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1. INTRODUCTION 

This report contains a first step towards a design of a specification language like ASF [BHl( 89] in an 

entirely algebraic style. The language BMASF that is the result of this design effort is simpler than 

ASF because it has no parametrisation mechanism. It is better in the sense that imports and exports 

have been worked out in a more satisfactory way. We will first try to motivate in detail the reasons for 

the approach we have taken and then work out the language design. It should be noticed in advance 

that the language BMASF as such has no pretensions and that it is the method of its design via abstract 

syntax which is the real objective of the paper. 

In order to clarify the motivation for our work we start by listing some points of view that we have 

developed about the design of specification languages. After observing several attempts to define 

specification languages it has become clear (to us) that the following phenomena seem to be unavoid

able: 

(i) Above a certain complexity one runs into semantic trouble because of unexpected interactions of 

features that are combined in the language being designed. These semantic problems are almost never 

solved by theoretical work because they depend on very special peculiarities of the features as they are 

embedded in the language. 
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For instance, parameter passing mechanisms for abstract data types allow many degrees of free

dom that have not been addressed by theoretical work and in which wrong language designs cannot yet 

be singled out by pointing at the way in which they depart from known theory. Also, if information 

hiding is present, the interaction between parametrisation and hiding becomes complicated. If on top of 

that, operational aspects enter the scene, one has to worry about the interaction between information 

hiding and the abstraction mechanisms of process theory. 

(ii) If the language is designed in a syntax readable for human beings, there is always a next step in 

which an abstract syntax has to be designed. Typically, in the design of abstract syntax one attempts to 

define a more clear cut language with fewer semantic problems. Usually, this will not quite succeed 

because the abstract syntax has to be derived from the given concrete syntax and that will induce the 

introduction of features that are not really primitive ones. 

(iii) Notoriously, one will feel a need to redesign parts of the language within two years after its 

conception. The difficulty is then to have the tools for the language written in such a way that their 

code or at least their design is somehow reusable. It is very unpleasant to construct tools for a language 

that has already been declared outdated by its chief designer. But exactly this phenomenon occurs time 

and again. 

(iv) Upward compatibility is the slogan that should help in having previous work on a language 

reusable. Disappointingly, it is very difficult to design languages in an upwardly compatible way. 

More often than not, the redesign of a language will shed light on how to improve its existing version 

without adding new features. Moreover, these improvements may be needed if a second version of the 

language is to incorporate quite complex new features. 

(v) The main difficulties are caused by the fact that a readable syntax for a language needs to be 

provided with efficient declaration, type inference and type checking schemes, because otherwise the 

human reader will soon loose his/her grasp of a piece of syntax due to enormous redundancy. (For 

computers this problem is much less pressing.) Exactly these mechanisms are closely connected with 

the design of the concrete vertical syntax and the particular packaging of the features that is employed. 

Those particularities are however quite hard to keep alive when a next version of the language is made. 

By the way, these problems would be less pressing if the ambition to provide a human readable textual 

syntax was given up in favour of a graphical or object-oriented way of working. 

(vi) There is no place in the software engineering lifecycle for small scope specification languages 

(thematic languages and combination languages in the terminology of [BR 89]) that cannot be extended 

to wide spectrum languages. One will never tolerate the enormous overhead of recoding a formal 

specification. It should be noticed that adapting a complex specification to a formalism with slightly 

different mechanisms for import, export and parametrisation is fairly unpleasant. It follows that there is 

little reason to invest in small languages that have their key features designed in such a way that exten

sion to larger languages is hardly possible, or obviously unrewarding. Thus it follows that in particular 

efforts aimed at the design of small and specialized specification languages should ensure that all fea

tures are incorporated in a generic (extendible) way. 

To consider an example, ASF [BHK 89] is a language that has some of its key features worked 

out in a not entirely satisfactory way: in particular the normalization mechanism is such that normaliza

tion must be done inside out, since other strategies may lead to essentially different normal forms, and 
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besides this, the information hiding mechanism may only be applied to flat specifications, which is a 

rather pointless restriction. We view ASF as a step in a bootstrapping process. Its first use should be 

to assist in the design of much better languages of its own kind. 

2. ABSTRACT SYNTAX DESIGN 

The style of designing specification languages that is investigated in this report is to design abstract 

syntax only. The following working hypotheses (2.1 - 2.5) underlie the strategy. Of course validation 

of these asswnptions is a difficult matter that requires substantial experimentation. 

2.1 Abstract syntax can be represented in the format of algebraic specifications using many sorted al

gebra with total functions. At the level of abstract syntax, the issues of type checking, type inference, 

declarations and the use of declarations for type inference are totally absent. 

