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Multiple Inheritance and Exceptions in Frame Systems 

Peter Lucas 
Centre for Mathematics and Computer Science 

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

In this paper, the problem of handling contradictory information arising in frame systems with multiple inher­
itance is investigated. In the kind of frame systems described, a distinction is made between classes of 
objects and individual objects, called instances. Classes contain type information and initial attribute 
values, and are organized in a taxonomic hierarchy. The treatment in the paper focusses on inheritance of 
attribute values from classes to instances of classes. The method presented here basically amounts to 
recording the reasoning that takes place in a frame taxonomy by means of so-called inheritance chains, 
and then applying a notion of 'in-betweenness' to decide which attribute values derivable by means of 
inheritance should be given preference over others. Furthermore, an algorithm for constructing a special 
kind of spanning tree for the associated directed graph of a frame taxonomy is described, and is proven to 
be equivalent to the cancelling of inheritance chains by using 'in-betweenness'. It is shown that in an 
inconsistent frame taxonomy such a spanning tree does not exist. 

1980 Mathematics Subject Classification ( 1985 revision): 68T30. 
1987 CR Categories: 1.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms and Methods. 

Keywords & Phrases: Multiple inheritance, frame-based systems, automated reasoning, knowledge-based 
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I. INTRODUCTION 

1 

The formalism of frames was introduced by M. Minsky in the early seventies as a means for the 
specification of semantic control in an image-understanding application [Minsky75]. Since then, the 
formalism has enjoyed an increasing popularity in knowledge-based systems, due to the natural way 
in which hierarchically structured information can be represented in the formalism. The frame for­
malism has been further developed into one of the basic building blocks of more recent expert system 
building tools, such as KEE, Knowledge Craft, and Nexpert Object [Fikes85, KC88, N088]. 

Frames provide a formalism for storing knowledge concerning the properties of individual objects 
and classes of objects. Part of the properties of an individual or class are specified within a frame as 
reference information to other, more general frames having properties which also concern the given 
frame. The other, non-referential properties are specified as constant values of so-called slots or attri­
butes. By means of the reference information, a collection of frames is organized as a directed (acy­
clic) graph, in which the vertices represent collections of attributes with associated values and the arcs 
represent the (directed) referential relationships between frames. Such a collection of frames is called 
a taxonomic hierarchy, frame taxono"9', or taxono"9' for short. 

The organization of frames in a taxonomy forms the basis of a method of automated reasoning, 
called inheritance. This method effectively manipulates frames in such a way that attribute values 
applicable to a given frame are retrieved from other frames in the taxonomy using the reference infor­
mation specified in each frame. Usually, two basic forms of inheritance are distinguished, based on 
the structure of the graph representation of the taxonomy. In case the graph representation of the 
taxonomy is tree-like, inheritance is called single inheritance. In the more general case of a graph-like 
taxonomy, one speaks of multiple inheritance. A well-known problem in both forms of inheritance is 
the handling of attributes occurring more than once in a taxonomy with different values, for then 
conflicts may arise due to the inheritance of mutually exclusive values. It should be noted that in 
frame-based systems, specifying different values for an attribute at different locations in a taxonomy is 
considered a legal and natural way for expressing exceptions to general knowledge which in most cases 
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but the exceptions holds true in the domain of discourse. Hence, a method for dealing with excep­
tions is required in a frame-based system, yielding a form of nonmonotonic reasoning. Exceptions 
can easily be dealt with in case of single inheritance in a tree-like taxonomy, since then inheritance 
can be taken to proceed from a given vertex in the tree towards the root along branches of the tree, 
stopping as soon as a value for a particular attribute has been obtained. Then, clearly, no problems 
with mutually exclusive values arise, for the algorithm always finds at most one attribute value. How­
ever, the problem is more difficult to solve in the case of multiple inheritance in a general graph-like 
taxonomy. In order to handle multiple inheritance in graph-like taxonomies with exceptions, the 
inheritance algorithm has to incorporate a method for deciding which value of an attribute to prefer 
over others. The resulting algorithm is called multiple inheritance with exceptions. In many present­
day frame-based systems a method for multiple inheritance with exceptions has been implemented, 
but what actions to take in order to handle exceptions adequately varies with the particular imple­
mentation. Some systems require the knowledge engineer to explicitly specify the attributes that pre­
vail over others [Bobrow88,N088]. Other systems give preference to certain attribute values over oth­
ers by considering the corresponding graph representation of a taxonomy as an ordered one 
[Bobrow83,KC88). Both solutions have not proven to be satisfactory. 

In this paper, we propose a solution to the problem of multiple inheritance of attribute values in 
frame systems. Our solution is based on the application of a notion of 'in-betweenness' for the can­
cellation of certain attribute values. This work has been inspired by, and is partly based on earlier 
work by David Touretzky in clarifying multiple inheritance in semantic nets [Touretzky86]. Further­
more, an algorithm based on the construction of a spanning tree of a graph is presented which offers 
an equivalent, but more efficient solution to multiple inheritance with exceptions in graph-like taxo­
nomies. 

2. PRELIMINARIES AND BASIC NOTIONS 

2.1. Preliminaries 
In the frame formalism which will be used in this paper, two kinds of frames are distinguished: 
• Classes, which are used for the representation of classes of objects, and generally contain informa­

tion concerning the values attributes may adopt, i.e. type information, and 
• Instances, which are employed for the representation of individual objects, and do not contain any 

type information. 
It is assumed that classes have much in common with the record datatype as, for example, in the Pas­
cal programming language. Amongst other things, a class comprises a collection of so-called 
attribute-type specifications of the form x(a: T), where x is the name of the class, similar to the name 
of a record type in Pascal, a is the attribute name, similar to a field name in Pascal, and T denotes the 
type of the attribute. It is assumed that any attribute only occurs in a single attribute-type 
specification. The specification of a class not merely involves giving a collection of attribute-type 
specifications. In addition, a class y may be specified as a subclass of some other class z by the 
expression y < z, meaning that the attribute-type specifications that hold for z hold for y as well. 
Determining the attribute-type specifications that hold for a class may be done by a mechanism called 
type inference. 

E.xAMPLE. Consider the knowledge domain of the human cardiovascular system. To describe that 
every blood vessel either contains oxygen-rich or oxygen-poor blood, and that an artery is a blood 
vessel having a diameter which is a real number, the following specification suits the purpose: 

blood-vessel (blood : {oxygen-rich, oxygen-poor}) 
artery < blood-vessel 
artery (diameter : real) 

The first expression represents a class named 'blood-vessel', having a single attribute 'blood', which 
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may adopt an element from the set {oxygen-rich, oxygen-poor} as its value. The second expression 
specifies that all information concerning attributes in the class 'blood-vessel' also concerns the class 
'artery'. Since the class 'artery' is a subclass of the class 'blood-vessel' we also have that 
artery (blood : {oxygen-rich, oxygen-poor}). On the other hand, we do not have blood­
vessel( diameter : real). 0 

An instance x of a particular classy, specified by x < y, is an object of type y, i.e. x: y, for which a 
collection of attributes with constant values have been filled in. The fact that an attribute a of an 
instance x has value c will be denoted by x [a ... c]. 

ExAMPLE. Consider again the two classes 'blood-vessel' and 'artery' introduced in the preceding 
example. The brachia! artery is an individual artery, i.e. brachial-artery « artery, containing oxygen­
rich blood. When filling in the attributes specified in the preceding example we obtain in this case: 

0 

brachial-artery [blood - oxygen-rich] 
brachial-artery [diameter = 3) 

There are many situations in representing a problem domain where it is convenient to fix some of the 
values of attributes of instances of a class within the class or its superclasses in advance. Such is in 
particular convenient when the values turn out to be the same for most of the instances of a class. 
The following example illustrates this idea. 

ExAMPLE. Consider the preceding two examples in this section once more. In this case, it appears to 
be convenient to add the specification 

artery [blood = oxygen-rich] 

since almost all individual arteries do indeed contain oxygen-rich blood. Repeating this information 
for each instance of the class 'artery' would lead to introducing redundancy. As a consequence, the 
specification brachial-artery[blood =oxygen-rich] is no longer required. D 

In the sequel, knowledge is assumed to be specified in a kind of frame language as sketched in the 
foregoing. In this article, we address the problem of dealing with different values of the same attri­
bute specified in different classes, which propagate to the instances of the classes by inheritance. Pro­
perties of the subclass relation with respect to the well-typedness of a frame taxonomy, will not be 
dealt with in the present paper. To keep the treatment of attribute-value inheritance as simple as pos­
sible, we shall even disregard the fact that classes contain type information in the remainder of the 
paper. Only the subclass relation will be preserved as a means of attribute-value inheritance. The 
interested reader should read [Cardelli84] and [Smolka87] for a formal treatment of multiple inheri­
tance and datatypes. 

2.2. Basic notions 
In this section some basic notions used in the remainder of the paper are presented. We assume that 
the reader is familiar with relations on finite sets, with closure properties [Lewis8 l ], and with basic 
graph theory [Wilson85]. 

In the sequel, K = {yi.y2 , ••• •Yn} will denote a fixed set of classes, and I= {x 1,x2 , ••• ,xm} 
will denote a fixed set of instances; the sets I and K are disjoint, m ~ 0, n ~ I. The set of frames F 
is taken to be I U K. We now define a language for the specification of frame information, and give 
some examples of its use. 
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DEFINITION 2.1. Let K denote the fixed set of classes. The subclass relation < !:: K X K is an 
irreflexive and transitive binary relation on K. For a pair (x,y) E <, denoted by x < y, it is said 
that x is a subclass of y. 0 

It is assumed that K contains a most general class denoted by T, where for each y ;/= T E K we have 
y < T. Furthermore, complementary to the subclass relation < we have the superclass relation >; 
for a pair (x,y) E >,denoted by x > y, it is said that x is a superclass of y. 

