
Centrum
voor

Wiskunde
en

lnformatica ·
Centre for Mathematics and Conlluter Science

J.C.M. Baeten, J.A. Bergstra, S. Mauw, G.J. Veltink

A process specification formalism based on static COLD

Computer Science/Department of Software Technology Report CS-R8930 August

1989

Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

J.C.M. Baeten, J.A. Bergstra, S. Mauw, G.J. Veltink

A process specification formalism based on static COLD

Computer Science I Department of Software Technology Report CS-R8930 August

- -- ~; : ;. ;

· ~ :;- ~_= __ -_:- -

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
1946, as a nonprofit institution aiming at the promotion of mathematics, com
puter science, and their applications. It is sponsored by the Dutch Govern
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

A Process Specification Formalism based on Static COLD

J.C.M. Baeten
Dept. of Software Technology, Centre for Mathematics and Computer Science,

P.O.Box 4079, 1009 AB Amsterdam, The Netherlands

J .A. Bergstra
Programming Research Group, University of Amsterdam,
P.0.Box 41882, 1009 DB Amsterdam, The Netherlands

Department of Philosophy, State University of Utrecht,
Heidelberglaan 2, 3584 CS Utrecht, The Netherlands

S. Mauw
Programming Research Group, University of Amsterdam,
P.O.Box 41882, 1009 DB Amsterdam, The Netherlands

G.J. Veltink
Programming Research Group, University of Amsterdam,
P.O.Box 41882, 1009 DB Amsterdam, The Netherlands

PSF/C is a formal specification language, based on COLD, a wide spectrum specification lan
guage developed at Philips Research, Eindhoven. In PSF/C, we can specify concurrent
communicating processes. The process syntax and semantics is based on the algebraic con
currency language ACP.

1980 Mathematics Subject Classification (1985 revision): 68N15, 68010, 68045, 68065.

1987 CR Categories:
D.1.3. (Programming Techniques)
D.2.1. (Requirements/Specifications)
D.3.1. (Formal Definitions and Theory)
D.3.3. (Language Constructs)

F.1.2.
F.3.2.

(Modes of Computation)
(Semantics of Programming Languages)

Concurrent Programming
Languages
Semantics, Syntax
Abstract data types,
Concurrent programming constructs
Parallelism
Algebraic approaches to semantics,
Operational semantics.

Key words & Phrases: concurrent languages, formal description techniques, specification
languages, wide spectrum language, COLD, process algebra, ACP, abstract data types, se
mantics.

Note: The first three authors are partially sponsored by ESPRIT contract 432, An Integrated
Formal Approach to Industrial Software Development (METEOR). The first two authors are
also partially sponsored by RACE contract 1046, Specification and Programming Environ
ment for Communication Software (SPECS).

Report ~R8930
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

· ~ : ='~-= .

A process specification formalism based on static COLD

TABLE OF CONTENTS

Table of Contents ... 2

Acknowledgements ... 2

Introduction .. 3

2 The COLD-S language .. 3
2. 1 Some Remarks on the Language4
2.2 The Grammar ... 5

3 PSF/C .. 7
3 .1 Character Set .. 7
3 .2 Tokens ... 7
3.3 Grammar .. 8
3 .4 SDF Definition .. 11

4 Semantics .. 1 5
4.1 lntroduction ... 15
4.2 ACP ... 15
4.3 Pre-abstraction ... 17
4.4 Empty process ... 18
4.5 Guarded command ... 18
4.6 Generalized sum and merge .. 19
4.7 Translation to COLD-K ... 20

5 Examples ... 27
5.1 A Vending Machine .. 28
5.2 A Landing Control System ... 29
5.3 Alternating Bit Protocol ... 33

6 Extensions ... 44

7 Comparison of PSF/C with similar languages .. .44

8 Conclusion .. 46

9 References ... 47

ACKNOWLEDGEMENTS

2

The writers would like to thank Jan Rekers for assistance concerning the use of the SDF
system.

Introduction

1 INTRODUCTION

PSFIC is an experiment in language design. It is not meant as a finished language that
would justify the substantial efforts of writing its necessary tools. PSF IC is a language in
which we can specify concurrent communicating processes. Moreover, we have ample
facilities to specify data types. These data types can occur as parameters of actions and
processes. Also, we have a modular structure: data types and processes are defined in
modules. Modules can be parameterized by other modules, and parts of the signature can be
exported or hidden. The starting point for construction of PSF IC has been the wide spectrum
language COLD, developed at Philips Research, Eindhoven. From COLD, we get data type
specifications, parameterization and the modular structure with imports and exports. On top
of that, we specify processes and their interaction in the spirit of the concurrency theory ACP
of [BK84].

The design objectives have been:

• to combine ACP and the static part of COLD in one language where the concrete
syntax is borrowed from COLD;

• to combine processes and data in a similar fashion as is done in PSF I ASF of [MV88],
where data are used as parameters of actions and process names;

• to obtain a semantic description of the language by means of a translation to COLD;

• to generate a parser for the syntax by means of the SDF system of the GIPE project (see
[BHK89]).

2 THE COLD-S LANGUAGE

In this section we will present COLD-S, which is obtained by dropping all dynamic
features from the language COLD-K (this language is called COLD-A in RENARDEL DE
LAV ALETIE [RdL89]; we want to reserve the postfix A for another purpose). The language
COLD-K has been developed in the framework of ESPRIT project 432, METEOR (see FEIJS,
JONKERS, KOYMANS & RENARDEL DE LAV ALETIE [FJKR87]). COLD-K has been designed to
be a so-called wide spectrum language in which it should· be possible to capture the whole
spectrum of software development. The language supports transformational design, in which
implementations are constructed from specifications by replacing, step by step, all parts of
the specification by equivalents that show more and more aspects of an executable language.

Like COLD-K, COLD-Sis defined by meuns of a translation of its grammatical constructs
to the constructs of a three layered formal language. The top layer ofthis kernel is a special
version of lambda calculus, which is called A1t, and is used for modelling parameterization.
Expressions in this lambda calculus contain terms from a special many-sorted algebra, called
CA, which is used for modelling modularization constructs. This algebra constitutes the
middle layer. The constants used in the terms of this algebra are presentations of logical
theories. The logical language used at the bottom level is based on a special infinitary logic,
called MPL00• Every construct in a COLD specificatfon corresponds with an expre_ssion in the
kernel of formal languages with a well-defined semantics. COLD specifications are
translated by means of attribute grammars to the kernel.

In some instances, we want to restrict COLD-Kin another way, by taking the algebraic
subset COLD-A. We obtain COLD-A by restricting all axioms in the language to the format of
conditional equations, and restricting all functions to total functions. Obviously, COLD-SA
will be the static algebraic part of COLD-K.

3

A process specification formalism based on static COLD

2.1 SOME REMARKS ON THE LANGUAGE

4

Like COLD-K, the language COLD-S consists of a number of hierarchically ordered
sublanguages. This hierarchy is illustrated by the following picture:

Design Language
J,

Scheme Language
J,

Class Language
J,

Definition Language
J,

Assertion Language

In the following sections we will explain each language in some more detail.

2 .1 .1 The Assertion Language

In the assertion language we can write terms and assertions. The assertions in COLD-K or
COLD-S are exactly the formulae of MPL, the underlying many-sorted predicate logic. In the
case of COLD-A we only allow (universally quantified) conditional equations.

2 .1 . 2 The Definition Language

In the definition language we come across the items that are defined in the COLD-S
language, viz.: sorts, predicates and functions. A definition can be seen in two ways: a
declarative and a definitional way. The declarative part introduces the name of an item and
possibly its type, while the definitional part defines the meaning of the item introduced.
Not all definitions show both aspects. Sort definitions only have a declarative aspect, while
axioms are purely definitional. Predicates and functions are both declarative and
definitional, their meaning is defined directly, by a defining term or an assertion, or
indirectly, by an inductive definition or an axiom. Inductively defined predicates and
functions are defined as the smallest predicate or function satisfying the inductive definition.

2.1.3 The Class Language

The class language is used to group a list of definitions into a modular structure which is
called class in COLD-S. The signature of a class is the collection of sorts, functions and
predicates that are defined in that particular class.

2.1.4 The Scheme Language

All operations that have to do with the modularization and parameterization of
specifications are dealt with in the scheme language.

These operations are a.o. :
• renaming of objects in a class
• import of classes
• export of objects from a class
• parameterization of a class
• application of a class to another one

The COLD--S Language

2.1.5 The Design Language

The design language is used to handle specifications at the highest level. At this level
the so-called components, which will finally be used to specify the complete system, are
specified. A component can be either a specification, in which case it is called a specified
component, or a specification together with an implementation written in COLD-S, in which
case it is called an implemented component. Specified components are used when the
implementation of a component cannot be described in COLD-S, because it is a piece of
hardware or an existing program in some kind of programming language.

2.2 THE GRAMMAR

The definition of the context free grammar of COLD-S is given using a certain BNF-
grammar augmented with the following extra rules:

{X) denotes zero or more occurrences of X (a list of X's)
[X] denotes zero or one occurrences of X (an optional X)
{ X '@') denotes zero or more occurrences of X, with the symbol @acting as delimiter.

Then, the grammar of COLD-S is defined as follows:

<design>::= DESIGN (<component>';') SYSTEM (<scheme>',')

<component>::= COMP <scheme-var>: <scheme>[:= <scheme>]
I LET <scheme-var> := <scheme>

<scheme> ::= <class>
I RENAME <renaming> IN <scheme>
I IMPORT <scheme> INTO <scheme>
I EXPORT <signature> FROM <scheme>
I LAMBDA <scheme-var> : <scheme> OF <scheme>
I APPLY <scheme> TO <scheme>
I LET <scheme-var> := <scheme> ; <scheme>
I <scheme-var>

<renaming> ::= {<namepair> ',')
I <renaming> $ <renaming>

<namepair> ::= <sort-name> TO <sort-name>
I <predicate-name> TO <predicate-name>
I <function-name> TO <function-name>

<signature> ::= (<item> ',')
I <renaming>@ <signature>
I <signature> + <signature>
I <item> " <signature>
I SIG <scheme>

<item> ::= SORT <sort-name>
I PRED <predicate-name> : domain
I FUNC <function-name> : domain -> <sort-name>

<class> ::=CLASS {<definition>) END

<definition> ::= SORT <sortname>
I PRED <predicate-name>: domain <predicate body>

- - ; : ..

5

· ~ :"~~=--

A process specifi'cation formalism based on static COLD

6

FUNC <function-name> : domain -> <sort-name> <function body>
AXIOM <assertion>

<predicate body> ::= [IND <assertion>]
I [PAR <varsort list>] DEF <assertion>

<function body> ::= [IND <assertion>]
I [PAR <varsort list>] DEF <term>

<assertion> ::= TRUE
FALSE
<term>!
<term> = <term>
<predicate-name> <term list>
NOT <assertion>
<assertion> ; <assertion>
<assertion> AND <assertion>
<assertion> OR <assertion>
<assertion> => <assertion>
<assertion> <=> <assertion>
FORALL <varsort list> <assertion>
EXISTS <varsort list> <assertion>
LET {<assignment> ','} ; <assertion>
(<assertion>)

<term> ::= <object-var>
I <function-name> <term list>
I THAT <varsort> <assertion>
I LET (<assignment>','} ; <term>
I (<term>)

<term list> ::= (<term> ','}
I (<term list>)

<domain> ::= {<sort-name> '#'}

<varsort list> ::= (<varsort> ','}

<varsort> ::= <object-var> : <sort-name>

<assignment> ::= <object-var> := <term>

<scheme-var> ::= <identifier>

<sort-name> ::= <identifier>

<predicate-name> ::= <identifier>

<function-name> ::= <identifier>

<object-var> ::= <identifier>

... PSF/C

3 PSF/C

The concrete syntax of PSF IC is almost identical to the concrete syntax of COLD, with the
exception of the additional language constructs we need to represent atomic actions, processes
etc. To indicate we restrict ourselves to the static part of COLD, COLD-S, we write PSFICS.
Similarly, for PSFICSA we use the static algebraic part of COLD, COLD-SA.