2.2 All semantic problems of a language should be dealt with at the level of its abstract syntax. Lan

guage features that do not allow a coding in an abstract syntax are to be avoided. 

2.3 Abstract syntax can be designed in an (almost) upwardly compatible way. If an abstract syntax 

specification is to be extended with new features, it almost never is a matter of just adding additional 

sorts functions and equations. Nevertheless, the modifications may well be very limited. 

A typical example is that one needs additional structure in a name space. This will require a small 

redesign of the use of the names. But the general structure of an abstract syntax description will not be 

affected by that. 

2.4 Abstract syntax can be described in such a way that all equations which describe the semantics of 

its key ingredients can be added without risking inconsistency of the full specification. Thus when de

signing abstract syntax, constructions must be avoided that are inconsistent with key semantic identi

ties. 

For instance, having an abstract syntax depend on a function that determines the length of an ex

pression will usually prevent one to impose any non-trivial identities on the sort of those expressions. 

This is useful only if no such identifications are to be expected during the semantic analysis. On the 

other hand, when tooling a language one will use algorithms that act on the free term algebra of the ab

stract syntax and often these terms will have to be represented in a form that allows efficient manipula

tions (e.g. by the use of pointers). 

2.5 An increasing family of languages can be designed at the level of abstract syntax. It is possible to 

analyse features at an abstract level in such a way that one can be confident that language extension will 

not lead to an entirely different view of the features. In order to guarantee this, it is crucial that many 

semantic equations can be imposed on the abstract syntax. Indeed it should be noticed that all generic 

constructions should be representation independent as much as possible. This is best guarantied by 
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having them consistent with a semantic model that identifies many systems. This implies that one will 

search for the most abstract semantics that is available. 

This is a very tricky area because the more features one introduces, the less abstract the semantic 

model can be! In the case of process descriptions, this is a reason to use bisimulation semantics rather 

than less discriminating semantics, such as trace semantics. Features like interrupts, fair abstraction, 

deadlock analysis and structured operational semantics are harder if not impossible to model in trace 

semantics. It is also a reason to have only limited interest in fully abstract models. If later on, new 

features are added to a language, a fully abstract model may suddenly be inconsistent with the novel 

feature. This can happen to any other model as well, of course, but aiming at full abstraction clearly 

maximizes the risk. 

3. AN OPEN PROBLEM ABOUT THE METHODOLOGY OF LANGUAGE DESIGN 

Let us imagine a project that is carried out as follows: 

(A) Design a family of specification languages with increasing expressive power and complexity at 

the level of abstract syntax and reuse almost all of each language description in the design of the next 

language. 

(B) Generate in each stage an elementary tool set (ETS) consisting of a concrete textual (vertical, 

structured) syntax together with the following: a parser, a type checker, a prototyping tool, an interac

tive editor, a connection with a software engineering data base and a version management system, a 

cross reference information generator, and an automatic translation to and from earlier stages of the 

language, as well as an interface with specialized support programs for debugging, verification, proof 

editing, proof checking, graphical support and object-oriented representation. 

(C) Have the overheads on (B) above so small that it is possible to work in (A) with many small 

steps rather than with a few big steps. 

Now the question is whether or not such an approach is feasible. We have no opinion in advance what 

is the answer to this methodological question. Our point of view is that it is worth trying for the sake 

of a research project and that its practical value must de determined later on by other people. Thus the 

open problem is turned into a ·working hypothesis without any claim as to its validity. 

Clearly our research can never generate a negative answer to the methodological question because 

inability to carry out the project proves nothing about its feasibility. By being successful, it can at best 

generate positive evidence. We will try to catch the motivation of the work in a few key phrases that 

may be useful in these times of inflation of terminology. 

3.1 ABSTRACT SYNTAX ENGINEERING AND THE ABSTRACT SYNTAX ENGINEERING HYPOTHESIS 

Abstract syntax engineering is the incremental design of languages via their abstract syntax. The hy

pothesis claims that this style of working is economically more efficient than the conventional design 

via BNF grammars. 
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3.2 ALGEBRAIC SPECIFICATION HYPOTHESIS (FOR ABSTRACT SYNTAX ENGINEERING) 

This hypothesis claims that one gets benefit from the use of algebraic specifications in the case of ab

stract syntax engineering. In particular the restriction to many sorted algebra with finitely many sorts 

and total functions is supposed useful. 

It may even be useful to structure the signature of the algebra itself as a finite partial algebra. Infi

nite signatures are to be avoided and must be counted as an indication of limited success in abstract 

syntax design (of course infinite signatures may play an important role in intermediate stages of a de

sign). 