DEFINITION 2.2. Let I denote the fixed set of instances and K the fixed set of classes. Then, the 
instance-of function «: I~ K is a mapping from I to K. In the sequel, <(x) = y will be denoted by 
x « y; it is said that x is an instance ofy. D 

The subclass relation and the instance-of function introduced in the two preceding definitions only 
describe reference information. The following definition introduces a new relation meant to obtain a 
complete language for the specification of frame information. 

DEFINITION 2.3. Let F be the set of frames such that F = I U K, where I is the set of instances in F, 
and K the set of classes in F. Let A = (a.,a 2 , ••• ,a,} be a fixed set of attributes, and let 
C = { c .,c2, ••• , cq} be a fixed set of constants. Then, a triple (x, a, c) E F X A X C, denoted by 
x [a '"'" c], is called an attribute-value specification. The attribute-value relation e is a ternary relation on 
F, A and C, i.e. e !:: F x A x c, such that for each y; [ak = Cr], Yj [a, = Cs] E e we have: if i = j 
and k = I then r = s. 0 

As stated in the preceding subsection, an attribute-value specification x [a = c] is meant to express 
that the attribute a has the constant value c in frame x. 

E.xAMPLE. Consider the set of frames F = {brachial-artery, artery, vein, blood-vessel}, the set of 
attributes A = {diameter, wall, contains}, and the set of constants C = {3, muscular, blood, 
fibrous}. Then, all expressions shown below are examples of attribute-value specifications: 

brachial-artery[diameter = 3) 
artery[wall =muscular] 
blood-vessel[contains =blood] 
vein [wall - fibrous] 
vein[wall =muscular] 

Note that, when taken together in an attribute-value relation e, only one of the last two attribute­
value specifications would be allowed (we would choose the first one of the two). 0 

DEFINITION 2.4. Let F be the set of frames such that F = I U K, where I is the set of instances in F, 
and K the set of classes in F. Let A be the set of attributes, and C the set of constants. Let 0 be the 
attribute-value relation defined according to Definition 2.3. Then, the instance-restricted attribute­
value relation 01 I> is the set of all x [a ... c] E 0, such that x E J. Similarly, the class-restricted 
attribute-value relation 01 K• is the set of all y(a = c) E 0, such that y E K. 0 

DEFINITION 2.5. Let I be the set of instances, K the set of classes, A the set of attributes, and C the 
set of constants, where J, K, A and Care disjoint. Let N be the quadruple N = (I,K,A, C). Further­
more, let the relations < and e be defined according to the Definitions 2.1, and 2.3, respectively, and 
the function« according to Definition 2.2. Then, a taxonomy Tisa quadruple T = (N,0,«,<). 0 

ExAMPLE. Let I= {brachial-artery} be the set of instances, and K = {artery, vein, blood-vessel} the 
set of classes. Furthermore, let A and C be as in the preceding example. Let e = {blood-
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vessel[contains - blood), artery[blood =oxygen-rich], artery[wall =muscular], brachial-
artery[diameter == 3)}, and let the function< and the relation <be defined by: 

brachial-artery < artery 
artery< blood-vessel 
vein < blood-vessel 

Then, T = (N,8,<,<) is a taxonomy. Note that neither 'vein< artery' nor 'artery< vein' holds, 
since these tuples are no part of the relation < . D 

Informally, a taxonomy T = (N,8,«,<) can be depicted as a directed, acyclic graph 
G = (V(G),R(G)), where the vertices in V(G) represent the frames in I and K, and the arcs in R(G) 
represent either the relation < or the function <. Each vertex is assumed to have an internal struc­
ture representing the collection of attribute-value specifications associated with the frame in the rela­
tion 8. In the graph, an attribute-value specification is depicted next to the vertex it belongs to; only 
the attribute and constant of an attribute-value specification are shown. The relation < is indicated 
by a pulled arrow, and the function «. is depicted by a dashed arrow. In Figure I the taxonomy 
from the previous example is shown. 

[blood - oxygen-rich] 

[wall - muscular] 

FIGURE I. Taxonomy consisting of three classes and one instance. 

DEFINITION 2.6. Let T = (N,8, <, <) be a taxonomy as introduced in the foregoing definition. 
Then, the inheritance rule p is the function p: (K X K) X (K X A X C) -+ (K X A X C), such that 
p((x,y),y [a = cD = x [a = c). D 

PllOPOSmON 2.1. Let T = (N,8,<,<) be a taxonomy, and let R = 81K U <. Then. there is a 
unique minimal set RP, with R !:: RP, that is closed under the inheritance rule p. 

PROOF. Let V be defined as the set of all sets X;, i = 1,2, ... , that are closed under p and that hav.e 
the set R as a subset. Let RP = n X;. Now, suppose that x < y E RP and y[a - c) e RP. 

; = 1,2, ... 
Then, for each X; E V we have x < y E X1 and y [a = c) E X1• Hence, x [a = c) E X;, since X; is 
closed under p. It follows that x[a = c] E RP. Hence, RP is closed under p. Furthermore, for each 
X; E V we have RP !:: X;. We conclude that RP is unique and minimal with respect to set inclu­
sion. D 

- -- ·---- --:-- --
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DEFINITION 2.7. Let T = (N,8,«.,<) be a taxonomy. Let RP be the unique minimal set as stated in 

proposition 2.1. Then, the flattening of the taxonomy T, denoted by cl>T, is defined as the set of all 
attribute-value specifications in RP. D 

ExAMPLE. Consider the taxonomy T from the preceding example once more. The flattening of T is 

simply the class-restricted attribute-value relation 81 K• supplemented by the attribute-value 

specifications computed by p. Hence, the flattening of the taxonomy T is equal to the following set 

cl>T = {blood-vess~l[contains = blood], vein[contains =blood], artery[blood - oxygen-rich], 

artery[wall =muscular], artery[contains - blood]}. D 

It should be noted that another way of computing the flattening of a taxonomy T is obtained by com­

bining the transitivity of < and the inheritance rule p. 

LEMMA 2.1. Let T = (N,8,<,<) be a taxonomy. Let cl>T be the flattening of T according to 

Definition 2.7, and let < be the subclass relation. Then, cl>T = {p((x,y),y[a = c]) I (x,y) E < , 

y[a = c] E 81x} U 8lx· 

PROOF. Let us denote the right-hand side of the identity in the lemma by '1'. On the one hand, let 

y[a = c] E 'I' then we have two cases: (a) y[a = c] E 81x. or (b) (y,z) E <and z[a - c] 8lx· In 

case (a) it follows immediate from Definition 2.7 that y[a - c] E c)T· In case (b) we have pairs 

y < v., Vi < V2, . . . ,vn - 1 < Vm vn < z; it therefore follows from the definition of cl>T that 

z [a = c],vn [a .. c], Vn -1 [a """ c], ... , v 1 [a = c],y [a = c] E c)T· Hence, 'I' !;;;;; c)T· 

The other side of the proof is by a symmetrical argument. We conclude that cl>T = 'I'. D 

DEFINITION 2.8. Let T = (N,8, <, <) be a taxonomy. Let cl>T be the flattening of T according to 

Definition 2.7. Then, the extension of the taxonomy T, denoted by ET, is defined as the set 

ET = {x[a = c] Ix< y, y[a = c] E c)T, provided x[a = dJ fi 8, c =F d} u 811· D 

ExAMPLE. Consider the taxonomy T and the flattening cl>T in the preceding example. The extension 

of the taxonomy T is the set ET = {brachial-artery[contains =blood], 

brachial-artery[blood =oxygen-rich], brachial-artery(wall - muscular], brachial-
artery [diameter = 3]}. 0 

3. INHERITANCE AND ExCEPTIONS 

The relation < defined in the previous section, constitutes the basis for reasoning with frames. In the 

next subsection we introduce some notions which will be used later in order to formalize multiple 

inheritance with exceptions. The approach in this subsection is basically to describe inheritance in a 

taxonomy T by means of so-called inheritance chains. We show that this approach generates a set of 

attribute-value specifications that under certain conditions equals the flattening of T. Furthermore, in 

Section 3.2 it is shown that inheritance chains can be employed for dealing with exceptions. 

3.1. Inheritance chains and interpretation 
One of the notions that plays a central role in this paper is that of inheritance chains. Inheritance 

chains are used for the representation of the reasoning that takes place in a frame taxonomy. In the 

following two definitions the form of such chains and a procedure for their construction is described. 

DEFINmON 3.1. Let T = (N,8,«.,<) be a taxonomy, where N = (l,K,A, C). An inheritance chain 

in T is an expression having one of the following forms: 
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y[a = c] 
YI< · · · < Yn 
YI< · · · < Yn-l < Yn[a=c] 

where y, Yi E K, i = 1, ... , n, n ;;ii: 2, are classes, and y [a = c], Yn [a = c] E 8 are attribute-value 
specifications. 0 

Note that attribute-value specifications are allowed only in isolation, or at the end of an inheritance 
chain. · 

The set of all possible inheritance chains in a given frame taxonomy can be constructed by the 
application of the subclass relation. 

DEFINITION 3.2. Let T = (N,8,<,<) be a taxonomy, where N = (l,K,A, C). Furthermore, let 
a E A and c E C. Then, Or is the set of inheritance chains in T such that: 

(1) For each y[a = c] E 8lx. we have y[a = c] E Or. 
(2) For each pair (Y1>Y2) E <,we have Y1 < Y2 E Or. 
(3) For each YI < · · · < Yk E Or and Yk < · · · < Yn E Or, 2 :s;;; k :s;;; n -1, we have 

y 1 < · · · < Yn E Or, where Yi E K, i = 1, ... , n, n ;;;;i. 3. 
(4) For each YI < · · · < Yn E Or and Yn[a""" c] E Or, we have Y1 < · · · < Yn[a = c] E Or, 

where Yi EK, i = 1, ... ,n, n ;;ii: 2. 
0 

The transitivity property of the subclass relation will normally not be exploited in our examples, 
since, as we will see in the sequel, inheritance chains give a characterization at least as powerful. In 
the next example, we illustrate the construction of inheritance chains. 