3 .1 CHARACTER SET

A PSFIC specification uses the same ASCII character set as COLD, viz.:

" # $ % &' () ... + I 0 1 2 3 4 5 6 7 8 9

< = > ? @AB c DE F G HI J KL MNOP Q R s T u
v w x y z [\] /\ a b c d e f g h i j k m no p

q r s t u v wx y z } -

3.2 TOKENS

In parsing a PSF IC specification a series of tokens is recognized. Each token is a sequence of
ASCII characters and tokens are separated by spaces, tabs and new lines. In cases of
ambiguity the longest token that can be recognized is preferred. There are three kinds of
tokens, viz. identifiers, keywords and comments. We will discuss these in turn in the
following sections.

3.2.1 Identifiers

Identifiers in PSF IC are arbitrary non-empty strings consisting of letters, digits and the
following four characters:

I -
excluding those strings which are keywords. Two characters that can be part of a COLD

identifier are excluded namely the dot '.' and the backslash '\'. The dot has become a
keyword, representing sequential composition and the backslash is reserved to be used as a
special character that a program translating PSFIC into COLD-K can use to distinguish user
defined identifiers from identifiers generated by the translator.

3.2.2 Keywords

The following strings are PSFICS keywords:

$
&
(

)

+

->

<=>
=
=>
@
/\

ACTION
AND
APPLY
AXIOM
CLASS
COMM
COMP
DEF

DELTA IMPORT
DESIGN IN
EPSILON IND
EN CAPS INTO
END LAMBDA
EXISTS LET
EXPORT MERGE
FALSE NOT
FORALL OF
FROM OR
FUNC PAR
GCMD PRED
HIDE PRETAU

7

A process specification formalism based on static COLD

PROCESS
RENAME
SET
SIG

3.2.3 Comments

SORT
SPEC
SUM
SYSTEM

THAT
TO
TRUE
WITH

I
II

There are two possible ways to create a comment. The first is to use the comment brackets:
'{'and'}', which tum the enclosed text into a comment. Comment brackets cannot be nested
and the enclosed text may not contain a'}'.

Example:
{ This is a comment }

The second way to create comment is by using the sign the'%', which turns the rest of the
line into a comment.

Example:
% This is comment

Comments may be inserted between any two tokens and have no meaning in terms of the
abstract syntax.

3.3 GRAMMAR

8

The PSF/CS grammar is given in the following section. In fact it is an extension of the
COLD-S grammar presented in section 2.

<design>::= DESIGN {<component>';'} SYSTEM {<scheme>','}

<component>::= COMP <scheme-var>: <scheme>[:= <scheme>]
I LET <scheme-var> := <scheme>

<scheme> ::= <class>
I RENAME <renaming> IN <scheme>
I IMPORT <scheme> INTO <scheme>
I EXPORT <signature> FROM <scheme>
I LAMBDA <scheme-var> : <scheme> OF <scheme>
I APPLY <scheme> TO <scheme>
I LET <scheme-var> := <scheme> ; <scheme>
I <scheme-var>

<renaming> ::= {<namepair> ','}
I <renaming> $ <renaming>

<namepair> ::= <sort-name> TO <sort-name>
I <predicate-name> TO <predicate-name>
I <function-name> TO <function-name>
I <action-name> TO <action-name>
I <process-name> TO <process-name>
I <set-name> TO <set-name>

<signature> ::= {<item> ','}
I <renaming> @ <signature>
I <signature> + <signature>
I <item> " <signature>
I SIG <scheme>

<item> ::= SORT <sort-name>
I PRED <predicate-name>: domain
I FUNC <function-name> : domain -> <sort-name>
I ACTION <action-name> : domain
I PROCESS <process-name> : domain
I SET <set-name>

<class> ::=CLASS {<definition>} END

<definition> ::= SORT <sortname>
I PRED <predicate-name> : domain <predicate body>
I FUNC <function-name> : domain -> <sort-name> <function body>
I AXIOM <assertion>
I ACTION <action-name> : domain
I PROCESS <process-name> : domain <process body>
I SET <set-name> <set body>
I COMM <comm assertion>
I SPEC <spec body>

<predicate body> ::= [IND <assertion>]
I [PAR <varsort list>] DEF <assertion>

<function body> ::= [IND <assertion>]
I [PAR <varsort list>] DEF <term>

<process body> ::= [[PAR <va~sort list>] DEF <process expr>]

<set body> ::= [IND <assertion>]

<assertion>::= TRUE
FALSE
<term>!
<term> = <term>
<predicate-name> <term list>
<set-name> <action term list>
NOT <assertion>
<assertion> ; <assertion>
<assertion> AND <assertion>
<assertion> OR <assertion>
<assertion> => <assertion>
<assertion> <=> <assertion>
FORALL <varsort list> <assertion>
EXISTS <varsort list> <assertion>
LET {<assignment>','} ; <assertion>
(<assertion>)

<comm assertion> ::= <action term> I <action term> = <action term>
I <comm assertion> ; <comm assertion>
I FORALL <varsort list> <comm assertion>
I (<comm assertion>)

<spec assertion>::= <process-name> <term list>= <process expr>
I <spec assertion> ; <spec assertion>
I FORALL <varsort list> <spec assertion>
I (<spec assertion>)

PSF/C

9

·"'.:"·-=.

A process specification formalism based on static COLD

10

<term> ::= <object-var>
I <function-name> <term list>
I THAT <varsort> <assertion>
I LET (<assignment>','} ; <term>
I (<term>)

<action term list> ::= (<action term> ','}
I (<action term list>)

<action term> ::= <action-name> <term list>
I (<action term>)

<term list> ::= (<term> ','}
I (<term list>)

<process expr> ::= PRETAU
DELTA
EPSILON
<process-name> <term list>
<process expr> . <process expr>
<process expr> + <process expr>
<process expr> I I <process expr>
GCMD <ass-process expr>
SUM <varsort list> <process expr>
MERGE <varsort list> <process expr>
ENCAPS <set-process expr>
HIDE <set-process expr>
(<process expr>)

<set-process expr> ::= <set expr> , <process expr>
I (<set-process expr>)

<ass-process expr> ::= <assertion>, <process expr>
I (<ass-process expr>)

<set expr> ::= <set-name>
I <set expr> + <set expr>
I <set expr> & <set expr>
I <set expr> /1. <set expr>
I (<set expr>)

<domain>::= (<sort-name> '#'}

<varsort list> ::= (<varsort> ','}

<varsort> ::= <object-var> : <sort-name>

<assignment> ::= <object-var> := <term>

<scheme-var> ::= <identifier>

<sort-name> ::= <identifier>

<predicate-name> ::= <identifier>

<function-name> ::= <identifier>

PSF/C

<action-name> ::= <identifier>

<process-name> ::= <identifier>

<set-name> ::= <identifier>

<object-var> ::= <identifier>

3.4 SDF DEFINITION

Next, we give a definition of PSF /CS in the Syntax Definition Formalism of HEERING &

KLINT [HK89].

SDF stands for: 'Syntax Definition Formalism'. It is a language to specify the lexical
syntax, context-free syntax and abstract syntax of programming languages in a formal way
and can be seen as an alternative to LEX ijoh79] and Y ACC [LS79]. It is possible to generate a
lexical scanner and some parse tables from such an SOP-definition [Rek87]. These parse tables
together with a universal parser form a parser for the specified language. It is also possible
to generate a so-called syntax directed editor from a description of the layout and the parse
tables. This whole system is being implemented in LISP as part of ESPRIT Project 348: GIPE
(Generation of Interactive Programming Environments).

3.4.1 SDF Syntax

An SDF definition consists of two parts: a lexical syntax and a context-free syntax. In both
parts we deal with the notions sort and function that correspond, respectively, to non
terminals and to production rules as used in BNP grammars [AU77].

This is an adaptation of an example of an SDF definition taken from [HK86].

modul.e example
begin

l.exical. syntax

aorta
digit, letter, int, id, id-tail, comment-char

l.ayout
white-space, comment

function a
[a-z]
[0-9]
digit+
[a-z0-9]
letter id-tail*
[\n\t\f\r]
-[{} l

-> letter
-> digit
-> int
-> id-tail
->id
-> white-space
-> comment-char

" {" comment-char* ")" -> comment

context-free syntax

aorta
expr

priorities
"+" < "*"

_- - . ~ ' "' '' • ---
11

• :".: "~ : : __ -

A process specification formalism based on static COLD

function a
expr
expr
id

end example

"+"
"*"

expr
expr

-> expr
-> expr
-> expr

{par, left-assoc}
{par, left-assoc}

We will point out some of the SDF constructions that appear in this example. The sorts
and layout declarations, in the lexical syntax section, introduce the lexical sorts while their
functions declarations specify what kind of strings can be constructed over these sorts.
Elements of the context-free syntax may be interspersed with strings belonging to the layout
sorts. The latter will be skipped by the lexical analyzer generated from the SDF definition.
The function declaration may be composed of other lexical sorts, (negated) character classes,
terminals and list expressions. In the lexical syntax section two kinds of list expressions are
allowed:

S * zero or more occurrences of sort S

S+ one or more occurrences of sort S

In the function declaration of the context-free syntax section lexical sorts may be used as
terminals of the grammar, though terminals may also be introduced directly, like"+" and"*"
in the example. Moreover two more list expressions are allowed:

(S t}* zero or more occurrences of sort S, separated by the terminal t.

(S t}+ one or more occurrences of sort S, separated by the terminal t.

The priorities declaration is used to define the relative priority between functions. When
unambiguous, the function may be abbreviated by its keyword skeleton. The associativity of
functions may be declared by means of the attributes: assoc, left-assoc and right-assoc while
the attribute par can be added to the function declaration to state that the function may be
surrounded by parentheses in order to change its priority.