3.3 MEANING IS A CONGRUENCE ON ABSTRACT SYNTAX 

This claim is not exactly new. It was analysed in depth in [J 89] and named Frege's principle. The dif

ficulty is to adhere to this slogan when the abstract syntax gets more complex. In the context of the ab

stract syntax engineering hypothesis, this means that the abstract syntax must be made compatible with 

most (and preferably all) semantic identities that come about during semantic analysis of fragments of 

the language. 

3.4 THE HYPOTHESIS OF ABSENCE OF CANONICAL MEANING 

From a certain complexity onwards, there is no canonical model for the semantics of an abstract syn

tax. In particular, there is no such thing as the 'real' practical meaning that users have in their mind and 

that theorists fail to write down in a concise way, due to an overemphasis of their mathematical stan

dards and rigour. On the contrary, the practical user has often only an intuitive semantic view on frag

ments of an abstract language, and simply ignores the question how to integrate these fragments into a 

consistent picture. 

In the paper [BHK 88] on module algebra, it has been emphasised that already a very few con

structors for structured algebraic specifications generate a setting for which different useful semantic 

models can be found and the selection of a single most convincing model seems to be impossible. 

There is no indication that the practicioner's mind contains hidden semantic information that would re

solve the semantic ambiguity of module algebra. 

The practical consequence is that abstract syntax must preferably be designed in such a way that 

the full spectrum of semantic models known for fragments of the language can still be captured by 

considering the right congruence on the abstract syntax. 

3.5 THE ABSTRACT SYNTAX DESIGN RULE: OPTIMIZATION OF LOOSE SEMANTICS IN ALGEBRAIC 

ABSTRACT SYNTAX ENGINEERING 

This rule makes explicit the consequences of the hypothesis of absence of abstract syntax. It empha

sizes that while designing an abstract syntax one should not optimize the fit with a given semantic 

model but rather ensure that a maximum of semantic options is left open. The algebraic specification of 

the abstract syntax will usually have a loose semantics in the sense that its initial algebra is not at all the 

model with the deepest semantic pretensions. Rather a family of models should exist that reflect the 

different ways in which fragments of the language can be provided with meaningful semantic models. 
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3.6 INITIAL OVERSPECIF1CATION IS UNAVOIDABLE AND EVEN BENEFICIAL 

This final point lies at the heart of the algebraic approach. Once an algebraic specification of abstract 

syntax has been manufactured, the unavoidable question is: why have just these equations been se

lected and is this not a totally arbitrary choice? Moreover, the axioms may not allow semantics options 

that are popular in modem research because the equations identify too much. 

The answer to this is that these problems are unavoidable in the algebraic method and that design

ers who dislike these uncertainties should not employ these techniques. Let us consider the case of 

group theory as an example. Once the axioms of groups have been written down, a substantial amount 

of useful theory can be generated. After some time, Abelian groups become important and this is no 

problem because the group axioms are consistent with the additional axiom of commutativity. Still later 

however, the success of group theory is such that one starts investigating semi-groups. This is a very 

different matter because an entire operation has been left out and the specification has been essentially 

weakened. Suppose that semi-groups after all are the really useful concept and the groups are a sub

case of less interest. Then from a methodological point of view, the specification of groups formed an 

initial overspecification of the semi-groups. How much damage has this caused? We claim that no 

damage can be observed at all. On the contrary, the initial overspecification of a concept (semi-groups) 

that later on was found to be very useful has strongly guided the intuition on how to get the appropriate 

rewards from the algebraic model of the mechanisms involved. Even if semi-groups are the real thing 

after all, one can never ensure that future generations will not make big progress in the field of 'non

associative semi-groups'! 

All of this boils down to the point of view that there will never be a truly undisputed set of axioms 

for any given signature, even if one has an agreement on the intuitions that the operators of the signa

ture must support. This is true for every field of mathematics, including geometry and analysis, and it 

would be very optimistic to suppose that discrete systems theory constitutes an exception, just because 

these discrete systems are man made. 

4. ON THE ROLE OF SOFTWARE SUPPORT FOR ALGEBRAIC SPECIFICATIONS IN AB

STRACT SYNTAX ENGINEERING 

The first role of software support is simply that with abstract syntax specifications becoming larger, 

type checking becomes useful. Although we have not been using the ASF system as described in 

[BHK 89], the type checking facilities of such a system will be needed to avoid mistakes in the 

specifications. We will discuss which further use a specification in a language as ASF might have. 