ExAMPLE. Consider the taxonomy T = (N,8,<,<) which is defined such that I= {x}, K = {YI> 

Y2• y3} and 8 = {Y1 [a1 = ci], Y2[a2 = c2], y3 (a3 = c3), x(a4 """c4)}, where OJ. 02, 03, and a4 are 
distinct attributes, and c I> c2, c3, and c4 are distinct constants. Assume that < and < are defined 

by: x « Y1> Y1 < y2, and Y2 < y3. The set Or of inheritance chains in Tnow consists of the fol­
lowing elements: 

0 

y 1 [a 1 - ci] 
Y2[a2 - c2] 
Y3 (03 = C3) 
YI< Y2 
Yi < Y2[a2 = c2] 
Y2 < Y3 
Y2 < Y3 [a3 '"""c3) 
Yi< Y2 < Y3 
Yi< Y2 < y3(a3 =c3) 

A set of inheritance chains is interpreted as a description indicating which attribute-value 
specifications can possibly be inherited by particular classes in the taxonomy. In multiple inheritance 
with exceptions certain combinations of attribute-value specifications are considered to be 'contradic­
tory'; we will see that under suitable conditions certain inheritance chains can be cancelled, thus 
preventing the occurrence of such a contradiction. We first introduce the notion of a conclusion of an 
inheritance chain, which can be viewed as an explicit means for establishing which attribute-value 
specifications may be inherited from an inheritance chain of a taxonomy. 

-- - _____ .;;,,.~·---
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DEFINmON 3.3. Let T = (N,8,«,<) be a taxonomy, where N = (I,K,A,C), and let Or be the set 
of inheritance chains in T. Let ~r = (K X A X C) U {E}, where E denotes the empty attribute-value 
specification. Furthermore, let a EA, c E C. The conclusion function associated with T is the func­
tion y: Or ~ ~r. defined as follows: 

(1) For each w = x[a = c], we have y(w) = w. 
(2) For each w =Yi < · · · < Yn [a - c], y; E K, i = 1, ... ,n, n ;;;i. 2, we have 

y(w) = Y1[a = c]. 
(3) Otherwise, y(w) is the empty attribute-value specification, i.e. y(w) = E. 

We call y( w) the conclusion of the inheritance chain w. The image of Or under the application of the 
function y is called the conclusion set of Or and is denoted by 'Y(Or ). D 

In the sequel, we talce { E} U X = X, where X is any set of attribute-value specifications. Note that 
by this assumption empty attribute-value specifications do not contribute to the conclusion set of a 
taxonomy. 

When the attribute-value specification z [a = c] is obtained as the conclusion of an inheritance 
chain, we say that the value c of the attribute a is inherited by z. 

ExAMPLE. Consider again the set Or of inheritance chains from the preceding example. The conclu­
sion set 'Y(Or) of Or then consists of the following attribute-value specifications: 

D 

Yi [a1 - ci] 
Y2[a2 - c2] 
YJ (a3 = c3) 
yi(a2 = C2) 

Yi (a3 = c3] 
Y2(a3 = c3) 

Under certain conditions, the conclusion set 'Y(Or) of a given set of inheritance chains Or, may con­
tain, amongst other elements, attribute-value specifications which only differ in their specified con­
stant. Let us give an example of such a situation. 

ExAMPLE. Consider the following set of inheritance chains Or, containing the following chains: 

Y• [a1 - ci] 
Y 1 < Y2 [a 1 = c2] 

where a 1 is an attribute and CJ> c2 are distinct constants. The conclusion set 'Y(Or) contains at least 
the following attribute-value specifications: 

y 1 [a1 - ci] 
yi(a1 - C2) 

D 

Clearly, if a sensible meaning is to be associated with the frame formalism, only one of the conclu­
sions in the foregoing example should hold true. In order to deal with such contradictory informa­
tion, we introduce the notions of an interpretation and interpreted conclusion set. 

DEFINmON 3.4. Let T = (N,e, «, <) be a taxonomy, where N = (I, K,A, C). Let Or be the set of 
inheritance chains in T, and let ~r = (K X A X C) U { E}, where E is the empty attribute-value 
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specification. Furthermore, let y be the conclusion function of T defined according to Definition 3.3. 
The interpretation function of a taxonomy T is the partial function 'r: 2°r ~ 2"2.r, such that for each 
0 E 2°r: 

(O) = {{y(w) I w E O} providedx[a = ci],x[a = c2],c1 =;i=c2, notbothiny(O) 

'r undefined otherwise 

We call c.y(Or) the interpreted conclusion set of T. D 

In the sequel, the result of applying the function 'r to a set of inheritance chains will be called the 
result of inheritance. 

In the next definition we introduce the notions of consistency and inconsistency of a taxonomy T 
based on the interpretation function just defined. 

DEFINmON 3.5. Let T = (N,8,<,<) be a taxonomy, and Or the set of inheritance chains in T 
according to Definition 3.2. Furthermore, let y be the conclusion function according to Definition 
3.3, and let 'r be the interpretation function as defined in Definition 3.4. The taxonomy T is said to 
be y-consistent if c.y(Or) is defined. Otherwise, T is called y-inconsistent. D 

It will be obvious that the taxonomy discussed in the last example is y-inconsistent. The incon­
sistency of a taxonomy indicates that the result of inheritance is not unique. We subsequently prove 
some properties of the mapping 'r· 

LEMMA 3.1. Let Ou and Ov be the sets of inheritance chains of the taxonomies U and V, respectively, 
such that Ou k Oy. Furthermore, let 'r be the interpretation function according to Definition 3.4. If 
both c.y(Ou) and c.y(Ov) are defined. then c.y(Ou) k c.y(Ov). i.e. the mapping 'r is monotonic. 

PROOF. The proof follows straight from the Definitions 3.3 and 3.4. D 

In Section 2 we have defined the flattening •r of a taxonomy T. In the following theorem we prove 
that the flattening •r of a given taxonomy T is equal to the interpreted conclusion set of T, provided 
that the taxonomy T is y-consistent. 

THEOREM 3.1. Let T = (N, 8, «., <) be a taxonomy. Let Ly be the interpretation function introduced in 
Definition 3.4, and let Or be the set of inheritance chains in the taxonomy T. Furthermore, let •r be the 
flattening of T. Then, if T is y-consistent, we have c.y(Or) = •r· 

PROOF. Let R = 81 x U < and let RP be the unique minimal set with R k RP, that is closed under 
p. From Definition 2.7 we have •r k RP. Suppose that Y1 < Y2• ... ,y; < Y1+i. ... •Yn-l < Yn 
E RP and Yn [a= c] E RP, then also y 1 [a = c] E RP, since RP is closed under p. From the con­
struction of the inheritance chains in Or in Definition 3.3, it follows that there exists a chain 
y 1 < · · · < Yn [a = c] E Or. Since it is given that T is y-consistent, we have y 1 [a - c] E c.y(Or ). 
It follows that each attribute-value specification in RP is a member of c.y(Or). So, •r k c.y(Or). 

On the other hand, suppose that y 1 < · · · < Yn [a = c] E Or. then by Definition 3.4, and from T 
being y-consistent, we have y 1 [a = c] E c.y(Or). From the construction of the inheritance chain 
y 1 < · · · < Yn [a= c] E Or, it follows that there exist y 1 < y 2 , • •• , 

y; < Y; +i. ... •Yn-l < Yno Yn[a ... c] E R. It follows that Yi [a= c] ERP, since RP is closed 
under p. Hence, it follows that c.y(Or) k •r· We conclude that c.y(Or) = •r· D 

It should be noted that the extension of a y-consistent taxonomy T as stated in Definition 2.8 can 
now be redefined in terms of the interpreted conclusion set c.,.(Or ). 

-----?;.., ...._ __ 
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3.2. Exceptions 
A taxonomy which is inconsistent in the sense of Definition 3.5 can sometimes be 'made' consistent 
by cancelling some of the inheritance chains from the entire set of inheritance chains in the taxonomy, 
by using knowledge concerning the hierarchical ordering of the frames in the taxonomy. As a conse­
quence, certain conclusions from the conclusion set y(Slr) of the taxonomy T are cancelled too, 
thereby preventing the occurrence of some of the mutually exclusive attribute values which would 
arise otherwise. However, the interpretation function 'r defined in Definition 3.4 does not provide 
such means for removing conclusions, since this mapping is monotonic. Hence, another interpretation 
mapping is requirc!d. Such a mapping that is capable of dealing with exceptions is developed in this 
section. This introduces nonmonotonic reasoning within the frame formalism. 

In the following definition, the notion of an exception is described more precisely. 

DEFINITION 3.6. Let T = (N,8,«,<) be a taxonomy, and let Slr be the set of inheritance chains in 
T. Then, every x[a = c 1] E 8 for which there exists an inheritance chain w E Slr, such that 
y(w) = x[a = ci]. c 1 -=Pei E C, is called an exception. D 

The basic device for handling exceptions is provided by the notion of an intermediary class, which is 
introduced in the following definition. 

DEFINITION 3.7. Let T = (N,8,«,<) be a taxonomy. Let Slr be the set of inheritance chains in T. 
A class y E K is called intermediary to an inheritance chain y 1 < · · · < Yn E Slr, y; E K, 
i = 1, ... , n, n ~ 2, if one of the following conditions is satisfied: 
(1) y = y; for some i, I :E:;; i < n, or 
(2) there exists a chain y 1 < · · · < Yp < z 1 < · · · < Zm < y 9 E Slr. for some p, q, 

l:E:;;p<q:E:;;n, such that y=zk, l<kE;;m, where z;'=FYi• and z;, Yi EK, i= l, ... ,m, 
m ;;;i. 1, j = 1, ... ,n. 

0 

ExAMPLE. Consider the taxonomy T = (N,8,«,<), where I= 0, K = {y,, yi, y3, y4}, 8 is 
empty, and the relation< is defined as follows: y, <Yi· y, < y3, y3 < y4, Yi < y3. The set of 
inheritance chains in T contains amongst other chains the following ones: 

Y• < Y3 < Y4 
Yi< Yi< Y3 

The class Yi is intermediary to both chains. The graphical representation of the taxonomy is given in 
Figure 2. D 

Intermediary classes are applied in the sequel to deal with the occurrence of exceptions in multiple 
inheritance. By means of intermediary classes some of the inheritance chains are cancelled thus yield­
ing a different set of conclusions of the taxonomy. Such cancellation of inheritance chains is called 
preclusion, and is defined more precisely below. 