3.4.2 PSF/CS in SDF

12

module PSF/CS
begin

lexical syntax

sorts
id-char, identifier,
comment-1-char, comment-2-char

layout
white-space, comment

functions
[0-9a-zA-Z"'/]
id-char+ -

\n\t\r]

- [\n]
- [} 1
"%" comment-1-char* "\n"

-> id-char
-> identifier

-> white-space

-> conunent-1-char
-> conunent-2-char
-> comment

"{" comment-2-char* "}" -> comment

context-free syntax

sorts
design, component, scheme, renaming, namepair, signature,
item, class, definition, predicate-body, function - body,
process-body, set-body, assertion, comm-assertion,
spec-assertion, term, action-term, term-list,
process-expr, set-process-expr, ass-process-expr, set-expr,
domain, varsort-list, varsort, assignment, scheme-var,
sort-name, predicate-name, function-name, action-name,
process-name, set-name, object-var

functions

"DESIGN" {component";"}* "SYSTEM" {scheme","}*

"COMP" scheme- var ":" scheme ":=" scheme
"COMP" scheme-var ":" scheme
"LET" scheme-var ":=" scheme

class
"RENAME" renaming "IN" scheme
"IMPORT" scheme "INTO" scheme
"EXPORT" signature "FROM" scheme
"LAMBDA" scheme-var ":" scheme "OF" scheme
"APPLY" scheme "TO" scheme
"LET" scheme- var ":=" scheme ";" scheme
scheme-var

-> design

-> component
-> component
-> component

-> scheme
-> scheme
-> scheme
-> scheme
-> scheme
-> scheme
-> scheme
-> scheme

-> renaming

PSF/C

{namepair ","}*
renaming "$" renaming -> renaming {left-assoc}

item "TO" identifier

{item ", "} *
renaming "@" signature
signature "+" signature
item """ signature
"SIG" scheme

"SORT" sort-name
"PRED'' predicate-name ":" domain
"FUNC" function-name ":" domain "->" sort-name
"ACTION" action-name ":" domain
"PROCESS" process-name ":" domain
"SET" set-name

"CLASS" definition* "END"

"SORT" sort-name
"PRED" predicate-name ":" domain predicate-body
"FUNC" function-name "·" domain "->"

sort-name function-body
"AXIOM" assertion
"ACTION" action-name ":" domain
"PROCESS" process-name ":" domain process-body
"SET" set-name set- body
"COMM" comm-assertion
"SPEC" spec-assertion

"IND" assertion
"PAR" varsort-list "DEF" assertion

-> namepair

-> signature
-> signature
-> signature {left-assoc
-> signature
-> signature

-> item
-> item
-> item
-> item
-> item
-> item

-> class

-> definition
-> definition

-> definition
-> definition
-> definition
-> definition
-> definition
-> definition
-> definition

-> predicate-body
-> predicate-body

13

----- ·~~=~~-=--·--__ .,.

A process specification formalism based on static COLD

14

"DEF" assertion

"IND" assertion
"PAR" varsort - list "DEF" term
"DEF" term

"PAR" varsort - l i st "DEF" process- expr
"DEF" process-expr

"IND" assertion

"TRUE"
"FALSE"
term"!"
term " - " term
predicate- name term-list
set - name "[" action- term"]"
"NOT" assertion
assertion ";" assertion
assertion "AND" assertion
assertion "OR" assertion
assertion "- >" assertion
assertion "<- >" assertion
"FORALL" varsort-list assertion
"EXI STS" varsort-list assertion
"LET" {assignment ","}* ";" assertion
"(" assertion ")"

action-term " I " action-term"- " act i on-term
comm- assertion ";" comm-assertion
"FORALL" varsort- list comm-assertion
"(" comm-assertion ")"

process-name term- list "=" process- expr
spec- assert i on ";" spec-assertion
"FORALL" varsort- list spec-assertion
"(" spec- assertion ")"

object-var
function-name term-list
"THAT" varsort assertion
"LET" {assi gnment ","}* ";" term

action- name term-list

" (" {term ", "} + ") "

action-term
"PRETAU"
"DELTA"
"EPSILON"
process- name term-list
process-expr "." process-expr
process-expr "+" process-expr
process-expr "I I" process-expr
"GCMD" ass-process-expr
"SUM" sum- merge- arg
"MERGE" sum-merge-arg
"ENCAPS" set-process-expr
"HIDE" set- process- expr

- >
- >

- >
- >
- >
->

- >
->
- >

->
- >

- >
- >
- >
- >
->
- >
->
->
- >
->
- >
->
- >
->
->
->

->
- >
- >
->

->
->
->
->

->
- >
->
->

->

->
->

->
->
->
->
->
->
- >
->
->
- >
- >
->
- >

predicate-body
predicate-body

function-body
function-body
function- body
function - body

process - body
process-body
pro ce·ss- body

set-body
set-body

assertion
assertion
assertion
as.sertion
assertion
assertion
assertion
assertion {left- assoc}
assertion {left-assoc }
assertion {left-assoc}
assertion {left- asso c}
assertion {left- assoc}
assertion
assertion
assertion
assertion {bracket}

comm-assert i on
comm-assertion {left- ass·
comm- asserti on
comm-assertion {br acket}

spec-assertion
spec-assertion {left- a s s
spec-assertion
spec- assertion {bracket}

term
term
term
term

action-term

term-list {bracket}
term-list

process-expr
process- expr
process-expr
process-expr
process-expr
process-expr
process- expr
process - expr
process- expr
process - expr
process-expr
.process-expr
process - expr

"(" process-expr ")"

varsort-list "(" process- expr ")"

"("assertion"," process-expr ")"

"(" set-expr

set-name

" " , process-expr ")"

set-expr "+" set-expr
set-expr "&" set-expr
set- expr """ set- expr
"(" set-expr ")"

{sort-name "f"}*

{varsort ","} *

object - var "·" sort-name

object - var ": = " term

identifier
identifier
identifier
identifier
identifier
identifier
identifier
identifier

end PSF/CS

4 SEMANTICS

4.1 INTRODUCTION

PSF/C

-> process-expr

-> sum-merge- arg

- > ass-process-expr

-> set-process-expr

- > set-expr
- > set- expr
-> set-expr
-> set-expr
- > set-expr

- > domain

-> varsort- list

-> varsort

- > assignment

-> scheme-var
-> sort-name
-> predicate- name
-> function-name
-> action- name
-> process-name
- > set-name
-> object-var

The semantics of the COLD-K language can be found in [FJKR87]. These semantics will be
used as a base to define the semantics of PSF/C. All constructs in PSF/C that are already part
of COLD-K have the same meaning as thei-r counterparts in COLD-K. New constructs, i.e. all
constructs dealing with process behaviour, are indirectly defined using the COLD-K
semantics. This is done by giving a translation from PSF/C into COLD-K.

The intention is to give a semantics to the process definition part that resembles the
algebraic semantics normally attached to process algebra (see e.g. BERGSTRA & KLOP [BK84,
BK86b]). In order to be able to understand the formal translation, we will give an overview of
the usual algebraic semantics for process algebra expressions.

4.2 ACP

We start from a given set A of atomic actions. Atomic actions are the simplest kind of
processes, indivisible, and usually considered as having no duration. Complex processes can be
constructed from simpler ones by applying several predefined functions and operators. Each
atomic action is a constant in the set Action. The set Action is embedded in the set of
processes, named Process.

On A, we have given a partial binary function y, the communication function. y must be
commutative and associative, i.e.

15

A process specification formalism based on static COLD

y(a,b) = y(b,a)

y(a,y(b,c)) = y(y(a,b),c)

(when defined) for all a,b,c e A. If y(a,b) = c, we say a and b communicate, and the result
of their communication is c. If y(a,b) is undefined, we say that a and b do not communicate. A
and y can be considered as parameters of the theory: in each application we will have to
specify what atomic actions we have, and how they communicate. In PSF/C, we write y(a,b)
=casalb=c.

On the domain of processes we define an equivalence relation by making a number of
identifications between processes. These identifications follow from a set of axioms. For all
processes x and y e.g. we consider the processes x+y and y+x to be identical. The intuition
behind the identifications will be explained next.

The first two compositional operators we consider are·, denoting sequential composition,
and+ for alternative composition. If x and y are two processes, then x·y is the process that
starts the execution of y after the completion of x, and x+y is the process that chooses either x
or y and executes the chosen process (not the other one). Each time a choice is made, we choose
from a set of alternatives. We do not specify whether a choice is made by the process itself,
or by the environment. Axioms Al-5 in table 1 below give the laws that+ and ·obey. We
leave out · and brackets as in regular algebra, so xy + z means (x·y) + z. · will always bind
stronger than other operators, and+ will always bind weaker.

On intuitive grounds x(y + z) and xy + xz present different mechanisms (the moment of
choice is different), and therefore, an axiom x(y + z) = xy + xz is not included.

We have a special constant o denoting deadlock, the acknowledgement of a process that it
cannot do anything any more, the absence of any alternative. Axioms A6-7 give the laws for
o. We also have a special constaht t that is used for pre-abstraction (see the following
section). t or o are not in the given set A, but are in the set of constants Action. Thus, y is not
defined for constants t, o, which means that t or o do not communicate.

Next, we have the parallel composition operator U, called merge. The merge of processes x
and y will interleave the actions of x and y, except for the communication actions. In xlly, we
can either do a step from x, or a step from y, or x and y both synchronously perform an action,
which together make up a new action, the communication action. This trichotomy is
expressed in axiom CMl. Here, we use two auxiliary operators IL. (left-merge) and I
(communication merge). Thus, xll.y is xlly, but with the restriction that the first step comes
from x, and x I y is xlly with a communication step as the first step. Axioms CM2-9 and CFl-2
give the laws for 11. and I. The laws CFl-2, that say that on atomic actions I coincides with
y, differ slightly from laws Cl-3 in BERGSTRA & KLOP [BK84]. Finally, we have in table 1
the encapsulation operator aH. Here His a set of atomic actions (H !:: A), and aH blocks those
actions, renames them into o. The operator aH can be used to encapsulate a process, i.e. to
block communications with the environment. Since t e A, always aH(t) = t.

16

Semantics

x+y=y+x Al

(x + y) + z = x + (y + z) A2

X+X=X A3

(x + y)z = xz + yz A4

(xy)z = x(yz) AS

x+B=x A6

Bx=B A7

a lb= 'Y(a,b) if 'Y(a,b) is defined CFl

alb=B otherwise CF2

xlly = xll.y + yll.x + xly CMl

all.x= ax CM2

axll.y = a(xlly) CM3

(x + y)ll.z = xll.z + yll.z CM4

al bx= (alb)x CMS

ax lb= (a lb)x CM6

ax lby = (a lb)(x lly) CM7

(x +y) lz= xlz +ylz CMS

xl(y +z) =xly +xlz CM9

ClH(a) =a ifae:H Dl

~(a) =B ifae H D2

ClH(x + y) = ClH(x) + ClH(y) D3

ClH(xy) = ClH(x)·ClH(Y) D4

Table 1. ACP.

In this table, a,b e Action(= Au{t,B}), H ~ A, and x,y,z are arbitrary processes. In addition
to the axioms of ACP, we often use the following axioms of Standard Concurrency.

xllB=XB=Bllx

(xlly)llz = xU(yllz)

xlly=yllx

Table 2. Standard Concurrency.

4.3 PRE-ABSTRACTION

SCl

SC2

SC3

In system verification, it is essential that we can abstract from the internal actions of a
system, in order to prove that the external behaviour is as specified beforehand. Here, we
are defining a specification language, and we do not want to deal with silent steps, and a
suitable set of axioms for such steps. Thus, we are dealing with concrete process algebra
(process algebra without silent steps. A first (important) step in dealing with internal

17

A process specification formalism based on static COLD

actions can however be made in concrete process algebra, and this is that we can give all
internal actions the same name. We use the constant t for this purpose. The unary operator t1
will rename all atomic actions from the set I into t. We call the operator t1 pre-abstraction
and we sometimes call the constant t pre-tau. These notions were introduced in BAETEN &
BERGSTRA [BB88]. The axioms for t1 are presented in table 3.

t1(a) =a

t1(a) = t

ifae: I

if a e I

t1(x + y) = t1(x} + t1(y)

t1(xy) = t1(x).t1(y)

Table 3. Pre-abstraction.

4.4 EMPTY PROCESS

PTl

PT2

PT3

PT4

In the formulation of the generalized merge later on, it is very useful to have a special
constant E standing for the empty process. Also, this constant is useful when defining an
operational semantics. On the other hand, the empty process does not stand for a concrete
action, and the axiomatizations for it are less standardized as for other concepts. Since we
follow a modularized set-up, the constant E can be removed (together with the generalized
merge construct) in situations where it is not wanted. We give the additional axioms needed
in table 4. We follow essentially the axiomatization of VRANCKEN [Vr86].

e·x = x A8

x·e = x A9

EIJ..E=E EM1

ellax=~ EM2

ell..(x +y) = ell..x +ell..y EM3

EIX=XIE=~ EM4,5

()H(E) =E ED

t1(E) = E EPT

EllX=X SC4

Table 4. Empty process.