Secondly, one might specify a normalization algorithm for structured specifications in BMASF 

using equations. If the resulting rewrite system is complete it can be prototyped by means of the ASF 

system. This implies that a non-trivial transformation has to be transformed into an executable 

(complete) TRS. Given a vertical syntax, one may specify decision algorithms that decide whether a 

specification satisfies certain design rules (e.g. not containing type-incorrect subexpressions). 

Harder but still conceivable is that a syntax directed editor for a vertical syntax for BMASF is 

specified in ASF and that the ASF system is used to prototype such an environment. Further, one can 
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imagine a specification in ASF of a system that realizes an operational interpretation of a BMASF 

specification. 

Also one may specify in ASF what exactly has to be done if separate type checking of a modular 

BMASF specification is to be realized. 

5. PRELIMINARIES FOR THE BMASF SPECIFICATION 

We need conventions for the use of names. These conventions are not given in the system ASF but 

should be workable when translating the specification to ASF. 

5.1 SORTS AND LISTS. 

Primitive sorts are named with identifiers made from one or more capital letters and from digits always 

beginning with a letter. Some constructed sort names may involve brackets. We will use only one sort 

constructor for lists. The underlying view is, that the algebra of sorts is a partial one and sort expres

sions are only defined if the axioms imply this. 

The letter L always means that the sort denotes finite lists of another sort. So L(AB1) denotes the 

sort lists of AB 1 . If such lists are needed, the sort must be explicitly specified, and then the construc

tor operations and the empty list will come by default. We are using the notation of [BI 87] and [M 86] 

for lists. When needed, extensions of the 'automatic signature introduction mechanism' can be defined 

in order to allow more of the operators of [BI 87] and [M 86] to be used without declaration. A useful 

subset of these notations is selected in [J 89]: prefix, drop, map, reduce, right reduce, and transpose. 

Because none of the concrete notations proposed by Bird and Meertens overlaps in an unpleasant way 

with notations that we intend to use or to import from previous work on module algebra (or process 

algebra), we will make sure that these notations will not be overloaded in our proposals with quite dif

ferent meanings as well, so that some notational consistency can be achieved in the end. Our subset is 

collected in the module FPN2; further extensions can be coded in extension modules when needed. 

Notice that further extensions require that standard names are introduced for function types just as for 

list types. So it is plausible to denote the type of functions from X to Y by F(X, Y). We get elements of 

this function space by an operator" applied to a function from X to Y. 

The predefined lists of X are always structured by means of the following operators: 

[] the empty list of X-objects; 

LJ embedding X into L(X); 

-++ associative concatenation of lists; 

_._ prefixing a list with an object. 

In addition, lists of fixed length can be denoted with the following notation: 

[a, b, c, d] denotes a list with elements a, b, c, and d. 

Notice that the list notation provides no type information. This implies a substantial overloading of the 

notation that must be resolved by making sure that the type of listed objects is clear without context in

formation. 

The reduce operator I must be applied to a function h from pairs of objects to objects (i.e. h: X x X 

-7 X). The value of reduce of a function on the empty list, /h([ ]), must be an element of X. This ele-
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ment must be supplied, in each case, as the third argument of the reduce function, so reduce will have 

three arguments, viz. a function (element of F(CP(X, X), X)), a list (element of L(X)) and an element 

(of X). 

In every application, h is commutative, associative, and has a unit element equal to /h([ ]) (i.e. h(x, 

/h([])) = x). The intuition is that reduce applies h to the list 'consecutively', so e.g. 

/( +, (3,4,6], 0) = 3 + 4 + 6. 

5.2 NATURAL NUMBERS. 

There is a fixed sort NAT with function succ and constant O.The cardinality function#: L(X) ~NAT 

is automatically introduced with every list sort. We also have a fixed sort BOOL with functions &,v,-, 

and constants T,F. 

5.3 CONSTANT NAMES AND FUNCTION NAMES. 

Constant and function names can be systematically disambiguated by subscripting them with the sorts 

of their arity. These subscripts may be skipped in the presentation of a specification as long as disam

biguation is possible in an unambiguous way (or: even more liberal but also less clear in its conse

quences, as long as all correct disambiguations that can be imagined can be proven equivalent by 

means of the axioms). 

module FPNO 

begin 

begin signature 

L(X) 

[]: L(X) 

LJ:X~ L(X) 

_ :_ : X x L(X) ~ L(X) 

_ * _: L(X) x L(X) ~ L(X) 

L .... ,_J 

#: L(X) ~NAT 

_e _: X x L(X) ~ BOOL 

end signature 

begin equations 

variables x,y e X, l,m e L(X) 

