and dirty solution, but it means that Amoeba 3.0 UNIX programs cannot use the bullet 

seiver. 
In Amoeba 4.0, a more complete UNIX emulation is done through a library of procedures that emu

late the UNIX system calls by making calls to the bullet SCJVer, directory SCJVcr, etc. This library, called 
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Ajax, has made it pos&ble to port a large number of the standard UNIX utility programs to Amoeba. 

7.7. Parallel Applications 
Although Amoeba was originally conceived as a system for distributed computing, the existence of the 
processor pool with 40 or so 680x0 CPUs close together has made it quite suitable for parallel computing 
as well. That is, we have become much more interested in using the processor pool to achieve large 
spcedups on a single problem. To program these parallel applications, we are currently engaged in 
implementing a language called Orea (Bal and Tanenbaum, 1988]. 

Orea is based on the concept of globally shared objects. Programmers can define operations on 
shared objects, and the compiler and run time system take care of all the details of making sure they are 
carried out correctly. This scheme gives the programmer to ability to atomically read and write shared 
objects that are physically distributed among a collection of machines without having to deal with any 
of 'the complexity of the physical distribution. All the details of the physical distribution are completely 
hidden from the programmer. Initial results indicate that almost linear spcedup can be achieved on 
some problems. 

7.8. Performance 
Performance, in general, has been a major success story. The minimum RPC time for Amoeba is 1.4 
msec between tWo user-space processes on 16 MHz 68020s, and interprocess throughput is nearly 700 
kilobytes per second. The file system lets us read and write files at the same rate. 

7.9. User Interface 
~oeba 3.0 has a homebrew window system. In Amoeba 4.0, the X window system will replace the 
current window system which was designed before X existed. Although the current system is faster than 
X, many users will no doubt prefer X, since so much software exists for it and X is becoming something 
of a de facto standard. 

7.10. &cu~ 
An intruder capable of tapping the network on which Amoeba runs can discover capabilities and do 
considerable damage. In a production environment some form of link encryption is needed to guarantee 
better security. Although some thought has been given to a security mechanism [Tanenbaum, Mul
lender, and van Renessc, 1986], it was not implemented in Amoeba 3.0. 

Two security systems have been designed and implemented in Amoeba 4.0. The first version can only 
be used in fairly friendly environments where the network and operating system kernels can be assumed 
sec,ure. This version uses one-way ciphers and, with caching of argument/result pairs, can be made to 
~ virtually as fast as the current Amoeba. The ?ther version makes no assumptions about the security 
of the underlying network or the operating system. Like MIT's Kerberos [Steiner, Neuman, and 
Schiller, 1988] it uses a trusted authentication server for key establishcment and encrypts all network 
traffic. 

We intend to install both versions and investigate the effects on performance of the system. We are 
researching the problems of authentication in very large systems spanning multiple organizations and 
national boundaries. 

8. C:0NCLUSJON 

The Amoeba project has clealy demonstrated that it is pos&ble to build an efficient, high-performance 
distributed operating system on current hardware. The object-based nature of the system, and the use of 
capabilities provides a unifying theme that holds the various pieces together. By making the kernel as 
smaII as possible, most of the key features are implemented as user processes, which means that the sys
tem can evolve gradually as needs change and we learn more about distributed computing. 

Amoeba has been operating satisfactorily for several years now, both locally and to a limited extent 
over a wide-area network. Its design is clean and its performance is excellent. By and large we are 
satisfied with the results to date. 
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