4.5 GUARDED COMMAND

We want to extend the axiom system ACP with generalized sum and generalized merge
constructs. In order to do this, it is very useful to introduce the guarded command construct
first. If cj> is an assertion in MPL, and p is a process expression, we write

cj>:~p

for the process that is p if cj> holds. If cj> does not hold, we get deadlock. It is easy to write
down the axioms for the guarded command. See table 5.

18

cj>:~p=p

cj>:~p=~

if cj>

if NOT cj>

GCl

GC2

Table 5. Guarded Command.

From these axioms, we can derive some very useful corollaries. We list a few:

cl> :~ ('!' :~ p) = (cl> AND '!') :~ p

(x=t) :~ p = (x=t) :~ p[x:=t].
Example: we can define the if ... then ... else construction by:

if cl> then p else q = cl> =~ p + NOTc!> =~ q.

4.6 GENERALIZED SUM AND MERGE

Semantics

In order to give some motivation for what is to follow, we discuss an example first.
Consider a one-place buffer with one input port and two output ports, called 0 and E. Atomic
actions are parameterized by natural numbers, elements of the data sort N. We have the
actions in(n), outO(n) and outE(n) for each nE N. The buffer will output all odd numbers
received at port 0, all even numbers at port E. A recursive equation for this buffer can be given
as follows:

Buf = 2, in(n)·outO(n) + 2, in(n)·outE(n).
neN neN
nodd neven

Now the advantage of the guarded command introduced in 6.4 is, that we can rewrite this as
follows:

Buf = 2, (n odd) =~ in(n}·outO(n} + 2, (n even) :~ in(n)·outE(n).
~N ~N

This makes that we need to describe the generalised sum and merge constructs with only two
arguments: first, a list of variables with sort names, and second a process expression. If K is a
list of variables, and D a list of sort names of same length, then we write KE D to denote that
a variable in list K is an element of the corresponding sort name in list D. Then, the form of
the sum and merge constructs is as follows:

2. p
~eQ

II p,
~eQ

where variables from K may occur in p. Axioms for these constructs are non-trivial, but
giving axioms is facilitated by using the guarded command of the previous section. We give
the sum axioms in table 6.

2, p = 2, c1>:~p + 2, NOTc!>:~p SUBSUM
.is.e.Q xeQ .is.e.Q

2. (.lS.=1):~ = p~:=1) ifno~occursfreein! SINGSUM
xe.Q

Table 6. Generalized sum.

Actually, in the translation to COLD-K, to be presented in section 6.7, we will use a
different axiomatization of generalized sum, one that is easier to code in COLD.

The axioms in table S are sufficient to prove that each finite sum behaves as repeated
applications of alternative composition (in fact, only assertions of the form K==! are needed).
We give an example: suppose we have the boo leans B with constants TRUE and FALSE. Then:

2, p(x) = 2, (x=TRUE) :~ p(x) + 2, (x=FALSE) :~ p(x) (by SUBSUM)
~B ~B ~B

19

. .,-__ ,,,~:: __ -

A process specification formalism based on static COLD

= p(TRUE) + p(FALSE) (by SINGSUM).

A useful additional axiom is the following axiom, which we can call FLATSUM:

L, p = p if no~ occurs free in p
~e.Q

In order to deal with infinite sums, we need two additional axioms: ACTSUM, that says
that any action performed by a sum construct must be an action of one of its summands, and the
axiom of extensionality EXT, that says that a process is determined by its summands. These
axioms are presented in table 7.

L, p = L, p + E ~ 3xe D (p = p + E) ACTSUMl
xeQ xeQ

L, p = L,p+a·r ~ 3xeD(p=p+a·r) no~free in r
xe.ll xe.ll

ACTSUM2

'v'aeA (p = p + E (:::) q = q + e) AND 'v'aeA 'v'r (p = p + ar (:::) q = q + ar)

~ p=q EXT

Table 7. Infinite sums, extensionality.

The axioms for finite merge are similar to the axioms in table 6. We give them in table 8.
Notice that we can derive that each empty sum is equal to o, which is good since o is the
neutral element of addition. The neutral element for merge, however, is not o but E. This is
why we cannot use the guarded command construction directly, as for sum, but the
if ... then ... else ... construction defined in 6.5.

In order to deal with infinite merges, we can have an axiom similar to ACTSUM in table 6.
We prefer, however, not to do this, since some people advocate the viewpoint that infinite
merges do not occur "in reality". In this viewpoint, each infinite merge will equal CHAOS.
Our theory here will not make a choice one way or the other.

II p = II (ifct> then p else e) II II (ifNOTcf>then p else e))

SUBMERGE

II if (X=1) then p else e p[X:=t] if no ~occurs free in !
xeQ

SINGMERGE

Table 8. Generalized merge.

4.7 TRANSLATION TO COLD-K

Now we give a possible translation of the constructs of PSF /CS into COLD-K. We present
one of the possible translations.

The translation will introduce a number of new names. By using the backslash'\' in the
sort names and constant names (see 5.2.1), we can ensure that these names are fresh, i.e. that

20

Semantics

they do not occur in a PSF/C specification. The translation of a PSF/CS specification into
COLD-K is described by the following, informally presented rules.

4. 7 .1 Basic class

To every specification we add a class, in which all basic sorts and functions are defined. In
this class we define the two sorts \Process and \Action. We have three pre-defined actions:
\delta, which stands for deadlock, \eps, which stands for the empty process, and \pretau,
which is the action t of pre-abstraction. The injection function i enables us to see every action
as a (simple) process. The three functions alt, seq and par are used to define alternative,
sequential and parallel composition of two processes.

LET \BASIC :=

CLASS
SORT \Process
SORT \Action
FUNC \delta : -> \Action
FUNC \eps : -> \Process
FUNC \pretau : -> \Action
FUNC comm: \Action i \Action -> \Action
FUNC i : \Action -> \Process
FUNC alt \Process i \Process -> \Process
FUNC seq \Process t \Process -> \Process
FUNC par \Process i \Process -> \Process

END;

LET \BASIC2 ·=

IMPORT Booleans INTO
CLASS

SORT \ Actionset
FUNC is-in : \Action i \Actionset - > Bool
AXIOM FORALL S:\Actionset , T:\Actionset (

(FORALL a:\Action (is-in(a,S) = is-in(a,T))) <=> (S=T))
FUNC union : \Actionset i \Actionset -> \Actionset
FUNC intersection : \Actionset i \Actionset -> \Actionset
FUNC difference : \Actionset i \Actionset -> \Actionset
AXIOM FORALL S:\Actionset, T:\Actionset, a:\Action (

is-in(a,union(S,T)) <-> is-in (a,S) OR is-in (a,T);
is-in(a,intersection(S,T)) <=> is-in(a,S) AND is-in(a,T);
is-in(a,difference(S,T)) <=> is-in(a,S) AND NOT is-in(a,T)

FUNC encaps : \Actionset i \Process -> \Process
FUNC hide : \Actionset t \Process -> \Process
PRED sumrnand : \Process i \Process
AXIOM FORALL x:\Process, y:\Process

sumrnand(x,y) <-> y = alt(y,x))
PRED defined : \Process
IND defined(\eps) AND

FORALL a:\Action, x:\Process (
NOT (a=\delta) => (defined(i(a)) AND defined(seq(i(a),x)));
(defi ned(x) OR defined(y)) => defined(alt(x,y))

AXIOM FORALL x:\Process (
NOT(defined(x)) => (x - \delta))

END;

21

A process specification formalism based on static COLD

4.7.2 Translation

We will now walk through the grammar of section 5.3 in order to define a translation for
all constructs which where not already part of COLD-5.

<namepair>

Since <action-name>, <process-name> and <set-name> in the sequel are all translated
into instances of <function-name>, and since all objects involved are identifiers, these
sections remain unchanged after the translation.

<item>

•ACTION <action-name> : domain is translated into

FUNC <action-name> : domain -> \Action.

•PROCESS <process-name> : domain is translated into

FUNC <process-name> : domain-> \Process.

•SET <set-name> is translated into

FUNC <set-name>-> \Actionset.

PRED <set-name>: \Action

<definition>

•ACTION <action-name> : domain is translated into

FUNC <action-name> : domain -> \Action.

•PROCESS <process-name> : domain <process-body> is translated into

FUNC <process-name> : domain-> \Process <process-body>.

•SET <set-name> <set-body> is translated into

PRED <set-name>: \Action <set-body>.

In order to define the encapsulation and hide functions, we need to define a function of type
\Actionset with the same name and meaning as the predicate. This meaning is defined by the
function is-in.

22

FUNC <set-name>-> \Actionset
AXIOM FORALL a:\Action (

is-in(a,<set-name>) =true<=> <set-name>(a);
is-in(a,<set-name>) ~false<=> NOT <set-name>(a)

•COMM <comm-assertion> is translated into

AXIOM <comm-assertion>

• SPEC <spec-body> is translated into

AXIOM <spec-body>

<comm assertion>

•<action term> I <action term> = <action term> is translated into

AXIOM comm (<action term>, <action term>) = <action term>

<process expr>

• PRET AU into

i(\pretau)

•DELTA into

i(\delta)

•EPSILON into

\eps

•<process expr> . <process expr> into

seq(<process expr>, <process expr>)

•<process expr> + <process expr> into

alt(<process expr>, <process expr>)

•<process expr> I I <process expr> into

par(<process expr>, <process expr>)

Semantics

•GCMD <assertion> <process expr> needs a more complex translation. Each time the guarded
command construction occurs, we have to declare a new process name (since we cannot have an
assertion occur as the argument of a function). Thus, we have a new process name

gcrnd\ext.
Here ext is a counter that is increased each time a guarded command occurs in the
specification. This process name is parametrized with all variables that occur free in it.
Denote these variables by <free var list>. <free varsort list> is derived from <free var list>
by adding appropriate type information. This type information is denoted by <free sort list>.
Thus we· have the following function definition:

FUNC gcmd\ext: <free sort list> -> \Process
AXIOM FORALL <free varsort list>

(<assertion>=> gcmd\ext(<free var list>) ~<process expr>) .

By the definedness condition in the class \BASIC2, gcmd\ext(p) will become i(\delta)
when the assertion does not hold, which is as required.

Thus the GCMD expression is translated into gcmd\ext(<free var list>).

• SUM <var sort l i st> <pr ocess expr> is translated as follows:

First determine all free variables in <process expr> that not are in <varsort list>. Denote
these variables by <free var list>. Then define a function sum \ext, with these free variables
as arguments. The expressions <free varsort list> and <free sort list> are defined as in the
previous section.

FUNC sum\ext : <free sort list> -> \Process
AXIOM FORALL <free varsort list>, <varsort list>

summand(<process expr>, sum\ext(<free var list>)

This axiom states that all instances of the argument of the sum construct are a summand of
the total process.

AXIOM FORALL a:\Action, p:\Process, <free varsort list>
summand(seq(i(a),p), sum\ext(<free var list>)) =>

EXISTS <varsort list>
summand(seq(i(a),p), <process expr>

AXIOM FORALL <free varsort list>
summand(\eps, sum\ext(<free var list>)) =>

EXISTS <varsort list>
summand(\eps, <process expr>)

23

A process specification formalism based on static COLD

These two axioms state that all summands of the total expression can be obtained as
summands of the instances of the sum argument.