DEFINITION 3.8. Let T = (N,8, «, <) be a taxonomy. Let Slr be the set of inheritance chains in T, 
a EA, and c 1, ci E C. A chain y 1 < · · · < Yn [a - ci] E Slr, n ;;;i. 1, is said to preclude a chain 
y 1 < · · · < Ym [a= ci] E Slr, c, '=Pei, m > 1, if Yn is intermediary to Yt < · · · < Ym· D 

ExAMPLE. Consider the set of inheritance chains Slr which consists of the following elements: 



w,: Yi <Yi 
"'2: YI < Y3 
w3: Yt <Yi < Y3 
w4: Yi < Yi [a= ci] 
ws: Yi < YJ [a= ci] 

FIGUJlE 2. A taxonomy with an intermediary class. 

w6: Yi < Yi < YJ [a - ci] 
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In these chains we have that a is an attribute, and c 1 and ci are two distinct constants. The inheri­
tance chain w4 precludes both chains w5 and w6, since Yi is intermediary to the chains "'2 and w3 • D 

The notion of preclusion is subsequently used for introducing a new notion of a conclusion of an 
inheritance chain. A conclusion of an inheritance chain is now defined with respect to a set of inheri­
tance chains. 

DEFINITION 3.9. Let T = (N,8,<,<) be a taxonomy. Let OT be the set of inheritance chains in T, 
and y the conclusion function according to Definition 3.3. Let ~T = (K X A X C) U { t: }, where t: 
denotes again the empty attribute-value specification. The prec/usive conclusion Junction is the map­
ping 'IT: OT X 2°r --+ ~T• such that 'IT(w,0) = t:, if there exists a chain w' E 0, with 0 ~ OT, such 
that w is precluded by w'; otherwise, 'IT(w,O) = y(w), w E OT. Let 0 ~ OT, then the set { 'IT(x,O) I 
x E O} is called the prec/usive conclusion set of 0, and is denoted by Il0 . 0 

By using the preclusive conclusion function 'IT instead of the conclusion function y, the notion of an 
interpretation is redefined, essentially by replacing the latter conclusion function in Definition 3.4 by 
the former one. The resulting definition is the following. 

DEFINITION 3.10. Let T = (N,8,<.,<) be a taxonomy. Let 'IT be the preclusive conclusion function 
according to Definition 3.9. Let OT be the set of inheritance chains in T, and let 
~T = (K X A X C) U {t:}. The prec/usive interpretation function of a given taxonomy T is a partial 
function c.,.: 2°r --+ 2~, such that for each 0 E 2Dr: . 

0 
= {{'IT(w,0) I w E O} providedx[a = ci], x[a = ci]. c 1 =Fci, notbothinil0 

c.,.( ) undefined otherwise 

.-.--;'''-·----
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We call c,,(Or) the inheritable conclusion set of T. D 

ExAMPLE. Consider the taxonomy T = (N,8, «, <), where the set I is empty, and 
K = {y, ,y2,y 3,y 4 }. Let the following attribute-value relation 8 be given: 

(I) y 2 [a= ci] 
(2) y 3 [a= c2] 

where a is an attribute, and c 1 and c2 are distinct constants. Furthermore, the relation < is defined 
by the following elements: 

(3) Y1 < Y2 
(4) YI <y3 
(5) Y2 < Y4 
(6) YJ < Y4 

This taxonomy is depicted graphically in Figure 3. 

FIGURE 3. A taxonomy having no inheritable conclusion set. 

The preclusive conclusion set of the set of inheritance chains in this taxonomy is equal to 
{yi[a=ci], yi[a=c2], y 2[a ... ci], y 3 [a-c2)}. So, the inheritable conclusion set of T is 
undefined. 0 

From the foregoing example and the previously defined notion of 'inheritable conclusion set', it fol­
lows that the application of multiple inheritance in a taxonomy might still lead to the derivation of 
contradictory information. Such a taxonomy will be called 'IT-inconsistent according to the following 
definition. 

DEFINmON 3.11. Let T = (N,8,«,<) be a taxonomy, and let Or be the set of inheritance chains in 
T. Furthermore, let 'IT be the preclusive conclusion function according to Definition 3.9, and let c,,(Or) 

be the inheritable conclusion set of T according to Definition 3.10. The taxonomy T is said to be 
'IT-consistent if c,,(Or) is defined; otherwise T is said to be 'IT-inconsistent. 0 

ExAMPLE. Consider the taxonomy T = (N,8, «, <), where I = { x} is the set of instances, and 
K = {y1>y2,y3} the set of classes. Furthermore, let 8 consist of the following attribute-value 
specifications: 

(1) x[a 1 = ci] 
(2) y i(a2 =- C2) 



(3) Y2 [a3 = c3] 
(4) J3 (a3 = C4) 
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Herein a., a2 and a3 are distinct attributes and c., c2, c3 and c4 are distinct constants. In addition, 
the function « and the relation < are defined as follows: 

(5) Yt < Y2 
(6) Yt < Y3 
(7) Y2 < J3 
(8) x « Yt 

This taxonomy is graphically depicted in Figure 4. 

0 [a1•c1] 

FIGURE 4. A taxonomy having an inheritable conclusion set. 

In addition to the inheritance chains 2 to 7 given above, OT contains the following elements: 
(9) y I < Y2 < Y3 
(10) Yt < Y2 [a3 = c3) 
(11) Yt < y3(a3 = c4] 
(12) Y2 < Y3 [a3 = c4) 
(13) Yt < Y2 < J3(a3 = c4) 
The conclusion set of this set of inheritance chains OT is equal to y(OT) = {y 1 (a2 = c 2], 

yi[a3 = c3), yi(a3 = c4), J2(a3 = c3), J2(a3 = c4), y3(a3 = c4)}; the interpreted conclusion set 
iy(OT) appears to be undefined. Hence, the taxonomy is y-inconsistent. 

Consider the set OT once more, and let us investigate which attribute-values specifications are inher­
itable under the preclusive conclusion function w. As stated in the definition, an inheritance chain "' 
is inheritable if not precluded by any other chain. Because only chains ending in an attribute-value 
specification can be precluded by another chain also ending in an attribute-value specification, th~ 
examination of chains of such form will suffice. Hence, let us look at the following chains. 
(2) J i(a2 = C2) 

(3) Y2 [a3 = c3] 
(4) J3 (a3 = C4) 
(10) Yt < Y2 [a3 = c3) 
(11) Yt < J3 (a3 = c4) 
(12) Y2 < y3 (a3 = c4) 
(13) Yt < Y2 < J3 (a3 = c4) 
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Chain 11 is precluded by chain 10, for y 2 is an intermediary class in y 1 < y 3 ; chain 12 is precluded 
by 3. The reader may verify that the remaining chain y 1 < y 2 < y 3 [a 3 = c4] is precluded too. 
The inheritable conclusion set 1,,(0T) of the set of inheritance chains is equal to: 
1,,(0T) = {Y1 [a2 = c2], Y1 [a3 = c3), Y2 [a3 = c3), y3 (a3 - c4)}. Therefore, the taxonomy T is 'IT­

consistent. D 

From Definition 3.10 is follows that different taxonomies may give rise to identical inheritable conclu­
sion sets. In the ~uel, we shall encounter several examples of taxonomies where this is the case. By 
the following definition, such taxonomies will be called equivalent 

DEFINITION 3.12. Let T1 = (N 1t81t«1t<1) and T2 = (N2,82,«2.<2) be two taxonomies. These 
taxonomies are called equivalent if both T 1 and T 2 are 'IT-inconsistent, or both are 'IT-consistent and we 
have that 1,,(0T,) = 1,,(0T.)· D 

To conclude this section, we introduce the notion of an inheritable extension of a taxonomy T, as an 
alternative to the definition of an extension introduced in Section 2. Here, only those attribute-value 
specifications inheritable according to the preclusive interpretation function &,,, supplemented with the 
attribute-value specifications in the instances, will occur in the inheritable extension of T. 

DEFINITION 3.13. Let T = (N,9, «, <) be a taxonomy, and let OT be the set of inheritance chains in 
T. Furthermore, let 'IT be the preclusive conclusion function according to Definition 3.9, and let &,,(OT) 

be the inheritable conclusion set of T according to Definition 3.10. Then, the inheritable extension of 
T, E~ is defined as the set: E~ = {x[a = c] I x « y, y[a = c] E &,,(Or), provided x[a-= d] fl. 9, 

c =F d} u 91i. D 

Ex.AMPLE. Consider again the taxonomy T in the preceding example. The inheritable extension of T 
in this case is equal to E~ = {x[a 1 = ci], x[a2 ... c2], x[a3 = c3)}. D 

4. SPANNING TREES AS A BASIS FOR AN ALGORITHM OF MULTIPLE INHERITANCE 
In the preceding section we have been dealing with multiple inheritance with exceptions in frame tax­
onomies. It was mentioned that these taxonomies could also be represented as acyclic directed 
graphs. As has been stated in the introduction, single inheritance in tree-like taxonomies, where attri­
butes are allowed to be specified more than once, is easy to implement, contrary to the handling of 
exceptions in the more general graph-like taxonomies. Informally speaking, the algorithm of single 
inheritance operates on a tree structure, and traverses a single branch of the tree towards the root, 
until a value for a particular attribute has been obtained; all other attribute values which might be 
obtained by going further up towards the root are disregarded. 

