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Abstract 

A new lower· bound, -5, is presented for the so-called de Bruijn­
Newman constant. This constant is related to the Riemann hypothesis. 
The new bound is established by the high-precision computation (with an 
accuracy of 250 decimal digits) of i) the coefficients of a so-called Jensen 
polynomial of degree 406, and ii) the so-called Sturm sequence of this 
polynomial which shows that it has two complex zeros. These complex 
zeros are given explicitly. 
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1 Introduction 

Recently, Csordas et al. [2] have introduced the so-called de Brv.ijn-Newman 
constant A as follows. Let the function H,..(x), >. E 'R, be defined by 

where 
00 

<l>(t) = L(2n4'11"2e9t - 3n2'11"e5t) exp(-n2'11"e4t). 
n=l 

The function <l> satisfies the following properties: 

i) <l>(z) is analytic in the strip -1f/8<~z<1r/8; 
ii) <l>(t) = <l>(-t), and <l>{t) > O(t E 'R); 
iii) for any f > 0, limt-+oo q>( 11l(t) exp[( 'II" - f )e4t] = 0, for each n = 0, 1, 2, .... 

(1) 

(2) 

The function H;.. is an entire function of order one, and H;..(x) is real for real x. 
From results of de Bruijn [I] it follows that if the Riemann hypothesis is true, 
then H;..(x) must possess only real zeros for any,\~ 0. Newman has shown [6] 
that there exists a real number A, -oo <As ~.such that 

i) H;..(x) has only real zeros when A~ A, and 
ii) H;..(x) has some non-real zeros when>..< A. 

This number A was baptized the de Bruijn-Newman constant in [2]. The truth 
of the Riemann hypothesis would imply that As 0, whereas Newman [6] con­
jectures that A ~ 0. In (2] it was proved that A > -50. 

In this note we will describe high-precision computations which establish 
A> -5. Moreover, our computations suggest that trying to improve upon this 
result would be a formidable task, unless the algorithm used could be improved 
substantially. 

The computations were carried out 1.>n the CDC Cyber 995 (a.bout 2 hours 
CPU time for testing), and on the CDC Cyber 205 (about 30 hours CPU time for 
'production') of SARA (The Academic Computer Centre Amsterdam). Brent's 
MP package was an indispensable tool for the high-precision floating point com­
putations. Since this package has not been vectorized, we used the Cyber 205 
just as an extremely fast scalar machine. 

This note will rely heavily on [2]. We assume the reader to have a copy of 
[2] at hand. 
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2 Algorithm and results 

If we expand the cosine in (1) in its Taylor series, we obtain 

(3) 

where 

bm(A) = 100 
t 2meAt2 cl»(t)dt, 

m = 0,1,2, ... ;>. E 'R. The n-th degree Jensen polynomial G,.(t;>.) associated 
with H >. is defined by 

. ·-~ (n) k!b,.(,\) ,. 
G,.(t, ,\) .-~ k (2k)! t I 

(4) 

and it is shown in [2] that if there exists a positive integer m and a real number 

5. such that Gm(t; A) possesses a non-real zero, then >. < A. The problem is to 

find m, given >.. 
In [2] a lower bound for A was constructively obtained a.s follows. For suit­

able values of>. and N the moments bm(>.), m = 0, 1, ... , N were computed with 
a known precision, by means of Romberg quadrature. For the corresponding 
Jensen polynomial all its zeros were computed by means of the Jenkins algo­
rithm. A theorem of Ostrowski was then invoked to find an upper bound for the 
error made by using approximate rather than exact coefficients in the Jensen 
polynomial. This error was small enough to guarantee that the complex zero 
found by high-precision computation indeed wa.s an approximation of a com­
plex zero of the Jensen polynomial. The sensibility of the zeros of polynomials 
for errors in their coefficients required that the computations were performed 
in very high precision. Csordas et al. [2] used 110 digits of precision for their 
proof that -50 < A. As a partial check, we repeated their computations in 
double precision on a CDC Cyber 995 (which means an accuracy of about 28 
decimal digits) and could reproduc.e the complex zero of G16(t; -50) with an 
accuracy of about 20 decimal digits. This illustrates the enormous amount of 
extra work needed to provide a proof of the existence of complex zeros of the 
Jensen polynomials G,.(t;>.). 