So the sum construction is translated into sum \ext(<free var list>)

•MERGE <varsort list> <process expr> is translated as follows:
First determine all free variables in <process expr> that not are in <varsort list>. Denote
these variables by <free var list>. Then define a function mergel \ext, with these free
variables as arguments.

FUNC mergel\ext: <free sort list> -> \Process

The axioms for merge are harder to formulate. We need an additional function that keeps
track of all elements that are already used to split off a sub-merge. These elements are
collected in a set.

FUNC merge2\ext: <free sort list> i Set\ext -> \Process

AXIOM FORALL <free varsort list> (

mergel\ext(free var list>)= merge2\ext(<free var list>, empty);

FORALL <Var sort list>, set : Set\ext (

NOT is_in(<Var list>, set) =>

merge2\ext(<free var list>, set)

= par(merge2\ext(<free var list>, add(<var list>,set)), <process expr>);

FORALL set: Set\ext (

(FORALL <var sort list> is_in(<var list>, set)) =>

merge2\ext(<free var list>, set) = \eps))

In order to define the set concept we need the following definitions:

SORT Set\ext

FUNC empty-> Set\ext

FUNC add: <sort list> # Set\ext -> Set\ext

PRED is_in: <sort list> # Set\ext

IND FORALL <var sort list>, set: Set\ext (

NOT is_in(<var list>, empty);

FORALL <Var sort list>' is_in(<var list>, add(<Var list>', set) =

" <Var list> = <var list>' " OR is_in(<Var list>, set)

Here we use the meta-notation " <Var list> = <var list>' " to indicate the COLD expression
that both lists are componentwise equal. The notation <var sort list>' stands for a new list of
variable names and sorts, compatible with the list <var sort list>

24

•ENCAPS <set- process expr>into

encaps (<set expr>, <process expr>)

•HIDE <set-process expr>into

hide (<set expr>, <process expr>)

<set expr>

•<set expr> + <set expr> into

union<set expr>, <set expr>)

•<set expr> & <set expr> into

intersection<set expr>, <set expr>)

<set expr>" <set expr> into
difference<set expr>, <set expr>)

Algebraic laws

Finally we add the class containing the algebraic laws.
LET laws :=
EXPORT

SORT \Process,
SORT \Action,
FUNC \delta : -> \Action,
FUNC \pretau : -> \Action,
FUNC comm : \Action t \Action -> \Action,
FUNC i : \Action -> Process,
FUNC alt \Process t \Process -> \Process,
FUNC seq : \Process t \Process -> \Process,
FUNC par : \Process t \Process -> \Process,
SORT \Actionset,
FUNC union : \Actionset t \Actionset -> \Actionset,
FUNC intersection : \Actionset t \Actionset -> \Actionset,
FUNC difference : \Actionset t \Actionset -> \Actionset,
FUNC encaps : \Actionset t \Process -> \Process,
FUNC hide : \Actionset t \Process - > \Process,
PRED summand \Process i \Process,
PRED defined : \Process

FROM
IMPORT \BASIC INTO
IMPORT \BASIC2 INTO
CLASS

AXIOM FORALL x:\Process, y:\Process, z:\Process
alt(x,y) = alt(y,x);
alt(alt(x,y),z) alt(x,alt(y,z));
alt(x,x) - x;
seq(alt(x,y),z) alt(seq(x,z),seq(y,z));
seq(seq(x,y),z) seq(x,seq(y,z)))

AXIOM FORALL x:\Process ({DELTA}
alt(x,i(\delta)) - x;
seq(i(\delta),x) - i(\delta))

Semantics

{BPA}

AXIOM FORALL H:\Actionset, a:\Action, x:\Process, y:\Process ({ENCAPS}
NOT(H(a)) -> encaps(H,i(a)) ~a;
H(a) => encaps(H,i(a)) = i(\delta);
encaps(H,alt(x,y)) - alt(encaps(H,x),encaps(H,y));
encaps(H,seq(x,y)) - seq(encaps(H,x),encaps(H,y)))

FUNC comm: \Process t \Process -> \Process
AXIOM FORALL a:\Action, b:\Action, c:\Action

comm(i(a),i(b)) - i(comm(a,b));
comm(a,b) = comm(b,a);
comm(comm(a,b),c) - comm(a,comm(b,c));
comm(\delta,a) = \delta
comm(\pretau,a) = \delta

FUNC leftmerge : \Process i \Process -> \Process
AXIOM FORALL a:\Action, b:\Action, x:\Process, y:\Process, z:\Process {ACP}

par(x,y) = alt(alt(leftmerge(x,y),leftmerge(y,x)),comm(x,y));
leftmerge(i(a),x) - seq(i(a),x);
leftmerge(seq(i(a),x),y) = seq(i(a),par(x,y));
leftmerge(alt(x,y),z) = alt(leftmerge(x,z),leftmerge(y,z));
comm(seq(i(a),x),i(b)) = seq(comm(i(a),i(b)),x);
comm(i(a),seq(i(b),x)) = seq(comm(i(a),i(b)),x);
comm(seq(i(a),x),seq(i(b),y)) = seq(comm(i(a),i(b)),par(x,y));
comm(alt(x,y),z) alt(comm(x,z),comm(y,z));
comm(x,alt(y,z)) c alt(comm(x,y),comm(x,z)))

25

--· =':: : "~ : :_-_- =--

A process specification formalism based on static COLD

26

AXIOM FORALL H:\Actionset, a:\Action, x:\Process, y:\Process {HIDE}
((a = \delta) OR NOT(H(a))) => hide(H,i(a)) = i(a);
((NOT a=\delta) AND H(a)) => hide(H,i(a)) = i(\pretau);
hide (H, alt (x, y)) = alt (hide (H, x), hide (H, y)) ·;
hide(H,seq(x,y)) - seq(hide(H,x),hide(H,y)))

AXIOM x:\Process, y:\Process, z:\Process ({SC}
par(x,i(\delta)) = seq(x,i(\delta));
par(i(\delta),x) = seq(x,i(\del ta));
par(x,par (y,z)) = par(par(x,y),z);
par(x,y) = par(y,x)

AXIOM x:\Process, y:\Process, a:\Action, H:\Actionset ({EPS}

END;

seq(\eps,x) - x;
seq(x,\eps) = x;
leftmerge(\eps,\eps) = \eps;
leftmerge(\eps,seq(i(a),x)) = i(\delta);
leftmerge(\eps,alt(x,y)) = alt(leftmerge(\eps,x),leftmerge(\eps,y);
comm(\eps,x) = i(\delta);
comm(x,\eps) = i(\delta);
encaps(H,\eps) = \eps;
hide(H,\eps) = \eps;
par(\eps,x) = x)

Example

The translation presented in the previous sections will be demonstrated with an example.

Consider the simple PSF /C specification:

DESIGN
NONE

SYSTEM

LET SPECl :=

CLASS
SORT D
FUNC dl: -> D
FUNC d2: -> D
ACTION s : D
PROCESS send

DEF PRETAU.s(dl) + PRETAU.s(d2)
END;

LET SPEC2 :=
IMPORT SPECl INTO
CLASS

ACTION r : D
ACTION c : D
PROCESS read
PROCESS system
SET H

IND FORALL d:D
H(r(d));
H (s (d)))

COMM FORALL d:D (
r(d) I s(d) = c(d))

SPEC

END;
SPEC2

system = ENCAPS(H, send I I read);
read= SUM(d:D, r(d))

DESIGN
NONE

SYSTEM
LET BASIC :=

LET SPECl :=

IMPORT BASIC INTO
CLASS

SORT D
FUNC dl: -> D
FUNC d2: -> D
FUNC s : D -> \Action
FUNC send : -> \Process

DEF alt(seq(i(\pretau),i(s(dl)), seq(i(\pretau),i(s(d2)))
END;

LET SPEC2 :=
IMPORT BASIC INTO
IMPORT SPECl INTO
CLASS

FUNC r : D -> \Action
FUNC c : D -> \Action
FUNC read -> \Process
FUNC system -> \Process
PRED H : \Action

IND FORALL d:D
H(r(d));
H(s(d)))

FUNC H -> \Actionset
AXIOM FORALL a: \Action

is-in(a,H) =true<=> H(a);
is-in(a,H) = false <=>NOT H(a)

AXIOM FORALL d:D (
conun (r (d) , s (d)) - c (d))

AXIOM
system= encaps(H, par(send,read));
read = sum\1

FUNC sum\1 : -> \Process
AXIOM FORALL d:D (summand(i(r(d)), sum\1))

AXIOM FORALL a:\Action, p:\Process

summand(seq(i(a),p), sum\1) =>

EXISTS d:D

summand(seq(i(a),p), i(r(d))

AXIOM

END;
SPEC2

summand(\eps, sum\1) =>

EXISTS d:D

sununand(\eps, i(r(d)))

5 EXAMPLES

Semantics

In this section we give some examples of a specification in PSF /C, which illustrate the use
of simple data types, process definitions and the concept of parameterization. The examples
deal with vending machines, a landing control system for an airport and the alternating bit
protocol.

27

A process specification formalism based on static COLD

5.1 A VENDING MACHINE

5.1.1 The Problem

In this first example, adapted from MAUW & VELTINK [MV89], we want to specify a
vending machine that sells tea and coffee. In fact this is a very simple machine, for it only
accepts two kinds of coins, lOc coins and 25c coins, it does not give any change and there are no
buttons to choose between coffee or tea. The choice is determined by whichever coin is
inserted.

5.1.2 The Implementation

In our example we have used just one class, called VENDING_MACHINE_AND_USERS,
to specify the vending machine. Firstly, we define all atomic actions that occur in the
specification. The atomic actions fall apart into three categories. These categories are the
actions of the vending machine, the action of the customer and the actions that are the result
of a communication between the customer and the vending machine. In the COMM section we
define all possible pairs of actions that can communicate with each other and we specify
what the resulting action will be. This implicitly implies that all communications that are
not listed here are prohibited. Next we define a set of atomic actions called H. This set
contains all atomic actions that are performed by either the machine or the customer. Its use
will show up later on. After having defined the atomic actions and the communication
function we are able to specify the processes. The first process is called VMCT and represents
the vending machine. Initially it offers the choice of a insert_lOc or a insert_25c action, after
which it continues to serve tea or coffee. After having served a drink VMCT returns to its
initial state. The two next processes define a customer who wants tea and a customer who
wants coffee. The last process defines the combination of the three previously defined
processes. The vending machine is operating in parallel with the customers, in this example
it serves a Tea_User followed by a Coffee_User, in that specific order. The ENCAPS
operator forbids the atomic actions listed in H to occur on their own and such forces
communication.

5 .1 . 3 The Specification

28

DESIGN
NONE

SYSTEM

%
% Name : VENDING MACHINE AND USERS
% Date : 14/11/SS
%
% Description :
%
% A very simple vending machine with two users.