In this section, we shall study multiple inheritance with exceptions with regard to its algorithmic 
properties. The structure of this section is as follows. To begin with, in Section 4.1 several notions 
defined in the two preceding sections will be reformulated into graph-theoretical terms. In Section 4.2 
we employ these notions for analysing single inheritance with exceptions in (tree-like) taxonomies. 
The results in this section will be subsequently utilized in Section 4.3, where we show that it is possi­
ble to transform any 'IT-consistent graph-like taxonomy into an equivalent tree-like taxonomy. More­
over, it turns out that single inheritance in the tree representation of the taxonomy yields a set of 
results that corresponds to the inheritable conclusion set of the original graph-like taxonomy. 
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4.1. Graph representation of a taxonomy and inheritance chains 
We first introduce the graph representation of a taxonomy T, which will be used intensively in the 
remainder of the paper. For simplicity reasons, we only deal with the graph representation of classes 
in a taxonomy. 

DEFINITION 4.1. Let T = (N,8,«,<) be a taxonomy. Furthermore, let A be the set of attributes in 
T. The directed attribute graph Ga = (V(Ga),R(Ga).Aa), or i-graph for short, of the taxonomy T is a 
labelled acyclic directed graph for some attribute a E A, which is obtained from T as follows: 

(1) V(Ga) = {y I Y E K} 
(2) R(Ga) = {(y;,yj) I Y; < Yj} 
(3) Aa: V(Ga) ~ C is a partial labelling function, defined as follows: 

= {c ify[a = c] E 8lx 
~( y) undefined otherwise 

As an abbreviation, Aa(Y) = c will also be denoted by ya=c, and we say that c is the value of attri­
bute a in y. D 

From this definition it follows that a taxonomy T is represented by a set of directed attribute graphs 
{Ga I a EA}. Note that Definition 4.1 introduces a one-to-one correspondence between the 
definition of a taxonomy with respect to a particular attribute a EA, and its directed attribute graph. 
In particular, under this isomorphism we have that ya=c = y[a = c]. Therefore, we shall use part of 
the terminology introduced in the previous section also in the current context of directed attribute 
graphs. In the sequel, the notation ya=c will not only be used to denote elements y E V(Ga) for 
which we have ~(y) = c, but also to indicate that a particular vertex y E V(Ga) has inherited an 
attribute-value pair (a,c). This is similar to the way attribute-value specifications have been defined in 
Section 2. Note that the directed attribute graphs Ga of a taxonomy Tare always connected graphs, 
which is a consequence of the presence of a most general class T in K. We call the vertex that 
corresponds to the most general class the source of the graph. 

Next, we employ the foregoing definition of a graph representation of a taxonomy in an algorithm 
that constructs sequences of vertices in a way closely resembling the construction of inheritance chains 
in Definition 3.2. The following algorithm essentially restates Definition 3.2, but in such a way that 
its algorithmic properties can be studied more readily. 

ALGORITIIM 4.1. Let T = (N,8,«,<) be a taxonomy, and let Ga = (V(Ga),R(Ga).Aa) be the directed 
attribute graph representation of T, for some a EA. A sequence of vertices, possibly having an 
attribute-value specification at the end, will be denoted by <y., ... ,yn>, and 
<y., ... •Yn-1>Y:=c>, respectively. Such sequences will be used for the representation of inheri­
tance chains. To prevent introducing new terminology, the representation of an inheritance chain by 
means of a sequence is again called an inheritance chain. The function call Length<s> gives the 
number of elements in the sequence s. The function call Last<s> yields the last element in the 
sequences, e.g. Last<<y., ... •Yn-l>Y:=c>> = y:=c, and the function call First<s> returns the 
first element of the sequences. Furthermore, AdjacentFro•<u> yields all vertices adjacent from u in 
Ga, i.e. if (u,v) E R(Ga), then v E Adjacentfro•<u>. The procedure call Append(s,x> expresses that 
the element x is appended to the end of the sequences. Lets be defined as <y 1, ••• •Yn- 1,y:=c>; 
the procedure call Cone Lus i on<s> will then yield the element yT =c. 

We first consider the algorithm for constructing inheritance chains, with as input the attribute 
graph Ga and as output the set of sequences S. 
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proc ConstructChains<Ga> 
global S; 

s - 0; 
for each y E V(Ga) do 

if Aa(y) = c then 
S ..- SU {ya=c} 

ft; 

ExtendChain<y,<y> > 
od 

end 

The next procedure yields all possible sequences for a particular vertex, by extending the one-element 
sequence constructed in the preceding procedure, in a recursive manner. 

proc ExtendChain<y,s> 

U ..- AdjacentFro•<y>; 
for each z E Udo 

od 

end 

s' ..- Append<s,z>; 
if Aa(Z) = C then 

s'' ..- Append<s,za =c) 

ft; 

s - s u {s'} u {s''}; 
ExtendChain<z,s'> 

The following procedure GammaConsistency checks whether or not the taxonomy which is represented 
by the attribute graph Ga is y-consistent with respect to a given attribute a E A. To this end, the 
procedure examines all sequences in the set S produced by the procedure ConstructChains above. 
The output of the procedure is the interpreted conclusion set C, or the message that the original tax­
onomy T is y-inconsistent. 

proc Ga•maConsistencyCS> 

c - 0; 
for each s E S do 

od 

end 

o ..- Conclusion<s>; 
if o = ya =c and there exists some ya =d E C, c =I= d then 

report "taxonomy is y-inconsistent"; 

return 

else 
C..- CU {ya=c} 

ft 

The following procedure PiConsistency examines the constructed set of vertex sequences S, and 
reports whether or not the taxonomy T represented by the attribute graph is 'IT-consistent. The output 
of this procedure is the inheritable conclusion set C, or the message that the original taxonomy is .,,_ 
inconsistent. 



proc PiConsistency<S> 

c +- 0; 

for each s E S do 

precluded +- false; 

od 

end 

If Last(s) = ya =c and Length Cs> ;;a 2 lbeu 

for each s' e S, s' =F s wblle not precluded do 

precluded+- Precludes<s,s'> 
od 

ft; 
If not precluded lbeu 

ft 

o +- Conclusion<s>; 
If o = ya =c and there exists some ya =d E C, c -=/= d lbeu 

report "taxonomy is TT-inconsistent"; 

return 

else 
C +-CU {ya =c} 

ft 
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The function Precludes investigates whether or not First<s> = First<s'>, Last<s'>-=/= ya =d is con­
tained in s, and whether s' contains a vertex y for which we have ~a( y) = d, d-=/= c. H all three con­
ditions are satisfied, the value true is returned; otherwise the function returns the value false. D 

The correctness of these algorithms is easily proven from the definitions in Section 3. We next inves­
tigate the worst-case time complexity of the algorithms given above. 

LEMMA 4.1. Let T = (N,8,«,<) be a taxonomy. Furthermore, let Ga = (V(Ga),R(Ga)Ai) be the attri­
bute graph representation of the taxonomy. Let jV(Ga)I = n, then using Algorithm 4.1 for checking the 
y-consistency of a taxonomy takes at most O(n2n) steps, and checking the 'IT-consistency of a taxonomy 
requires at most O(n22n) steps. 

PROOF. The procedure ConstructChains enumerates all sequences (inheritance chains) for each vertex 
y E V(Ga). Consequently, the maximum number of sequences to be generated equals 

2· }; [k] - n = 2n + I - n - 2. The procedure Gammaconsistency produces an interpreted conclu-
k = l 

sion set C, or reports y-inconsistency, just by taking every elements E S, and comparing its conclu-
sion o with each element in the conclusion set C produced so far. Note that the maximal cardinality 
of C is equal ton, since then each vertex in Ga has an attribute a which has obtained a value. So, 
once n element have been inserted into C, every subsequently produced attribute-value specification 
ya =c has to be compared with at most n elements. Checking y-consistency, and producing the inter-

n- I 
preted conclusion set therefore takes at most ~ k + n (2n + 1 - 2n - 2) = O(n2n) steps. For check-

k = 1 
ing the 'IT-consistency of a taxonomy, each sequences having a length greater than or equal to 2, and 
an attribute-value specification at the end, is compared to all other elements in S to decide whether or 
not is must be precluded. Checking whether some sequence s' precludes the given sequence s in the 
procedure Precludes takes at most O(n) time. This procedure is executed at most 
(2n + 1 - n - 3)(2n - n - 1) times. Hence, checking for each sequence s whether it can be precluded 
by a sequences' takes at most O(n22n) time. D 
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From the proof of Lemma 4.1 we conclude that checking y- and 'IT-consistency of a taxonomy is 
predominated by operations on the representation of inheritance chains. An improvement of the time 
complexity of the algorithm can only be obtained from abandoning using inheritance chains as a basis 
for checking consistency. Checking they-consistency of a taxonomy can indeed be performed much 
more efficiently than described in the preceding algorithm, by using another method than offered by 
inheritance chains. One suitable algorithm starts with the source of the attribute graph Ga. Then, the 
attribute graph is traversed in a direction reverse to the one indicated by the arcs in R(Ga), where at 
the same time attribute values are propagated. This way, each arc has to be traversed only once. The 
taxonomy is established to be y-inconsistent if and only if at a particular vertex an attribute has 
obtained more than one attribute value. Let IV( Ga)I = n, then the maxim.al number of arcs in any 
acyclic directed ~aph is equal to n(n - 1)/2. Hence, the worst-case time complexity of the algorithm 
described is O(_n ). 

It is not so easy to improve checking 'IT-consistency in a taxonomy, since considering the relative 
position of vertices in a graph with respect to other vertices, is an essential aspect of checking 'IT­

consistency. The remainder of this paper will be devoted to developing an improved algorithm for 
checking 'IT-consistency. The starting point for this algorithm is single inheritance in a tree-like taxon­
omy. This will be dealt with in the next section. In Section 4.3 we then will develop a polynomial 
time-bounded algorithm for transforming the directed attribute graph of a graph-like taxonomy into 
an attribute graph of an equivalent tree-like taxonomy. The results in the next section will be part of 
the overall result achieved in Section 4.3. 

4.2. Single inheritance 
Single inheritance presupposes that the directed attribute graph on which it operates bas the form of a 
directed tree. This will be the point of departure for defining a taxonomy that has a corresponding 
attribute graph which is a tree. 