1 x:[] = [x] 

list manipulation operators 

sort of lists of X-objects (X is a parameter) 

empty list 

embedding of X into L(X) 

prefixing 

concatenation 

constructor notation scheme for finite name lists with 

flexible arity 

length of list (automatically generated with 

L(X) and NAT) 

element of a list 

2 n x:[y1 , ... ,yn] = [x,y1 , ... ,yn] (n e N) 

3 []*I= I 

4 (x:I) * m = x:(I * m) 

5 #([]} = 0 
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6 #(x:I) = succ(#(I)) 

7 xe[]=F 

8 xe y:I = eq(x,y) v xe I 

9 

end equations 

end module FPNO 

module FPN1 

begin 

begin signature 

cartesian products 

CP(S1 , ... ,Sn) Cartesian product of sorts S1 to Sn 

(_, ... ,_):S1 x ... x Sn-+ CP(S1, ... ,Sn) construction ofn-tuple 

1tk:CP(S1 , ... ,Sn)-+ Sk k-th component (for all k with 1 ~~n) 

end signature 

begin equations 

variables Si e Si (i=1, ... ,n) 

1tk((s1 , ... ,Sk,•••1Sn)) = Sk 

end equations 

end module FPN1 

module FPN2 

begin 

begin signature 

i=1, ... ,n 

functional programming constructions 

F(X, Y) functions from X to Y (parameters X,Y) 

U" : F(X,Y) embedding in function space, for U: X-+ Y 

_LJ: F(X, Y) x X -+ Y function application 

_o_: F(X, Y) x F(Y, Z)-+ F(X, Z) function composition 

*_ : F(X, Y) x L(X)-+ L(Y) map 

/: F(CP(X,X),X) x L(X) x X-+ X reduce 

end signature 

begin equations 

variables x,x' e X, ye Y, f e F(X,Y), g e F(Y,Z), he F(CP(X,X), X}, I e L(X), U: X-+ Y 

1 O U"«x» = U(x) 

11 fog «x» = t«g«x»» 

1 2 *f ([]) = [] 
13 *f(x:I) = t«x»:*f(I) 

14 /(h, [ ], x') = x' 

15 /(h, x:I, x') = h«x. /(h, I, x')» 

end equations 

end module FPN2 

9 
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module BOOLEANS 
begin 

begin signature 

BOOL sort of booleans 

T:BOOL true 

F:BOOL false 

_&_: BOOL x BOOL ~ BOOL conjunction 

_ v _: BOOL x BOOL ~ BOOL disjunction 

-._: BOOL~ BOOL negation 

end signature 

begin equations 

variables b,c e BOOL 

Tvb=T 

bvT=T 

FvF=F 

-.T= F 

-.F=T 

b & c = -.((-.b) v (-.c)) 

end equations 

end module BOOLEANS 

module NATURALS 

begin 

begin signature 

NAT natural numbers 

O:NAT zero 
succ: NAT~ NAT successor 

eq: NATx NAT~ BOOL equality 

end signature 

begin equations 

variables n,m e NAT 

eq(n,n) = T 

eq(O, succ(n)) = F 

eq(succ(n), 0) = F 

eq(succ(n), succ(m)) = eq(n,m) 

end equations 

end module NATURALS 

Note that when one writes an equation it must be ensured that this equation has a proper typing. 

Therefore an equation such as 
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X = [succ(O)] * [succ(succ(O)), X] 

is unreadable because there is no type assignment for X. 

6. SPECIFICATION OF BMASF 

Now we will start the design of the specification language BMASF. BMASF combines Basic Module 

Algebra (see [BHK 88]) with ASF. Figure 1 shows part of the signature of the first module, the mod

ule ELEMENTS (renamings, and signature of NAT and. BOOL are not shown). 

In the equations of this module, we will use meta-variables. These meta-variables range over a fi

nite set of (regular) variables, and are used to cut down on the number of equations. It is straightfor

ward to expand the equations in which meta-variables occur, in order to eliminate them. 

module ELEMENTS 

begin 
begin signature 

FIGURE 1. Part of the signature of ELEMENTS. 