LET VENDING MACHINE AND USERS :=

CLASS
ACTION insert lOc
ACTION accept lOc
ACTION lOc_paid
ACTION insert 25c
ACTION accept 25c
ACTION 25c_paid
ACTION serve tea
ACTION take tea
ACTION tea delivered

ACTION serve coffee
ACTION take coffee
ACTION coffee delivered

COMM
insert lOc
insert:=2sc
serve tea
serve coffee

accept lOc
accept:=2sc
take_tea
take coffee

SET H
IND

H (insert_lOc);
H(accept_lOc);
H(insert 25c);
H (accept=25c);
H(serve_ coffee);
H(take coffee);
H (serve_tea):
H(take_tea)

PROCESS VMCT :

= lOc_paid;
- 25c_paid;
- tea_delivered;
- coffee delivered

DEF ((accept_lOc
(accept_25c

serve_tea) +
serve_coffee)) • VMCT;

PROCESS Tea User
DEF insert lOc • take_tea;

PROCESS Coffee User :
DEF insert 25c take_coffee;

PROCESS System :
DEF ENCAPS(H, VMCT I I (Tea User Coffee_User))

END;

VENDING MACHINE AND USERS - -

5.2 A LANDING CONTROL SYSTEM

5.2.1 The Problem

Examples

In the next example, adapted from MAUW & VELTINK [MV88], we specify a hypothetical
landing control system for an airport. It is designed to handle the landing of a number of
airplanes on a number of landing strips. Since the actual names of the airplanes and the strips
can be considered as conditions local to some specific airport, we specify a control system
which is parameterized with these items. The system consists of a number of parallel
operating subsystems, first of which is the Distribution process. The other processes, the
Strip_Controllers, all have the same behaviour. Each of them has control over exactly one
landing strip.

29

· ~ _ - .,L:~_-

A process specification formalism based on static COLD

North

figure 1. Timbuktu Airport.

5.2.2 The Implementation

The class Landing_Control is parameterized by the class Airport. This class consists of the
two sorts Strips, containing the names of the landing strips, and Plane_Ids, containing the
id's of all planes potentially willing to land. The Landing_Control exports the atomic action
receive-req-to-land, which enables the system to communicate with arriving airplanes, and
the process Control, which is the name of the overall process being specified. Internal to this
class are a number of atomic actions. The atoms read, send and communicate are used to model
the communication between the process Distribution and each of the Strip_Controllers. The
Strips argument determines which Strip_Controller is involved, and the Plane_Ids argument
indicates the plane that should be landed. As is indicated in the communications section,
placing the atoms send and read in parallel yields the atom communicate. The set H,
containing the read and send actions will be used to encapsulate unsuccessful communication.
This happens when the read and send actions do not have a partner to communicate with.
The other atomic actions, land and disembark, are not intended to take part in a
communication.

Apart from the Control process we define three processes. The process Distribution
receives a request to land from some plane and sends its id to one of the Strip_Controllers,
which is willing to communicate with the Distribution. After that, the Distribution process
starts all over again. The process Strip_Cortrol is indexed with the name of some Strip. In
fact it defines a new process for each Strip. It starts by receiving a message from the
Distribution to handle a plane with a given id. After handling this plane, as defined by the
process Handle, the Strip_Controller starts all over and is again able to receive a plane-id.
The process Handle serves as a sub-process of the process Strip_Control. The second argument
determines the plane and the first one determines the Strip the plane must land on. This
process stops after landing and disembarking the plane.

Finally the overall process Control is defined as the concurrent operation of the
Distribution and all Strip_Controllers. The encapsulation operator removes unsuccessful
communications.

5.2.3 The Specification

30

DESIGN
NONE

SYSTEM

%

% Name
% Date
%

AIRPORT
11/11/88

% Description :
%
% Local airport conditions, to be supplied to the Landing_Control

LET AIRPORT :-

CLASS
SORT Strips
SORT Plane Ids

END;

%
% Name
% Date
%

Landing Control
11/11/88

% Description :
%
% A generic landing control system for an airport.

LET LANDING_CONTROL : -

LAMBDA X:AIRPORT OF

EXPORT
SORT Plane_Ids,
ACTION receive_req_to_land
PROCESS Control :

FROM

IMPORT X INTO

CLASS

Plane_ Ids,

Plane Ids ACTION receive_req_to_land
ACTION read
ACTION send
ACTION communicate
ACTION land
ACTION disembark

Strip~ i Plane Ids
Strips i Plane Ids
Strips i Plane Ids
Strips t Plane Ids
Plane_Ids

COMM FORALL s:Strips, id:Plane Ids
(send(s,id) I read(s,id) - communicate(s,id))

SET H
IND FORALL s:Strips, id:Plane Ids

H(read(s,id));
H(send(s,id)))

PROCESS Distribution
DEF SUM id:Plane Ids (receive_req_to_ land(id) .

SUM s:Strips (send(s,id))
) . Distribution

PROCESS Strip_Control : Strips
PAR s:Strips
DEF SUM id:Plane Ids (read(s,id) • Handle(s,id)

) Strip_Control(s)

PROCESS Handle : Strips t Plane Ids
PAR s:Strips, id:Plane_Ids
DEF land(s,id) . disembark(id)

PROCESS Control :

----.. - -_; . ..____

Examples

31

· ~-"~ --=_ .:'."_-_ --

A process specification formalism based on static COLD

DEF ENCAPS(H, Distribution I I
MERGE s:Strips (Strip_Control(s))))

END;

This specification can be used as a generic specification for Landing_Controllers. A
Landing_Control at for instance Timbuktu-Airport can be constructed by binding a class which
defines the landing strips and the planes that potentially land at Timbuktu-Airport to the
parameter of Landing_Control.

32

%
% Name
% Date
%

TIMBUKTU AIRPORT
11/11/88-

% Description :
%
% Airport conditions local to Timbuktu-airport

LET TIMBUKTU AIRPORT ·=

CLASS
SORT Timbuktu Strips
SORT Timbuktu-Plane Ids
FUNC North => Timbuktu Strips
FUNC East -> Timbuktu=Strips
FUNC South -> Timbuktu Strips
FUNC West -> Timbuktu=Strips
FUNC KL204 - > Timbuktu Plane Ids
FUNC SQOOl -> Timbuktu Plane Ids
FUNC JL403 - >Timbuktu-Plane-Ids
FUNC PA666 -> Timbuktu-Plane-Ids - -FUNC HA345 - > Timbuktu Plane Ids

END;

%
% Name
% Date

TIMBUKTU LANDING CONTROL
11/11/88-

%
% Description
%

% The landing control system at Timbuktu-airport

LET TIMBUKTU LANDING CONTROL:=

APPLY
RENAME

- -

SORT Strips TO Timbuktu_ Strips,
SORT Plane Ids TO Timbuktu Plane Ids - -IN LANDING_CONTROL

TO TIMBUKTU_AIRPORT;

TIMBUKTU_LANDING_CONTROL

Examples

5.3 ALTERNATING BIT PROTOCOL

5.3.1 The Problem

One of the most famous communication protocols is the Alternating Bit Protocol (ABP). It
has been used many times to serve as a test case for a new specification formalism. Our
specification emanates from the ABP specification in ACP as described in BERGSTRA & KLOP
[BK86a,BK86b].

We can represent the Alternating Bit Protocol with a picture as follows:

s R

K

3 4
input output

6 L 5

figure 2 Graphical representation of the Alternating Bit Protocol.

It consists of four components:

• S : The sender.

• R: The receiver.

• K: A channel connecting the sender and the receiver.

• L: A channel connecting the receiver and the sender.

The goal of the Alternating Bit Protocol is to transport data items from a certain set D
from the input port to the output port. In the next paragraphs we will give a description of
each component.

5.3.1.1 The Sender

First, component S reads a message at the input port. This message is extended with a
control boolean to form a so-called frame and this frame is sent along channel K (3). The
sending of the frame proceeds until component S receives an acknowledgement of a successful
transmission at channel L (6). After a successful transmission component S flips the control
boolean and starts all over again.

5.3.1.2 Communication Channel K

Component K transmits frames from the sender (3) to the receiver (4). There are two
situations that can occur when sending information along channel K.

• The· frame is properly transmitted.

• The frame is corrupted during the transmission.

We assume channel K to be fair, i.e, it will not produce an infinite stream of corrupted
data.

33

A process specification formalism based on static COLD

5 .3 .1 .3 The Receiver

The receiver R reads a frame from channel K (4). We assume that R is able to tell, e.g. by
performing a checksum control, whether or not the frame has been corrupted. When the frame
is correct R checks the control boolean in the frame. ff this control boolean matches the
internal control boolean of K, the message in the frame is sent to the output port, K flips its
internal boolean and starts waiting for the next frame to arrive. In all other cases R sends the
complement of its own control boolean along channel L (5) and waits for the retransmission of
the frame.

5.3.1.4 Communication Channel L

Component L is used .to transmit receive acknowledgements from the receiver (5) to the
sender (6). Like channel K, channel Lis able to corrupt data. We will assume that the sender
Scan tell whether an acknowledgement has been corrupted. We assume that channel Lis fair
too. ·

5.3.2 The Implementation ·

The specification. of the Alternating Bit Protocol starts of with a some classes from the
COLD IGLOO (Incremental Generic Library Of Objects). These classes are ITEM, ITEMl,
ITEM2, BOOL_SPEC and TUP2_SPEC. The first three classes specify a class with a single
free sort. Further on in this specification these classes are used as a parameter restriction.
The booleans are specified in BOOL_SPEC, and TUP2_SPEC defines tuples of data types.

Next come the classes that are specific for this application. At first we have to model the
frames that are sent along channel K. This is achieved in FRAME_SPEC by binding the
second parameter of TUP2_SPEC to the booleans, leaving the first parameter untouched.
Next we want to specify the unreliable channels of the protocol. Because channels K and L
are fairly similar we want to exploit this fact, and so we give a specification of a channel,
that is parameterized by the data item that is transported along it, in UC_SPEC. There are .
three atomic actions involved with the definition of an unreliable channel: a read and a send
action, both pararneterized by a certain data type, and an error action indicating
malfunctioning of the channel.

The sender S and the receiver R are specified in SENDER_SPEC and RECEIVER_SPEC
respectively. Both are still parameterized by the data type that is to be transmitted by the
system and both make use of the BOOL_SPEC and the FRAME_SPEC so these two classes
have to be imported.

Now that we have defined the separa•e objects of the system, we have to glue them
together. This is done in the class ABP _SPEC. The specification of the sender and the
receiver are imported and the unreliable channel is imported twice, even. During the import
some renamings on the items of the classes are performed along with some bindings. In this
way it is possible to create two different channels viz.: one which is bound to frames to model
K, and one which is bound to the booleans to model L. Note that this class is still
parameterized by the data item to be transmitted, so that we now have an universal
specification of the Alternating Bit Protocol supplying one process: ABP, an input action:
read_item and an output action: send_item.

The last thing we have to do is to supply two objects, one at either side of the ABP process,
one of which supplies the data items, RANDOM_SPEC, and one of which reads all data
items, DRAIN_SPEC. In this example we want to transmit bits along the system so we define
BIT by renamings on BOOL_SPEC, and finally we tie together the RANDOM_SPEC,
ABP _SPEC and DRAIN_SPEC and instantiate the parameter with BIT in the final class
called: ABP _SYSTEM_SPEC.

34

5.3.3 The Specification

DESIGN
NONE

SYSTEM

%
% Name
% Date
%

ITEM
15/03/88

% Description :
%
% This specifies a class with a single free sort.

LET ITEM ·=

CLASS
SORT Item FREE

END;

%
% Name
% Date
%

ITEMl
15/03/88

% Description :
%
% This specifies a class with a single free sort.

LET ITEMl : -

CLASS
SORT Iteml FREE

END;

%
% Name
% Date
%

I TEM2
15/03/88

% Description :
%
% This specifies a class with a single free sort.

LET ITEM2 : -

CLASS
SORT Item2 FREE

END;

%
% Name
% Date
%

BOOL SPEC
09/0J /88

% Descri ption :
%
% This is a specification of the data type of booleans with
% inductive definitions for the non-constructor operations.
% The inductive defi nitions are in a compact style.