DEFINITION 4.2. Let T = (N,8,«,<) be a taxonomy. We call the taxonomy Ta tree-like taxonomy 
if its associated directed attribute graph Ga, for each a E A, has the following properties: 

(1) There is exactly one vertex, called the root, with zero out-degree. 
(2) Every vertex except the root has an out-degree equal to one. 
(3) There is a path from each vertex in Ga to the root. 

The directed attribute graph Ga of a tree-like taxonomy is called an i-tree. D 

ALGORITIIM 4.2. Let T = (N,8 ,«,<) be a tree-like taxonomy, and let Ga = (V(Ga),R(Ga),~a) be the 
i-tree of T, for some a E A. The following (trivial) algorithm for single inheritance with exceptions 
yields the attribute value of an attribute a EA, for given vertex y E V(Ga), by searching the i-tree 
Ga. 

func Inheri tCy,w> 

ifAa(y) = c 
then 

return< wa = c) 

elsif (y,z) E R( Ga) 
then retmnCinherit(z,w» 
else return (nil ) 6 

end 

The invocation Inherit< y,y> only returns a single attribute value for a particular vertex y and the 
attribute a, or nil. D 

The value for each a EA, and given vertex y can (naively) be collected by repeatedly executing 
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Algorithm 4.2 for each a EA. The algorithm gives a feasible procedure for computing the inherit­
able conclusion set of a tree-like taxonomy T: its worst-case time complexity is quadratic in the 
number of vertices, for a given attribute a E A. Note that we did not employ inheritance chains in 
this algorithm, which explains its favourable time complexity, as was also true for checking y­

consistency in the preceding section. Note also that a tree-like taxonomy can never be 'IT-inconsistent. 
We subsequently prove that the algorithm above produces results that correspond to the inheritable 

conclusion set of a tree-like taxonomy, introduced in Definition 3.10. 

LEMMA 4.2. Let T = (N,8,«,<) be a tree-like taxonomy, where N = (I,K,A,C). Let Or be the set of 

inheritance chains in T, and let A be the set of attributes in T. Then. the set of all elements ya =c, 

obtained by applying Algorithm 4.2 on the set of i-trees {Ga I a E A}, for each y E V( Ga), co"esponds 
to i,,(Or ). 

PROOF. Let Ga = (V(Ga).R(Ga)A,) be an arbitrary i-tree associated with the taxonomy T according 
to Definition 4.2. Let { c;, ,c;,. ... , c;.} ~ C. We denote the set of attribute-value specifications 

which results from applying Algorithm 4.2 to each y E V(Ga) by SG.· On the one hand, let y~ =c,. E 

SG.· Then we have either (a) that Aa(yi) = c1 •• or (b) that there exists a path Y1tY2• ... •Yn in Ga, 

such that Aa(Y;) is undefined, for i = 1, ... ,n - 1, and Aa(Yn) = c; •. In case (a) it follows directly 

from the definition of >-a that y 1 [a= c;.J E r,,(Or). In case (b) we have amongst other chains the fol­

lowing inheritance chains in Or: 

YI< Y2 
YI< Y2 < 
Y1 < Y2 < 

< Yn 
< Yn[a = c;.] 

Yt < Y2 < · · · < Ym[a = c;.J 

1 EO; n EO; m. Hence, it follows from Definition 3.10 that y 1 [a - c;.J E i,,(Or ). 

On the other hand, let y 1 [a= c1.J E r,,(OT). We have again two cases. In case (a) we have that 

yda = c;.] E 81x. and in case (b) we have that yda ... c;.] f£ 81x but yi[a = c;.] E i.,,(Or). In 

case (a) we have that y~ =c,. E SG.; in case (b) we may construct paths corresponding to the inheri­

tance chains given above; Algorithm 4.2 then yields the element y~ =c,.. Hence, we may conclude that 

i,,(Or) = SG.· D 

4.3. Transformation of an attribute graph to an i-tree 
A clear disadvantage of applying the procedures ConstructChains and P1Consistency in Algorithm 
4. I for checking the 'IT-consistency of a taxonomy and producing the inheritable conclusion set, is in 
combination their exponential nature. As has already been explained, this is due to the process of 
generating all inheritance chains in the procedure ConstructChains. This result stands in sharp con­
trast to the polynomial time complexity of single inheritance with exceptions in tree-like taxonomies 
for a given attribute a. Hence, it seems desirable to have some method available that is capable of 
transforming the i-graph of a given graph-like taxonomy to the i-tree of an equivalent tree-like taxon­
omy. Such a method indeed exists. In the following example we illustrate the basic idea. 

ExAMPLE. Consider the taxonomy T 1 = (N,8, <c:: , <) which is depicted in Figure 6. The taxonomy 
contains the following two attribute-value specifications: 

Y2[a = ci] 
y3(a = C2] 
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where a is assumed to be an attribute, and c 1 and c2 are two distinct constants. As can be seen, 
y 2 [a = c iJ is an exception. 

[a - C(] 

FIGURE 6. A graph-like taxonomy. 

Now, consider the following subset of the entire set of inheritance chains Or,: 

w1:Y1 <y2 
w2: Y1 < Y3 
w3: Y1 < Y2 < Y3 
w4: Y1 < Y2[a = ci] 
ws: Y1 < y3[a=c2] 
w6: Y1 < Y2 < y3[a=c2] 

From Definition 3.8 it follows that the inheritance chain w4 precludes both the chains w5 and w6 , 

since y 2 is intermediary to the chains "'2 and w3 according to Definition 3.7. The inheritable conclu­
sion set L,,(Or,) is equal to {yi[a=ci], y 2[a=ci], y 3[a=c2]}. Consider the taxonomy 
T 2 = (N,9,«,<'), depicted in Figure 7, which differs from the taxonomy T 1 by the absence of the 
element y 1 < y 3 from the definition of the subclass relation. (Nevertheless, the element y 1 < y 3 is 
still satisfied by transitivity.) As a consequence, its set of inheritance chains does not contain the 
chain w6, but it does contain the inheritance chain w5• However, as in T 1, the latter chain is pre­
cluded by w4, and the inheritable conclusion sets of the two taxonomies are equal. It should be noted 
that the former taxonomy T 1 is graph-like, while the graph representation of the latter taxonomy T 2 

is a tree. D 

We shall now pay attention to an algorithm that transforms a general i-graph of a graph-like taxon:­
omy into an i-tree of an equivalent tree-like taxonomy. The first part of the algorithm sorts the ver­
tices in the directed attribute graph G0 into a topological order, starting with the most general class T, 

where arcs are assumed to be traversed in a direction reverse to the one indicated. The reverse direc­
tion expresses the superclass, instead of the subclass interpretation of arcs. Such a topological sort is 
possible, since the directed graph is acyclic. However, the superclass relation in a frame taxonomy 
defines a partial order on the classes, not a total order as is yielded by the topological sort. This is 
corrected by the second part of the algorithm, which also handles attribute-value specifications in a 
correct way. This part of the algorithm constructs a breadth-first spanning tree S of the attribute 
graph G by traversing the graph in the reverse direction. The resulting tree is therefore called the 
reverse breadth-first spanning tree. The branches in the resulting i-tree still have a direction that is the 
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FIGUllE 7. Tree-like taxonomy equivalent to the taxonomy in Figure 6. 

same as in the original graph, since the reverse breadth-first traversal is merely performed for selecting 
branches to obtain a tree which has a corresponding tree-like taxonomy. Consequently, depth-first 
search in a reverse direction would serve as well. If we take the vertex corresponding to the most 
general class T, the source, as a starting point for breadth-first search, then we have that in the result­
ing directed tree there exists a path from each vertex to the root of the tree. However, since the way 
this tree has been constructed is based on the traversal order imposed by breadth-first search, and not 
by examining attribute-value specifications in the original graph G, some of the branches in the tree 
may have been selected wrongly. This means that the set of attribute-value specifications obtained 
from applying Algorithm 4.2 on the resulting i-tree does not correspond to the inheritable conclusion 
set of the graph-like taxonomy. We therefore proceed by reconsidering these choices of arcs by 
adding successively each of the arcs in G not in Sas edges to the underlying graph Hof S. Initially, 
the number of these arcs is equal to the cycle rank of the underlying graph of G. The cycle created 
by each addition of an edge, occurring in the underlying graph of G but not in H, to H is examined, 
and based on the consideration of intermediary classes it is decided whether or not the arc in S 
corresponding to the edge added to H will be removed and replaced by another arc. In such a way, 
the original spanning tree S and its underlying graph H may be transformed. This procedure is 
repeated until all arcs have been examined. In case a decision has been reached for every cycle thus 
created, Algorithm 4.2 for single inheritance may be applied on the resulting spanning tree. However, 
if a particular cycle has been constructed where the decision criterion fails, we have a 'IT-inconsistent 
taxonomy T: no suitable spanning tree exists in this case. 

The order in which the arcs are being processed is important. Since inheritance chains e5sentially 
express the order in which inheritance of attribute-value specifications should take place, we have to 
impose an order on the arcs respecting the relative position of the vertices in the directed attribute 
graph. A suitable basis for such an ordering is obtained by the topological sort of the vertices in the 
graph mentioned above. The arcs are assumed to be ordered according to the ordering number of 
their first component. After this global sketch of the principal idea, let us now go into some more 
detail. 

To examine the graph on the presence of conflicting attribute-value specifications, we first change 
the directed attribute graph of the taxonomy T into an undirected attribute graph, called the underly­
ing attribute graph. 
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DEFINmON 4.3. Let Ga = (V(Ga),R(Ga>.~a) be an attribute graph of a taxonomy T = (N,8,«,<), 
for some a E A, where A is the set of attributes in T. The underlying attribute graph Ha of Ga is the 
undirected graph Ha = (V(Ha),E(Ha),Aa), where V(Ha) = V(Ga), and E(Ha) is obtained by consider­
ing all arcs in R(Ga) as edges in E(Ha)· Moreover, the function Aa in Ha is taken from Ga. D 

In particular, cycles in the underlying attribute graph Ha with vertices having attribute-value 
specifications are of interest to us, for these indicate potential causes of 'IT-inconsistency. Therefore, in 
the following de~tion the notion of an attribute cycle is introduced. Such a cycle contains at least 
one attribute-value specification for a particular vertex in Ga, which, after adding direction to the 
edges in the cycle graph, has an out-degree equal to one. 