GN sort of (general) names 

eqGNxGN~BooL: GN x GN --+ BOOL equality on names 

iNAT ~GN: NAT--+ GN embedding of numbers in names 

O'GNxGNxGN~GN: GN x GN x GN--+ GN name permutation 

O'GNxGNxL(GN)~GN: GN x GN x L(GN)--+ L(GN) name permutation on a list 

SD 
S:_: GN--+ SD 

sort of sort declarations 

sort names 



12 J.C.M.Baeten & J.A.Bergstra 

eqsoxsD~BooL: SD x SD ~ BOOL equality on sorts 

eqL(SD)xL(SD)~BOOL: L(SD) x L(SD) ~ BOOL equality on lists of sorts 

CD 

C:_:_: GN x SD ~CD 

sort of constant declarations 

constant names 

eqcoxco~BooL: CD x CD ~ BOOL equality on constants 

RD 

R:_:_ : GN x L(SD) ~ RD 

sort of relation declarations 

relation names 

eqRDxRD~BooL: RD x RD ~ BOOL equality on relations 

FD sort of function declarations 

F:_:_ ~-= GN x L(SD) x SD ~ FD function names 

eqFDxFD~BOOL: FD x FD ~ BOOL equality on functions 

VD sort of variable declarations 

V:_:_ : GN x SD ~VD variable names 

eqvoxVD~BooL: VD x VD ~ BOOL equality on variables 

ATREN sort of atomic renamings 

id: ATREN identity renaming 

rsoxGN~ATREN: SD x GN ~ ATREN permutation of sort names 

rcoxGN~ATREN: CD x GN ~ ATREN permutation of constant names 

rFDxGN~ATREN: FD x GN ~ ATREN permutation of function names 

rRDxGN~ATREN: RD x GN ~ ATREN permutation ofrelation names 

rvoxGN~ATREN: VD x GN ~ ATREN permutation of variable names 

_._ ATRENxso~so: ATREN x SD ~ SD application of atomic renaming 

_"_ATRENxco~co: ATREN x CD~ CD application of atomic renaming 

_"_ATRENxFD~Fo: ATREN x FD ~ FD application of atomic renaming 

_"_ATRENxRD~Ro: ATREN x RD ~ RD application of atomic renaming 

_·_ATRENxvo~vo: ATREN x VD~ VD application of atomic renaming 
end signature · · 

begin equations 

variables n,m e NAT, g,h,k,p e GN, e e L(GN), s,s',t,t' e SD, l,j e L(SD), c e CD, f e FD, 

qe RD, ve VD 

meta-variables <p,'\jf 

26 eq(i(n),i(m)) = eq(n,m) 

27 cr(g,h,g) = h 

28 cr(g,h,h) = g 

29 eq(g,k) = F & eq(h,k) = F => cr(g,h,k) = k 

30 cr(g,h,[])=[] 

31 cr(g,h,k:e) = cr(g,h,k):cr(g,h,e) 

32 eq(S:g, S:h) = eq(g,h) 
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33 eq([ ],[]) = T 
34 eq([],s:I) = F 
35 eq(s:I,[]) = F 
36 eq(s:l,t:j) = eq(s,t) & eq(l,j) 

37 eq(C:g:s, C:h:t) = eq(g,h) & eq(s,t) 
38 eq(R:g:I, R:h:j) = eq(g,h) & eq(l,j) 

39 eq(F:g:l~s. F:h:j~t) = eq(g,h) & eq(s:l,t:j) 
40 eq(V:g:s, V:h:t) = eq(g,h) & eq(s,t)) 

41 r(S:g, g) = id 
42 r(C:g:s, g) = id 
43 r(R:g:I, g) =id 
44 r(F:g:l~s. g) =id 
45 r(V:g:s, g) = id 
46 r(S:g, h) = r(S:h, g) 
4 7 r(C:g:s, h) = r(C:h:s, g) 
48 r(R:g:I, h) = r(R:h:I, g) 
49 r(F:g:l~s. h) = r(F:h:l~s. g) 
50 r(V:g:s, h) = r(V:h:s, g) 
51 id·cp=cp forcpe {s,c,f,q,v} 
52 r(S:g, h)·(S:k) = S:a(g,h,k) 
53 r(S:g, h)·(C:k:(S:p)) = C:k:(S:a(g,h,p)) 
54 r(S:g, _h)·(F:k: (*S":e) ~ S:p) = F:k: (*S":a(g,h,e)) ~ S:a(g,h,p) 
55 r(S:g, h)·(R:k: (*S":e)) = R:k: (*S":cr(g,h,e)) 
56 r(S:g, h)·(V:k:(S:p)) = V:k:(S:cr(g,h,p)) 
57 r(C:g:s, h)·(C:k:s) = C:cr(g,h,k):s 
58 eq{s,t) = F ~ r(C:g:s, h)·(C:k:t) = C:k:t 
59 r(F:g:l~s. h)·(F:k:l~s) = F:a(g,h,k):l~s 
60 eq(l:s, t:j) = F ~ r(F:g:l~s. h)·F:k:j~t) = F:k:j~t 
61 r(R:g:I, h)·(R:k:I) = R:a{g,h,k):I 
62 eq{l,j) = F ~ r(R:g:I, h)·(R:k:j) = R:k:j 
63 r(V:g:s, h)·(V:k:s) = V:a{g,h,k):s 
64 eq{s,t) = F ~ r(V:g:s, h)·(V:k:t) = V:k:t 
65 r(cp,n)·'l'='I' forcpe {c,f,q,v}, 'l'E {s,c,f,q,v},cp;t:'I' 