-::--":. -:;. .

Examples

35

A process specification formalism based on static COLD

36

LET BOOL SPEC :=

EXPORT

SORT Bool,
FUNC true - > Bool,
FUNC false -> Bool,
FUNC not Bool -> Bool,
FUNC and Bool i Bool - > Bool,
FUNC or Bool i Bool -> Bool,
FUNC imp Bool i Bool - > Bool,
FUNC eqv Bool i Bool -> Bool,
FUNC xor Bool i

FROM
CLASS

SORT Bool
FUNC true : - > Bool
FUNC false :-> Bool

AXIOM
{BOOLl) true!;
{BOOL2} false!;
{BOOL3} NOT true

PRED is_gen : Bool
IND is_ gen(true);

is_ gen(false)

AXIOM FORALL b:Bool
{BOOL4) is_gen(b)

Bool

false

FUNC not : Bool - > Bool
IND not(t rue) - false;

not(false) = t rue

-> Bool

FUNC and: Bool i Bool - > Bool
IND FORALL b:Bool

(and(false,b) = false;
and(true,b) = b)

FUNC o r : Bool i Bool - > Bool
IND FORALL b:Bool

(or(false,b) = b;
or(true,b) - true

FUNC i mp: Bool i Bool - > Bool
I ND FORALL b:Bool

(imp(false,b) =true;
imp(true,b) - b)

FUNC eqv: Bool i Bool -> Bool
IND FORALL b:Bool, c:Bool

(b ... c => eqv(b,c)
NOT b m c => eqv(b,c)

FUNC xor: Bool i Bool -> Bool
IND FORALL b:Bool, c:Bool

(b - c - > xor(b,c)
NOT b = c => xor(b,c)

END;

true;
false

false;
true)

%
% Name
% Date
%

TUP2 SPEC
10/0J/88

% Description :
%
% This is an axiomatic specification of the 2-tuple data type
% with inductive definitions for the non-constructor operations.

LET TUP2 SPEC :=

LAMBDA X:ITEMl OF
LAMBDA Y:ITEM2 OF
EXPORT

SORT Tup,
SORT Iteml,
SORT Itern2,
FUNC tup Iteml
FUNC projl Tup
FUNC proj2 Tup

FROM
IMPORT x INTO
IMPORT y INTO

CLASS

i Item2 - > Tup,
- > Iteml,
-> Itern2

SORT Tup
FUNC tup

DEP Iteml, Itern2
Iteml i Itern2 -> Tup

AXIOM FORALL il:Iteml, jl: I teml, i2:Itern2, j2: I tem2 (
{TUPl} tup(il,i2) !;
{TUP2} tup(i l,i2) = tup(j l, j 2) => il = j l AND i2 = j2

PRED is_ gen: Tup
IND FORALL il:Iteml, i2:Item2

is_gen(tup(il,i2))

AXIOM FORALL t:Tup
{TUP3} is_gen(t)

FUNC projl: Tup -> Iteml
IND FORALL il:Iteml, i2:Item2 (

projl(tup(i l,i2)) = il)

FUNC proj2: Tup - > Itern2
IND FORALL il:Iteml, i2:Item2 (

proj2(tup(il,i2)) = i2)

END;

%
% Name
% Date
%

FRAME SPEC
20/10/88

% Description :
%
% This is a specification of a frame c onsisting of the item
% that is used in the Alternating Bi t Protocol and a boolean.

LET FRAME SPEC :=

Examples

37

! ':"- : !'~ -= -·--_

A process specification formalism based on static COLD

38

%

LAMBDA X:ITEM OF
APPLY

RENAME
SORT Iteml TO Item

IN
APPLY

RENAME
SORT Item2 TO Bool,
SORT Tup TO Frame,
FUNC tup : Iteml i Item2 -> Tup TO frame

IN TUP2 SPEC
TO X

TO BOOL_SPEC;

% Name
% Date
%

UC SPEC
19/08/88

% Description :
%
% This is a specification of an unreliable channel that
% either transports one item from its input to its output,
% o r generates some kind of error stating malfunctioning

LET UC SPEC :=

LAMBDA X:ITEM OF

EXPORT
SORT Item,
PROCESS UC: ,
ACTION read: Item ,
ACTION send: Item ,
ACTION error:

FROM

IMPORT X INTO

CLASS
ACTION read: Item
ACTION send: Item
ACTION error:

PROCESS UC:
DEF SUM d:Item (read(d) . UC(d));

PROCESS UC: Item
PAR d:Item
DEF (skip • send(d) + skip . error) . UC

END;

%
% Name
% Date
%

SENDER SPEC
19/08/B8

% Description :
%
% This is a specification of the sender of the
% Alternating Bit Protocol.

LET SENDER SPEC :=

LAMBDA X:ITEM OF

EXPORT
SORT Frame,
SORT Item,
SORT Bool,
PROCESS S : ,
ACTION read item: Item ,
ACTION send frame: Frame ,
ACTION read=ack: Bool ,
ACTION read ack error:

FROM

IMPORT X INTO
IMPORT BOOL SPEC INTO
IMPORT APPLY FRAME SPEC TO X INTO

CLASS
ACTION read item: Item
ACTION send frame: Frame
ACTION read ack: Bool
ACTION read ack error:

PROCESS S :
DEF RM(false)

PROCESS RM : Bool
PAR b:Bool
DEF SUM d:Item (read(d)

PROCESS SF : I tem t Bool
PAR d:Item, b:Bool

SF(d,b))

DEF send_frame(frame(d,b)) . RA(d,b)

PROCESS RA : Item t Bool
PAR d:Item, b:Bool
DEF (read_ack(not(b)) + receive_error) . SF(d,b)

+ read_ack(b) . RM(not(b))

END;

%
% Name
% Date
%

RECEIVER SPEC
20/08/88

% Description :
%
% This is a specification of the receiver of the
% Alternating Bit Protocol.

LET RECEIVER SPEC :=

LAMBDA X:ITEM OF

EXPORT
SORT Frame,
SORT Item,
SORT Bool,
PROCESS R : ,

-------------- --- - ---- --- --------------------

--~-: - ~;;; - ·_; .

Examples

39

A process specification formalism based on static COLD

40

ACTION send_item: Item ,
ACTION read_frame: Frame ,
ACTION send_ack: Bool ,
ACTION read frame error: - -

FROM

IMPORT X INTO
IMPORT BOOL SPEC INTO
IMPORT APPLY FRAME SPEC TO X INTO

CLASS
ACTION send item: Item
ACTION read frame: Frame
ACTION send ack: Bool
ACTION read frame error: - -
PROCESS R :
DEF RF(false);

PROCESS RF : Bool
PAR b:Bool
DEF (SUM d:Item (read_frame(d,not(b))) + receive_error)

• SA (not (b))
+ SUM d: I tem (read_frame(d,b) . SM(d,b))

PROCESS SA : Bool
DEF send_ack(b) • RF(not(b))

PROCESS SM : Item i Bool
PAR d:Item, b:Bool
DEF send_ item(d) . SA(b)

END;

%
% Name
% Date
%

ABP SPEC
25/l0/88

%
%

Description :

% This is a specification of t he Alter nat ing Bit Protocol, whi ch
% c ombines all previously defined classes into one system

LET ABP SPEC : =

LAMBDA X:ITEM OF

EXPORT

SORT Item,
PROCESS ABP • ,
ACTION read item
ACTION send-item

FROM

IMPORT BOOL SPEC INTO
IMPORT X INTO

IMPORT
APPLY

RENAME

Item
Item

PROCESS S : TO SENDER
IN SENDER SPEC

Examples

TO X
INTO

IMPORT
APPLY

RENAME
PROCESS R : TO RECEIVER

IN RECEIVER SPEC
TO X

INTO

IMPORT
APPLY

RENAME
SORT Item TO Frame,
PROCESS UC : TO FRAME CHANNEL,
ACTION read : Item TO-read_frame_item,
ACTION send : Item TO send_frame_item,
ACTION error TO send frame error

IN UC SPEC
TO

APPLY FRAME SPEC TO X
INTO

IMPORT
APPLY

RENAME
SORT Item TO Bool,
PROCESS UC : TO ACK_CHANNEL,
ACTION read : Item TO read ack item,
ACTION send : Item TO send=ack=item,
ACTION error TO send ack error

IN UC SPEC
TO BOOL SPEC

INTO

CLASS

frame error :
ack error :

ACTION
ACTION
ACTION
ACTION
ACTION
ACTION

ack enters channel Bool
ack-leaves-channel Bool - -
frame enters channel Frame - -
frame leaves channel : Frame - -

COMM
send frame error
send-ack e'i:ror

read frame error - -
read ack error

COMM FORALL b:Bool
send_ack(b)
send_ack_item(b)

COMM FORALL f:Frame (

read_ack_item(b)
read_ack(b)

send_frame(f) I read_frame_item(f)
send_frame_item(f) I read_frame(f)

SET H
IND FORALL d:Item, b:Bool, f:Frame (

H(send_frame_error);
H(read frame error);
H(send=ack_e'i:ror);
H(read_ack_error);
H(read_item(d));

frame_error;
ack error

ack_enters_channel(b);
ack_ leaves_channel(b))

frame_enters_channel(f);
frame_leaves_channel(f))

41

-· ~ -.:::-. · _- :

A process specification formalism based on static COLD

42

H(send_item(d));
H (send_ack (b));
H(read ack(b));
H(read=ack_item(b));
H(send_ack_item(b));
H(send frame(f));
H(read=frame(f));
H(read frame item(f));
H(send=frame=item(f)))

PROCESS ABP :
DEF ENCAPS (H, SENDER 11 RECEIVER 11 ACK CHANNEL 11 FRAME_ CHANNEL)

END;

%
% Name
% Date
%

RANDOM SPEC
25/10/SS

% Description :
%
% This is a specification of a process that produces a random stream
% of items of the specified sort

LET RANDOM SPEC :-

LAMBDA X:ITEM OF
EXPORT

SORT Item,
PROCESS RANDOM : I

ACTION output : Item

FROM

IMPORT X INTO

CLASS

ACTION output : Item
PROCESS RANDOM
PAR d:Item
DEF SUM d:Item (SKIP . output(d)) • RANDOM)

END;

%
% Name
% Date
%

DRAIN SPEC
25/10f88

% Description :
%
% This is a specification of a process discarding all elements
% of a certain sort

LET DRAIN SPEC :•

LAMBDA X:ITEM OF
EXPORT

SORT Item,
PROCESS DRAIN
ACTION input : Item

Examples

FROM

IMPORT X INTO

CLASS

ACTION input : Item
PROCESS DRAIN :
PAR d:Item
DEF SUM d:Item (input(d)) . DRAIN)

END;

%
% Name
% Date
%

BIT
25/10/88

% Description :
%
% This is a specification of the class of binary digits, which
% is constructed by renamings and restrictions on the booleans

LET BIT :=

EXPORT
SORT Bit

FROM

RENAME
SORT Boo! TO Bit,
FUNC true : ->Boo! T0 -1,
FUNC false : -> Boo! TO 0

IN

BOOL_SPEC;

%
% Name
% Date
%

ABP SYSTEM SPEC
14/ll/88 -

% Description :
%
% Here the total syst'em is created by instantiating the parameterized
% specifications with bits as data items and linking them together by
% defining communications between the subsystems.
%

LET ABP_SYSTEM_SPEC :=

EXPORT
PROCESS ABP SYSTEM

FROM

IMPORT APPLY ABP_SPEC TO BIT INTO
IMPORT APPLY DRAIN SPEC TO BIT INTO
IMPORT APPLY RANDOM SPEC TO BIT INTO

CLASS
ACTION item read
ACTION item sent

Item
Item

43

A process specification formalism based on static COLD

COMM FORALL d:Item (
output(d) I read item(d)
send_item(d) I input(d)

SET H
IND FORALL d:Item

H(output(d));
H(input(d));
H(read_item(d));
H(send_item(d)))

PROCESS ABP_SYSTEM :

- item read(d);
itenCsent(d))

DEF ENCAPS (H, RANDOM I I ABP I I DRAIN)

END;

ABP SYSTEM SPEC - -

6 EXTENSIONS

A number of possible extensions of PSF/C come to mind, most of them concerning the
addition of extra process composition operators. We mention a few of them.