DEFINITION 4.4. Let Ga = (V(Ga),R(Ga).Aa) be an attribute graph of a taxonomy T = (N,8,«,<), 
for some a E A, and let Ha = (V(Ha),E(Ha),Aa) be the underlying attribute graph of Ga. A cycle 
f = Y1>Y2 •... •Yn.Zq.Zq - 1> ... ,z,,y,, n;;;;;. 2, q ;;;J!= 0, in Ha is called an attribute cycle, if 
y 1,y2, . .. •Yn and y 1,z1.z2 •... ,z9 ,yn are distinct paths from y, to Yn in Ga, and if there exists at 
least one k, 1 < k < n, such that Aa(Yk) is defined. Otherwise, the cycle r in Ha is called a non­
attribute cycle. D 

DEFINITION 4.5. Let Ga and Ha be defined as in the foregoing definition. An attribute cycle 
f = y 1,y2, ... •Yn.Zq.Zq - 1> ... ,z 1,y 1, n ;;;J!= 2, q ;;;J!= 0, in Ha is called straight if there exists at least 
one k, 1 < k < n, such that ~a(Yk) is defined, and if for each j, 1 ~ j ~ q, X0 (zj) is undefined. D 

DEFINmON 4.6. Let Ga and Ha be defined as in Definition 4.4. An attribute cycle 
f = y,,y2, ... •Yn.Zq.Zq - 1> ... ,z,,y,, n;;;;;. 2, q ;;;J!= 0, in Ha is called ambiguous if there exists at 
least one k, 1 < k < n, such that Aa(Yk) = c, and if there exists at least one j, 1 ~ j ~ q, such that 
Aa(zj) = d. An ambiguous attribute cycle is called arbitrary if it is an ambiguous attribute cycle for 
which Aa( y 1) exists, or an ambiguous attribute cycle for which we have that for each k, 1 < k < n, 
and for each j, 1 ~ j ~ q, if both ~a(Yk) and "Ao(zj) are defined, we have Aa(Yk) = "Aa(zj). 0 

Let us now consider the topological order on the vertices of a directed attribute graph. As we said 
above, the transformation of the spanning tree will be guided by this ordering. 

DEFINITION 4.7. Let Ga = (V(Ga),R(Ga).Aa) be the directed attribute graph associated with the tax­
onomy T = (N,8, «, <), for some attribute a E A. A topological order on the vertices 
V(Ga) = (y.,y2, ... ,yn}, n ;;;J!= 1, is a function T: V(Ga)-+ {1,2, ... ,n}, such that if (y;,yj) E 
R(Ga), we have 'T(yj) < 'T(y;). The ordered attribute graph G; = (V(G;),R(G;),A;) is obtained from 
Ga by attaching to each vertex y; E V(Ga) an integer superscript equal to the ordering number 
'T(y;). 0 

We finally are in a position to present the definition of the reverse breadth-first spanning tree. 

DEFINITION 4.8. Let Ga = (V(Ga),R(Ga),Aa) be the directed attribute '¥:aph associated with the tax­
onomy T = (N,8,«,<), for some a EA, and let G; = (V(G;l,R(Ga).A:) be th; ordered ~ttribute 
graph of Ga. Then, Sa = (V(Sa),R(Sa).ha), where V(Sa) = V(Ga ), R(Sa) ~ R(Ga ), and Aa ts taken 
from G; is a directed tree, called the reverse breadth-first spanning tree of Ga. 0 

By the application of the Definitions 4.1 to 4.8 it is possible to construct a spanning tree Pa for the 
attribute graph Ga, for some a EA, which is an i-tree of a tree-like taxonomy, equivalent to the origi­
nal graph-like taxonomy. This construction is described by the following algorithm. 
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ALGORITHM 4.3. Let T = (N,8,«,<) be a graph-like taxonomy, and let A be the set of attributes in 
T. Suppose that Ga = (V(Ga),R(Ga).Aa) is the associated i-graph of T, for some a EA, and let G; 

be the ordered attribute graph of Ga. In the algorithm the directed attribute graph Ga is transformed 
into G; by a call to the function Topologicalsort. Furthermore, let Sa = (V(Sa),R(Sa).Aa) be the 
reverse breadth-first spanning tree of Ga, and let Ha = (V(Ha),E(Ha).Aa) be the underlying attribute 
graph of Sa. In the algorithm, the spanning tree Sa is obtained from the ordered attribute graph G; 

by a call to the function BFS. Let f = y 1 •YJ• ... , Yn.Zq.Zq-1, ... , Z 1,y1, n ;;;a. 2, q ;;i. 0, be a cycle 
obtained by add.i.J'.!.g some arc (y 1,u) E R(Ga) \R(Sa) as an edge to Ha, where u is either equal to 

y 2 or to z 1. We suppose that y 1,y2, ... •Yn• and y 1,z., ... ,z9,yn are distinct paths from y 1 to Yn 
in Ga. Let B be the set of arcs occurring in R(G;) but not in R(Sa)· Then, we assume that s(B) is a 
sequence of elements (y~,y~), where for each b; = (y~,y~), bj = (y~.y;) E s(B) we have that 
i < j if k < m. A spanning tree Pa for Ga which is an i-tree of an equivalent tr~like taxonomy is 
obtained by the following algorithm. 

proc Spanning-I-Tree<Ga> a: +- TopologicalSort<Ga>; 

Sa +- BFS<G:>; 
B +- R<G:> \ R<Sa>i 
consistent +- true; 
for each r e s(B) while consistent do 

construct cycle f by adding the edge corresponding to r to Ha; 
if r is a straight attribute cycle then 

Transfor11<Sa,f> 
elsif r is an ambiguous cycle but not arbitrary then 

consistent +- false 
ft 

od; 
if consistent then 

report "constructed i-tree is Pa = (V(Sa),R(Sa>.Aa>" 
else report "taxonomy is w-inc:onsistent" ft 

end 

In the procedure Spanning-I-Tree an arc r E s(B) is processed in the procedure Transform if adding 
r as an edge to the underlying attribute graph Ha of Sa gives rise to a straight attribute cycle. In that 
case, the set R(Sa) will be possibly modified in the procedure Transform as follows. In case the cycle 
r defined above is a straight attribute cycle, the attribute graph Ga contains at least one element 

y:=c .. , I < k < n. If r = (y1,y2), the procedure Transform will modify the spanning tree Sa by 
adding the arc r and removing ( y 1,z 1 ); otherwise, it returns the spanning tree unmodified. If the 
cycle is an ambiguous cycle, an inconsistency has been encountered if it is not an arbitrary cycle. In 
case the cycle r is a non-attribute cycle, Sa does not need to be modified, and the arc r is just 
ignored. After leaving the for loop, the taxonomy turns out to be 'TT-consistent if no non-arbitrary 
ambiguous cycle has been encountered. We then have obtained the spanning i-tree Pa; otherwise the 
taxonomy is 'TT-inconsistent. 

The set of attribute-value specifications, which constitutes the inheritable conclusion set of T can 
now be constructed by repeatedly applying Algorithm 4.2 on the resulting i-tree Pa. D 

It should be noted that some arcs in the resulting i-tree Pa may only have been inserted into R(Pa) 

since they have been traversed by breadth-first search, and, for an opposite reason, other arcs have 
not been included. These arcs that were not inserted into R(Pa) all yield arbitrary ambiguous cycles, 
or non-attribute cycles in Ha. Thus, it makes no difference for the inheritable conclusion set if other 
arcs in the arbitrary cycles, or non-attribute cycles, had been chosen by reverse breadth-first search 
for insertion into R(Pa) than the ones that actually have been admitted. We call i-trees which only 

_____ .,..;., 
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differ with respect to such arcs similar. Moreover, note that the actual order in which the arcs (y;,yj) 

in the sequence s(,B) having the same component y; are processed in Algorithm 4.3 is unimportant. 
Let us first give two examples of the application of the algorithm, before proceeding to the proof of 

its correctness. In the first example, we give a pictorial demonstration of the algorithm. 

(a) 

(d) 

topological 
)0 

sort 

(y~.y~) 

(b) 

(c) 

reverse breadth-.tj;st 

spanning tree 

FIGURE 8. Example of application of Algorithm 4.3. 

(y~.y~) 

(c) 

(f) 

ExAMPLE. Consider the following taxonomy T = (N,8, «., <), where I = 0, 

K = (Yr.Y2,YJ,y4,ys}, and 8 = (y3[a-ci], y 4[a=c2], Ys[a=c3)}. Let the relation< be 
defined as follows: 

Yi< Y2 
Yi< YJ 
Y2 < YJ 
Y2 < Y4 



Y3 < Y4 
Y3 < Ys 
Y4 < Ys 

25 

The attribute graph representation Ga = (V(Ga).R(Ga).Aa) of T is shown in Figure 8.a. In Figures 8.b 
to 8.f the various steps through which this attribute graph is transformed into an i-tree are shown. It 
follows that the taxonomy is 'IT-consistent. 0 

In the next example, we illustrate the use of the algorithm in a taxonomy containing an instance, 
along the same lines as discussed for the inheritable extension of a taxonomy in Section 3.2. 