end equations 
end ELEMENTS 

Next, we will describe signatures. First, we list the module ATOMICSIGNATURES, in which we 
embed lhe elements of the previous module. In turn, we embed lhe module ATOMICSIGNATURES 
into SIGNATURES. A picture of their signature is fig. 2, between the two modules. 
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module ATOMICSIGNATURES 

begin 

begin signature 

ATSIG 

isD-?ATSIG: SD--+ ATSIG 

icD-?ATSIG: CD--+ ATSIG 

iRD-?ATSIG: RD--+ ATSIG 

iFD-?ATSIG: FD-+ ATSIG 

sort of atomic signatures 

embedding of sort declaration as atomic signature 
embedding of constant declaration as at. sig. 

embedding of relation declaration as at. sig. 
embedding of function declaration as at. sig. 

iVD-?ATSIG: VD-+ ATSIG embedding of variable declaration as at. sig. 

eqATSIGxATSIG-?BOOL: ATSIG xATSIG-+ BOOL equality on atomic signatures 
_"_ATRENxATSIG-?ATSIG: ATREN x ATSIG--+ ATSIG application of atomic renaming 

end signature 

begin equations 

variables s,t e SD, c,d e CD, r,q e RD, f,g e FD, v,w e VD, n e GN 

meta-variables <p,'lf 

eq(i(s), i(t)) = eq(s,t) 

eq(i(c), i(d)) = eq(c,d) 

eq(i(r), i(q)) = eq(r,q) 

eq(i(f), i(g)) = eq(f ,g) 

eq(i(v), i(w)) = eq(v,w) 

eq(i(<p), i('lf)) = F 

r·i(<p) = i(r·<p) 

end equations 

end module ATOMICSIGNATURES 

for<p,'lf e {s,c,q,f,v}, <i>*'I' 
for<pe {s,c,f,q,v} 

FIGURE 2. Signature of ATOMICSIGNATURES, SIGNATURES. 

module SIGNATURES 

begin 
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begin signature 

SIG sort of signatures 

iATSIG~s1G: ATSIG ~ SIG conversion of atomic signatures into signatures 

_ + _SIGxSIG~s1G: SIG x SIG ~ SIG signature combination 

0s1G:SIG empty signature 

eqs1GxSIG~BooL: SIG x SIG ~ BOOL equality on signatures 

_n_: SIG x SIG ~ SIG intersection 

_e _A TSIGxSIG~BooL: ATSIG x SIG ~ BOOL element of a signature 

_ll_ : ATSIG x SIG ~ SIG deletion of an element of a signature 

....;;;;!_: SIG x SIG ~ BOOL signature inclusion 

_·_ATRENxSIG~s1G: ATREN xSIG ~ SIG application of atomic renaming 

l:ATREN~s1G: ATREN ~ SIG 

inv:E: ATREN ~ SIG 

end signature 

begin equations 

signature of an atomic renaming 

sorts mentioned in, but invariant under renaming 

variables x,y,z e SIG, n e GN, s,t e SD, I: L(SD), c,d e CD, r,q e RD, f ,g e FD, v,w e VD, 

aeATSIG 

meta-variables <p,'I' 

X+0 = X 

X+X=X 

x+y=y+x 

(x + y) + z = x + (y + z) 

i(i(C:n:s)) = i(i(C:n:s)) + i(i(s)) 

i(i(R:n:I)) = i(i(R:n:I)) + /(+", *(i"oi")(I), 0) 

i(i(F:n:l~s))) = i(i(F:n:l~s)) + /(+", *(i"oi")(s:I), 0) 

i(i(V:n:s)) = i(i(V:n:s)) + i(i(s)) 

ae 0=F 

i(s) e i(i(t)) = eq(s,t) 

i(s) e i(i(C:n:t)) = eq{s,t) 

i(s) e i(i(R:n:I)) = se I 

i(s) e i(i(F:n:l~t)) = s e t:I 

i(s) e i(i(V:n:t)) = eq{s,t) 