In order to improve the result of Csordas et al., we realized that the degree of 
the Jensen polynomial G.n(t; >.)which possesses complex zeros, might grow very 
fast with >.. Consequently, finding all the zeros of Gn, n = 1, 2, ... (in order to 
prove the existence of complex ones) might become very expensive. Therefore, 
we decided to use so-called Sturm sequences [4] to determine whether the given 
Jensen polynomial has any complex zeros (which is all we need to know, in 
principle). This is computationally much simpler than finding all the zeros of 
a polynomial. A Sturm sequence associated with a given polynomial PO(x) of 
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degree m is a sequence of polynomials Po(x),p1 (x), ... of strictly decreasing 
degree which can be defined as follows: 

P1(x) := p~(x), 

Pi-1 (:z:) := qi(x)pi(x) - Pi+l (x), i = 1, 2, ... , 

where q,(x) is found by the Euclidean algorithm, such that the degree of Pi+i (x) 
is less than the degree of Pi(x). If Po(x) has only simple zeros, Pi(x) has degree 
m - i, and the Sturm sequence consists of m + 1 polynomials Po(:z:), ... ,pm(x). 
Let v(a) be the number of sign changes in the sequence {Pi(a)}~0 (where zero 
values are skipped). Then v(a)- v(b) is the number of real zeros of the polyno­
mial Po (:z:) on the interval [a, b]. 

Our algorithm now works as follows. Suppose we know Ao and m = m(>..0) 

is the smallest value for which Gm(t; .Ao) has complex zeros (to start with, we 
take Ao = -50 and m = 16 from [2]). Then for a new value of >. which is 
somewhat larger than Ao we compute .Bi(>.), i = 0, 1, ... , a.nd for ea.eh new /31 

we compute the associated Jensen polynomial, a.nd, by means of the associated 
Sturm sequence, its number of real zeros on the interval [-A,O], where A > 0 
is suitably chosen. This is continued until we have found n for which g,.(t; >.) 
should have complex zeros. Then, as a check, we compute a complex zero of this 
polynomial by means of the Newton process, where the starting value is chosen 
as follows. Let z = z(>.o) be the known complex zero of 9m(t; Ao). We tabulate 
the values of the Jensen polynomial g,.(t; A) and its derivative, for some values 
oft around ~(z), and we look for a local positive minimum, or a local negative 
maximum. In our experience, such a minimum, or maximum, is easy to find if 
>. is not too far away from >.0 • Then we take a + bi as starting value for the 
Newton process where a is the value of t for which g .. (t; >.) assumes its local 
minimum or maximum, and where b = ~(z). 

In this way we found complex zeros of g .. (t; >.)for>.= -50(1) - 40,-30,-20, 
-10,-5. Table 1 presents the values of >.. for which we have determined the 
Jensen polynomial of smallest degree with complex roots by means of the asso­
ciated Sturm sequence. This degree is denoted by m = m(>.). In all cases this 
Jensen polynomial has m(>.) - 2 real roots. Table 1 also lists the complex zeros 
found, truncated to 10 decimal digits, and the accuracy used. For >. close to 
-50, the degree of the Jensen polynomial with complex zeros does not increase 
too quickly with>... However, from >. ~ -20 this pattern changes drastically, as 
Table 1 shows. As >. increases, the imaginary parts of the complex zeros found 
seem to tend to zero. 

During the computation of Sturm sequences, it is easy to check when the 
accuracy used becomes insufficient: in that case the sequence of signs {Pi(a)}~0 , 
associated with Ym, deviates in a chaotic way from the previous sequence of signs 
(associated with 9m-1). 
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Table 1 Minimal degrees m(>.) of Jensen polynomials with complex roots 

). m(>.) complex zeros of g,,.(t; >.) accuracy used 
R ±~ 

-50 16 -220.9191117 7 .092565255 28D 
-49 16 -217.9076244 5.773253615 28D 
-48 16 -214.9084360 4.111013736 28D 
-47 16 -211.9217860 1.006843660 28D 
-46 17 -202.2196553 5 .677704348 28D 
-45 17 -199.3211883 3.991036911 28D 
-44 17 -196.4360833 0.462709708 28D 
-43 18 -187.4386728 4.830351149 28D 
-42 18 -184.6425759 2.749091911 28D 
-41 19 -176.2289375 4.969975476 28D 
-40 19 -173.5216696 3.024436421 28D and 40D 
-30 27 -116.8258164 2.400595686 28D and 50D 
-20 41 -111.0654985 1.322239430 500 
-10 97 -45.53019819 0.156978360 75D 
-5 406 -24.34071458 0.031926616 250D 

3 Some computational details 

In this section we shall explain some details of how we computed .Bm(>.) and the 
Sturm sequences of g,.(t; >..). 

We write b.,.(>.) as the sum 

b.,.(>.) = 1"' t2me.>.t2 ~(t)dt + 100 t2me.>.t2 CJ(t)dt (5) 

(Csordas et al. used a = 1). An upper bound for the second integral of (5) is 
found as follows. The function t2me.>.t2 has maximum value exp[m(-l+log .:),)] 

(for t = (-m/ >.)112), so that 

100 m 100 

a. t2me.>.t2 CJ(t)dt < exp[m(-1 +log->..)] a. CJ(t)dt 

< ! exp[m(-1 +log ~ ) +Sa - 1re4o.] 
2 -A 

(cf. [3, ineq. (3.7)]). This bound is used, for given>. and m, to choose a such that 
the contribution of the second integral in (5) to the value of b.,.(>.) is negligible, 
in view of the precision used. E.g., for >. = -5, we chose a = 1.65. For m = 406, 
this yields an upper bound of 10-•00 on the value of the second integral in (5). 
The smallest b,.,.( -5) we found is ba••(-5) = 1.46822 ... x 10-73 • Since we 
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worked with a precision of 250 decimal digits, it follows that the contribution 
of the second integral in (5) to {bm(-5)}~~0 is indeed negligible. 