EXAMPLE. Consider the following taxonomy T = (N,8,«,<), where I= (x}, K = (y.,y2,y3,y4} 

and 8 = (y2 [a - c i], y 4 [a = c2]}. Let the function « and the relation < be defined as follows: 

x «Yi 
Yi< Y2 
Y2 < Y3 
Y3 < Y4 
Yi< Y3 

The inheritable conclusion set c,,(OT) is equal to (y 1 [a= c i], Y2 [a= c i], y3 [a= c2], y 4 (a= c2]}. 
Let us now reconsider the i-graph Ga = (V(Ga).R(Ga).Aa), of the taxonomy T, and construct the 

i-tree Pa for the attribute a. The i-graph of T is as follows: V(Ga) = {y 1,y2,YJ,y4}, 

R(G0 ) = ((y.,y2), (y.,y3), (y2,y3), (y3,y4)}, and "-a(Y2) = c,, "-a(y4) = c2. The underlying 
attribute graph of Ga onl)' contains a single cycle, which is /"Y2.y3,y1. The ordered attribute fa~h 
is ~ual to G: =(V(Ga),R(G:),A:), where V(G:) = (y,,y~,y~,yl}, R(G:) = ((y1,y~), (y.,y3), 
(yty~), (y~,yl)}, and "-:(yh =c., "-;(yl) = c2. Suppose that the reverse breadth-first spanning 
tree Sa contains all vertices and arcs in G;, except the arc (y1,y~). Algorithm 4.3 then transforms 
the tree Sa into an i-tree Pa = (V(G;),R(Pa).Aa), where R(Pa) = R(G;) \ ((y1,y~)}. If we carry 
out Algorithm 4.2 for single inheritance on the i-tree Pa we obtain the set (y~=c, ,yi=c,, 

y~=c, ,y:=c, }, which corresponds to c,,(OT). For the instance x we therefore have the element 
xa=c,. 0 

We next prove the correctness of Algorithm 4.3 described above. 

LEMMA 4.3. Let T = (N,8, «, <) be a graph-like taxonomy. Let A be the set of attributes in T, and let 
OT be the set of inheritance chains in T. Then. the set of attribute-value specifications, obtained by the 
application of Algorithm 4.3 on the set of associated i-graphs {Ga I a E A}, for each y E V(Ga), 

co"esponds to c,,(OT ). 

PROOF. Let Ga = (V(Ga),R(Ga)."-a) be the associated i-graph of the taxonomy T, defined for an arbi­
trary attribute a E A, and let G; =(V(G;),R(G;),A;) be the ordered attribute graph of Ga. Suppose 
that Sa = (V(Sa),R(Sa)."-a) is the reverse breadth-first spanning tree obtained for the i-graph G0 aS 
described in Algorithm 4.3, and let at each step in the algorithm Ha be the underlying attribute graph 
of Sa. 

First, consider the case in which G; is an i-tree. Then, Algorithm 4.3 terminates with a spanning 
tree Pa that is identical to G;, since the sequence s(B) is empty. Second, consider the case in which 
G; is an i-graph, but no i-tree. The proof will be by induction on the length of the sequence s(B). 

First, consider the case where js(B)j = I. Let again Sa be the initial breadth-first spanning tree of 
G;. Adding the arc r from the sequence s(B) as an edge to Ha yields a cycle 
f = y.,y2, ... •)'n.Zq.Zq-i. ... ,z 1,y., such that y.,y2, ... •Yn and y 1,z 1,z2, ... ,z9,yn are dis­
tinct paths in Ga. Let Qa = (V(Qa).R(Qa).A~) be the directed attribute graph associated with the 

- --- .:~:..:. ·.~--
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cycle f, such that V(Qa) = {Yi. ... ,yn,zl> ... ,z9 }, and R(Qa) = 
{(J1>)'2), ... ,(Jn - i.Yn),(y.,z1), (z1>Z2), ... , (Zq - 1>Zq),(z9,yn)}, where~~: V(Qa)-+C is the func­
tion ~: , restricted to the domain V(Qa>· Let T Q. be the graph-like taxonomy associated with the 

directed attribute graph Qa. Furthermore, let Ya = (V( Ya).R( Ya)~~) be a directed attribute tree 
defined by V(Ya) = V(Qa), R(Ya) = R(Qa) \ {(y.,z1)} where~~ is taken from Qa. It suffices to 
only consider the directed attribute graph Qa associated with each created cycle r, since this is the 
only place in the algorithm were a decision is made with respect to the possible inheritance of multi­
ple constants by ~e various vertices y 1• We have three cases. First, the cycle r can be a straight 
attribute cycle, secondly, r can be an ambiguous attribute cycle, and, finally, r can be a non-attribute 
cycle. 

If the cycle r is a straight attribute cycle, the directed attribute graph Qa is examined to determine 
whether the removal of the particular arc r from Ga, and from Qa yielding the tree Ya, is justified 
with regard to the interpretation function "1· Suppose that the straight attribute cycle contains some 

vertices for which we have elements y Z =c,., l < k < n, then it is justified to remove the arc ( y 1,z 1 ), 

since no vertex z i contributes attribute-value specifications directly to the vertex y 1• Application of 
Algorithm 4.2 on the vertices of the tree Ya produces the following set of attribute-value 
specifications: 

S _ { a =c., a = c,, a =c,_ a =c,_ } 
Y. - YI •···•YI •Yl+I • · • · •Ym 

where l ~ I ~ m .oe;;; n. From the associated taxonomy T Q. of the directed attribute graph Qa, we 

can construct the following set of inheritance chains 0: 

Y1 < < J1[a = c,,] 
Y2 < · · · < J1[a - c;,] 

y1[a = c1,] 

Y1< 
Y2 < 

Ymla = c;.J 

<YI< 
<YI< 

< Ym[a= ctJ 
< Ymla = c,.J 

where we have only listed inheritance chains having an attribute-value specification at the end. The 
inheritable conclusion set "1(0) is equal to i.,,(O) = {y 1 [a= c1,], • • • ,y,[a =- c1,], 

Y1+ 1 [a= c;.J, ... , Ym [a= c;.J}. Hence, SQ = &,,.(0). 
In case we have an ambiguous attribute cycler, the taxonomy T may be 'IT-inconsistent. This fol­

lows from examining the inheritance chains which can be constructed for the taxonomy T Q.. 

y 1 < < y1[a = c1,] 

Y2< ··· <y1[a=c1,] 

J1(a = C;,) 
y1< 
Y2 < 

Ym [a - c;.J 

<YI< 
<YI< 

< Ymla = c;.J 
< Ym[a = c;.J 



Y1 < z1 < · · · < z,[a=d;,] 
z1 < < z,[a=d;,] 
Z2 < ... < Zp (a= d;,) 

z, [a= d;,] 
Zt < 
Z2 < 

z9 (a = d;,) 

< z [a= d· ] 
q '• 

< z [a= d-] 
q '• 
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Since the inheritance chains y 1 < · · · < z,(a = c;,] and y 1 < · · · < y1[a = c;,] do not preclude 

each other, we might have a 'IT-inconsistent taxonomy. In case the ambiguous cycle turns out to be 
arbitrary, the taxonomy will be 'IT-consistent, since only a single attribute-value specification y 1 [a = c] 
is obtained from the inheritance chains. Otherwise, the algorithm terminates by reporting that the 
taxonomy is 'IT-inconsistent. 

In the last case, when r is a non-attribute cycle, the choice made by the breadth-first strategy for a 
particular path from the root to each vertex in the cycle does not affect the result obtained by Algo­
rithm 4.2. The remainder of the proof follows from Lemma 4.2. 

Now, let us assume that the algorithm is correct for the case that ls(B)I = n. We next prove that 
from this assumption it follows that the algorithm is correct for ls(B)I = n + 1. Let us add the arc 
bn + 1 = (y 1>u) as an edge to Ha, we then have again obtained a cycle r, similar to the one given 
above. From the order imposed on the arcs, it follows that we only have to consider inheritance 
chains having the class corresponding to the vertex y 1 at their beginning. The argumentation then 
goes in a similar way as for the case that ls(B)I = I. 0 

THEOREM 4.1. Let T = (N,9,«,<) be a graph-like taxonomy, and let A be the set of attributes in T. 
Application of Algorithm 4.3 on the associated i-graph, for each a E A, terminates in polynomial time 
either with a set of attribute-value specifications which corresponds to c.,,.(Dr). or by reporting '1T­

inconsistency of the taxonomy T. 

PROOF. Termination of Algorithm 4.3 is shown by noting that ls(B)I equals the cycle rank " of the 
underlying attribute graph of Ga. At each step in the execution of the for loop in the procedure 
Spanning-I-Tree exactly one arc r from this sequence is processed and possibly transformed in the 
procedure Transform; if all arcs have been processed or an inconsistency has been encountered at a 
particular point, the for loop terminates. 

Let I V(Ga)I = n. The initial steps in the algorithm consist of performing a topological sort of the 
vertices in the graph and reverse breath-first search, both of which can be done in at most O(n 2) 

steps. For any directed attribute graph we have from the properties of the cycle rank of a directed 

acyclic graph that 1e ~ ~ n 2 - ; n +I = O(n 2). Checking whether the cycle constructed in the pro­

cedure Transfor• is either a straight cycle, an ambiguous cycle, or a non-attribute cycle takes at most 
O(n) time. We conclude that the overall worst-case time complexity of the algorithm is O(n 3). 

Finally, the correctness of the procedure to transform an i-graph into an i-tree follows from Lemma 
4.3. 0 
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5. CONCLUSIONS 
In this article we have analysed inheritance of attribute values in various kinds of taxonomies, and 
more in particular multiple inheritance with exceptions. In the first part of this paper, we analysed 
multiple inheritance in a mathematical way using inheritance chains. It was shown where inconsisten­
cies arise in these taxonomies, and several techniques for checking the consistency of a taxonomy have 
been discussed. In the second part of the paper, we studied inheritance from an algorithmic point of 
view, and developed an algorithm for consistency checking in a graph-like taxonomy. A practical 
result was obtained concerning the transformation of a graph-like taxonomy to an equivalent tree-like 
taxonomy, making the former amenable to single inheritance with exceptions. It was shown that such 
an equivalent tree-like taxonomy could only be constructed in a graph-like taxonomy which is .,,_ 
consistent. 

We have focussed on inheritance of attribute values by classes. A possible extension to the frame 
formalism treated in this paper is the inheritance of structured data by classes and instances. This 
situation occurs when attribute-type specifications of the form x(a:T) are defined, where T is the name 
of a class. The artificial distinction between instances and constants can then be abandoned. 
Although we have not explicitly discussed these cases, the techniques developed in this paper form a 
suitable framework for analysing this extended frame formalism as well. 
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