Instead of having only two simple renaming operators, viz. encapsulation (that renames a
set of atomic actions into ~' leaving other actions fixed) and pre-abstraction (renaming into t),
we can allow general renaming operators, having an operator Pf for each function f from A into
the set Action. For more details, see BAETEN & BERGSTRA [BB88]. In this paper, also
generalized renaming operators can be found, most notably the state operator, with which we
can keep track of the state of a process during execution. This operator finds applications in
the translation of programming languages or specification languages into process algebra.

Another issue is the addition of the silent step 't. This process is necessary for system
verification. On the other hand, addition of a silent leads to complicated issues, one of
which is the exact formulation of axioms. The concrete language ACP has remained fixed
over a number of years, so is fairly well-established, and moreover is amenable to term
rewriting analysis. We do have empty steps in this paper, but the empty step can be removed
from the language if required.

There are several other operators that can be added to PSF/C and will ease
specifications. We can think of the mode transfer operator, the priority operator,
determination of alphabets, process creation operator, etc.

The semantics of PSF /C can also be given in a different way than was presented here.
Notably, it is possible to give an operational semantics with Plotkin-style rules, by defining
a COLD predicate arrow on \Process # \Action # \Process, with all rule definitions
translated into COLD axioms.

7 COMPARISON OF PSF/C WITH SIMILAR LANGUAGES

The most obvious candidate for comparison is PSF I ASF as it was described in [MV88]. The
difference is that the data type specifications are now given in the way of COLD. Moreover
the concrete syntax of the process declarations is formatted in the style of COLD. (In the case
of PSF I ASF the process declarations were formatted in the style of ASF.) Because we wanted
to use the data type specifications from COLD only the static fragment of it has been
imported into PSF/CS. It is an open question for us how the dynamic part of COLD could be
combined with ACP. There seems to be an inherent overlap between the procedures in COLD

44

Comparison of PSF/C with similar languages

and the ·processes of ACP. Due to this overlap an orthogonal language design based on a
combination of COLD and ACP seems difficult to obtain.

The reason to consider a combination of ACP with COLD rather than with ASF is
threefold:

(i) It is easier to base process declarations on data types specifed with first order
formulae than on types that are algebraically specified using initial algebra semantics.
Indeed for the precise definition of guardedness for systems of recursion equations negative
information (i.e. information about expressions denoting different data) is essential. COLD
allows the use of full first order specifications. The induction scheme of COLD also allows
the restriction of data algebras to so-called minimal (term generated) algebras. So the
expressive power exceeds that of ASF for all practical purposes. Of course there is a price to
be paid: automatic specification and implementation of COLD specifications is not an easy
matter. It is essentially harder than for the algebraic specifications of ASF

(ii) The major strong point of COLD is its modularisation mechanism. The power of that
mechanism is already fully present in the static part. We observed that by simply adopting
COLD for data type declaration, and using the same modularisation mechanisms also in the
presence of process declarations one obtains a language for which a semantics can be defined
in just the same way as for COLD. Indeed the meaning of PSF/C constructs is found by
translating these into theories in the infinitary many sorted partial logic (as it was done in
[FJKR 87)). For notational reasons this translation is found via an intermediate translation of
PSF/C into COLD. We feel that the semantics of modular constructs is better understood this
way than in the case of PSF/C. Its should be noted, however, that this mechanism can in
principle be used to obtain a semantic description of PSF I ASF as well. That would require a
meticulous and unpleasant translation of ASF into COLD however.

(iii) We are interested in the relation (and possible combinations) of COLD and ACP. It
seems to be the obvious point of departure to begin with a language definition that combines
COLD and ACP in the same way as LOTOS combines Act-one and CCS.

In MORELL MEERFORDT [Mor88], a syntactic combination of CSP and Meta IV, the
specification language is proposed and illustrated by examples. The main point is that
processes can be parameterized by data structures. A systematic translation into Ada exists
for this formalism.

(Differences with PSF /C: (i) bias towards CSP instead of bias towards ACP, (ii) there
seems to have been paid be less attention to modularisation, and of course (iii) COLD syntax
is replaced by Meta IV. The difference between these formats is minimal for flat
specifications (i.e. specifications without explicit modular structure).

No particular semantic model is selected to describe the semantics of the CSP /Meta IV
combination. Probably the authors have transition systems in mind.

In ASTESIANO, MASCARI, REGGIO & WIRSING [AMRW85], the formalism SMOLCS for
specifying concurrent systems. Differences with PSF IC are the following: (i) SMOLCS is
biased towards CCS rather than to ACP, the semantics is presented in terms of transition
systems (ii) although SMOLCS uses an algebraic formalism for data type specification (as
does PSF I ASF from [MV88)) the semantic intuition is quite different because SMOLCS
inherits the orientation towards hierarchical specifications that was proposed by the
Munich School.

Although not apparent from the syntax one might say that SMOLCS is closer to LOTOS
than to PSF I C.

45

A process specification formalism based on static COLD

FOREST is a specification language that has been developed at the Imperial College in
London by a team around Tom Maibaum, see GOLDSACK [G88]. The language uses deontic logic
to express (potential) system behaviour. The behaviour of agents is formalized in tenns of
modal action logic. The data are described in terms of a first order language based on the
declaration of structured signatures. The semantics of the agents is given in the context of
trace theory. The formalism FOREST provides a combination of data type specifications and
process (agent) specifications just as PSF/C does. The main difference is that FOREST uses a
process logic, whereas PSF/C uses a process algebra. The data type specifications of FOREST
seem in fact to be comparable with the possibilities of static COLD as it is used in PSF/CS.

8 CONCLUSION

In the construction of the language PSF/C, the design objectives stated in the introduction
have been met. A few additional remarks:

46

• we found that the translation of the process constructions to COLD is cumbersome, and
it is our preliminary conclusion that the resulting insights do not justify the effort. An
alternative would be to develop a semantics by using structured operational
semantics;

• the SDF system suffices to generate simple tools for the language;

• we obtained a COLD oriented language in which certain comparative advantages of
COLD over ASF are preserved. Thus, PSF /C has greater expressive power than
PSF I ASF, and a more flexible semantic theory;

• the hiding mechanism of COLD (not exporting elements of a signature) is not yet
satisfactorily integrated with the process part.

9 REFERENCES

[AMRW85]

[AU77]

[BB88]

[BHK89]

[BK84]

[BK86a]

[BK86b]

[FJKR87]

[G88]

[HK86]

[HK89]

[IS086]

[IS087]

[Joh79]

[LS79]

[Mor88]

[MV88]

References

E.Astesiano, G.F.Mascari, G.Reggio, M.Wirsing, On the parametrised algebraic
specification of concurrent systems, Proc. lOth Colloquium on Trees in Algebra
and Programming (TAPSOFT), LNCS 185, pp. 342-358, Springer Verlag, 1985.

A.V. Aho & J.D. Ullman, Principles of Compiler Design, Addison-Wesley,
Reading, Massachusetts, 1977.

J.C.M. Baeten & J.A. Bergstra, Global renaming operators in concrete process
algebra, Inf. & Comp. 78 (3), 1988, pp. 205-245.

J.A. Bergstra, J. Heering & P. Klint (eds.), Algebraic specification , ACM Press
Frontier Series, Addison-Wesley 1989.

J.A. Bergstra & J.W. Klop, Process algebra for synchronous communication,
Information & Control 60, 1984, pp. 109-137.

J.A. Bergstra & J.W. Klop, Verification of an alternating bit protocol by means
of process algebra, in: Math. Methods of Spee. & Synthesis of Software Systems
'85, (W. Bibel & K.P. Jantke, eds.), Math. Research 31, Akademie-Verlag
Berlin, pp 9-23, 1986.

J.A. Bergstra & J.W. Klop, Process algebra: specification and verification in
bisimulation semantics, in: Math. & Comp. Sci. II, (M. Hazewinkel, J.K.
Lenstra & L.G.L.T. Meertens, eds.), CWI Monograph 4, pp 61-94, North
Holland, Amsterdam, 1986.

L.M.G. Feijs, H.B.M. Jonkers, C.P.J. Koymans & G.R. Renardel de Lavalette,
Formal Definition of the Design Language COLD-K, METEOR/t7 /PRLE/7, 1987.

S.J.Goldsack, Specification of an operating system kernel : FOREST and VDM
compared, in: VDM'88 (R.Blomfield, L.Marshall, R.Jones eds.) LNCS 328, pp.
88-100, Springer Verlag, 1988.

J. Heering & P. Klint, A syntax definition formalism, Report CS-R8633, Centre
for Mathematics and Computer Science, Amsterdam, 1986.

J. Heering & P. Klint, A syntax definition formalism, in [BHK89], pp. 283-298.

International Organization for Standardization, Information processing systems
- Open systems interconnection - Estelle - A Formal Description Technique Based
on an Extended State Transition Model, ISO/TC 97 /SC 21NDP9074,1986.

International Organization for Standardization, Information processing systems
- Open systems interconnection - LOTOS - A Formal Description Technique
Based on the Temporal Ordering of Observational Behaviour, ISO/TC 97 /SC
21, (E. Brinksma, ed.), 1987.

S.C. Johnson, YACC: yet another compiler-compiler, in: UNIX Programmer's
Manual, Volume 2B, pp. 3-37, Bell Laboratories, 1979.

M.E. Lesk & E. Schmidt, LEX - A lexical analyzer generator, in: UNIX
Programmer's Manual, Volume 2B, pp. 39-51, Bell Laboratories, 1979.

H. Morell Meerfordt, Combining CSP and Meta IV into an Ada Related PDL for
developing Concurrent Programs, in: Ada in Industry, The Ada companion series
(S. Heilbrunner, ed.), Cambridge University Press, pp. 157-171, 1988.

S. Mauw & G.J. Veltink, A process specification formalism, report P8814,
Programming Research Group, University of Amsterdam 1988.

_---~-= - - = ~ ·

47

. -_ -,,,~ -=---- --

. A process specification formalism based on static COLD

48

[MV89]

[RdL89]

[Rek87]

[Vr86]

S. Mauw & G.J. Veltink, An introduction to PSFd, in: Proc. International Joint
Conference on Theory and Practice of Software Development, T APSOFT '89,
(J. Diaz, F. Orejas, eds.) LNCS 352, pp. 272-285, Springer Verlag, 1989.

G.R. Renardel de Lavalette, COLD-A, a static fragment of COLD-K, to appear.

J. Rekers, A Parser Generator for finitely Ambiguous Context-Free Grammars,
Report CS-8712, Centre for Mathematics and Computer Science, Amsterdam,
1987.

J.L.M. Vrancken, The algebra of communicating processes with empty process,
report FVI 86-01, Dept. of Comp. Sci., University of Amsterdam 1986.