Let ~N(t) denote the sum of the first N terms of (2), then we have (cf. [3, 
eq. ( 4.6)]) 

0 < cl>(t) - <PN(t) < 1fN3 exp(5t - ?rN2e4t)(o :s; t < oo). 

Given t, the number N is chosen such that the right hand side is less than 
10-A where A is the number of decimal digits of precision employed in the 
computations plus {- log10 (first term of cl>(t))} (since this first term determines 
the size of <P(t)). Since the Nin the exp is dominating, it is sufficient (most of 
the time) to choose N to be the smallest integer larger than ..j(e-4t(Alog 10 + 
5t)/1C). 

Using the same notation as in [2], we now have to compute the integral 

(6) 

to sufficient accuracy. In [2] this was done by Romberg quadrature. However, 

by inspecting the Romberg table for b~\.A), we noticed that when going from 
left to right, i.e. when comparing T;; with Ta,;+1, the accuracy did decrease 
(rather than increase, as one would expect: cf., e.g., [7, p.141]). Moreover, the 
most accurate results were found in the first column of the Romberg table (just 
the trapezoidal rule results for step a,a/2, a/4, ... ), and the convergence in this 
column was much faster than quadratic. An explanation is given by the fact 
that the integrand in bm(>.) is an even function, and under certain conditions 
given in Theorem 2.2 of [5] the convergence of the trapezoidal rule for such func­
tions is exponential. The integrand bm(>.) happens to satisfy these conditions. 
Therefore, it is unnecessary to apply Romberg quadrature. We just applied the 
composite quadrature rule with step a, a/2, a/4, ... , until a sufficiently small 
correction was obtained. For the computation of bm(-5) we never needed to 
work with a step less than a/1024. Before applying the trapezoidal rule, a table 
of values of e.>.t3 ~(t) was precomputed for t = ja/1024,j = O, ... , 1024 since 
(a selection of) these values are needed for each bm(>.). In the final steps, we 
usually observed a doubling of the number of correct digits upon halving the 
step. 

The Sturm sequence associated with the polynomial 9m(t; .A) was computed 
, as follows. Let Po(x) := Ym(t; >.) and let 

m-i 

Pi(x) := L c;;xm-i-j ,i = 0, 1, ... ,m. 
i=O 

The coefficients c0; of Po are computed from the b;(A) by (3), and since P1 (z) = 
ph(z) we have c1; = (m - j)co;,j = O, ... ,m - 1. Let q;(z) := q,o:z: + qii,i = 
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1, ... , m - 1. Then, by applying the definition of a Sturm sequence given in §2, 
for i = 1, 2, ... , m - 1 we find qio and q01 from 

qsocso - CS-1,0 = O, 

qiOCil + qi1Cio - CS-1,1 = 0, 

and CS+i,;,j = O, ... ,m-i -2 from 

c1+i,; = qioCi,;+2 + qncs,;+1 - Ci-1,;+2 

and Ci+l,m-i-1 from 

Ci+l,m-i-1 = qnci,m-i - Ci-1,m-i+l· 

Now we have to estimate an interval [a, b] which covers a.11 the rea.1 zeros 
of 9m(t; >.). It is known that the rea.1 zeros are negative. For >. = -49 we took 
[a,b] = [-1000,0] which covers a.11 the rea.1 zeros of 91e{t;-50), according to 
[2]. This interval turned out to cover all the rea.1 zeros of {gm(t; -49)}~1 • 
The same interval was chosen for the cases >. = -48, >. = -47, ... until by the 
Sturm sequence mechanism we did not find sufficiently many rea.1 zeros, nor 
did we find any complex zeros in the way as described in §2. In that case, the 
interval [a, b] was enlarged {by decreasing a). For >. = -5 it was sufficient to 
take [a,b] = [-5000,0]. In some instances, going from 9m to 9m+l the differ­
ence v(a) -v(b) (which counts the number of rea.1 zeros) dropped down from m 
sharply. It turned out that this was ea.used always by insufficient precision used 
in the computation of the Sturm sequence of 9m+l· By increasing the accuracy, 
the norma.1 pattern (i.e., finding v(a)-v(b) = m+l, or m-1) could be restored 
easily. By means of this strategy one avoids the need to extend the precision 
for the application of the theorem of Ostrowski, as Csordas et a.I. did. The 
explicit computation of the complex zeros by finding a loca.1 positive minimum 
or a negative maximum may be considered as an extra check. 
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