i(cp) E i(i('I')} = 9Q(i(cp), i('I')} 

ae (x+y)=aexvaey 

xnx=x 

xny=ynx 

(x n y) n z = x n (y h z) 

i(s)e x = F => i(i(s)) n x = 0 

i(C:n:s)e x = F => i(i(C:n:s)) n x = i(i(s)) n x 

forcpe {c,r,f,v}, 'l'E {s,c,r,f,v} 

15 
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i(R:n:l)e x = F => i(i(R:n:I)) n x = /(+", *(i"oi")(I}, 0) n x 
i(F:n:l~s)e x = F => i(i(F:n:l~s)) n x = /(+". *(i"oi")(s:I), 0) n x 

i(V:n:s)e x = F => i(i(V:n:s)) n x = i(i(s)) n x 

ae x = T => i(a) n x = i(a) 

(x + y) n z = (x n z) + (y n z) 

aex= F => a~x=x 
a~i(a)=0 

i(s) ~ i(i(C:n:s)) = 0 

se I= T => i(s) ~ i(i(R:n:I)) = i(s) ~ /(+", *(i"oi")(I}, 0) 
set:I = T => i(s) ~ i(i(F:n:l~t)) = i(s) ~/(+", *(i"oi")(t:l},0) 

i(s) ~ i(i(V:n:s)) = 0 

a ~ (x + y) = a& + ~Y 

X=Y+Z => X;;?y=T 

ae y = T & ae x = F => x ;;;:;? y = F 

eq(x,y) = x ~ y & Y i;J. x 

r·0=0 

r·i(a) = i(r·a) 

r·(x + y) = r·x + r·y 

l:(r(S:n,n)) = 0 

eq(n,m) = F => l:(r(S:n,m)) = i(S:n) + i(S:m) 

eq(n,m) = F => l:{r(C:n:s, m)) = i(C:n:s) + i(C:m:s) 

eq(n,m) = F => l:{r(F:n:l~s. m)) = i(F:n:l~s) + i(F:m:l~s) 

eq(n,m) = F => l:{r(R:n:I, m)) = i(R:n:I) + i(R:m:I) 

eq(n,m) = F => l:{r(V:n:s, m)) = i(V:n:s) + i(V:m:s) 

invl:(r(s,n)) = 0 

eq(n,m) = F => invl:(r(C:n:s, m)) = i(i(s)) 

eq(n,m) = F => invl:(r(F:n:l,s, m)) = i(i(s)) + /(+", *(i"oi")(I), 0) 
eq(n,m) = F => invl:(r(R:n:I, m)) = /(+", *(i"oi")(I), 0) 

eq(n,m) = F => invl:(r(V:n:s, m)) = i(i(s)) 

end equations 

end module SIGNATURES 

The equations for SIGNATURES express the fact that combination of signatures behaves like set 

Wlion with 0 as the empty set. Moreover there are axioms that imply that signatures are closed i.e. that 

sorts occurring in the arity of a function or relation also occur in the signature (77 - 80). The axioms 

here are modeled after the set in [BHK 88]. 

In the next module, we define expressions over a certain signature. 
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module EXPRESSIONS 

begin 

begin signature 

EXP 

FIGURE 3. Signature of EXPRESSIONS. 

sort of expressions 

default: SIG x SO ~EXP default value of an expression 

17 

ivo~ExP: VD ~ EXP 

ico~ExP: CD~ EXP 

(wrongly typed expression with base signature and sort) 

conversion from variable to expression 

conversion of constants to expressions 
I· 

apf: FD x L(EXP) ~, EXP application of a function on an expression list 

LEXP~s1G: EXP~ SIG signature of expression 

S: EXP ~ SD sort of an expression 

U_JvoxEXP~F(EXP,EXP): VD x EXP~ F(EXP,EXP) 
substitution of an expression for a variable 

FVvoxEXP~BooL: VD x EXP ~ BOOL variable occurs in expression 

_"_.ATRENxEXP~ExP: ATREN x EXP~ EXP application of atomic renaming 

_"_.ATRENxL(EXP)~L(EXP): ATREN x L(EXP) ~ L(EXP) application of atomic renaming 

end signature 

begin equations 

variables ne GN, s,te SD, fe FD, xe SIG, ee EXP, ke L(EXP), le L(SD), v,we VD, ce CD 

124 S(i(V:n:s)) = s 

125 S(i(C:n:s)) = s 

126 S(default{x,s)) = s 

127 eq(I, *S"(k)) = F => apf(F:n:l~s. k) = default(i(i(F:n:l~s)) + /(+", *I:"(k), 0), s) 

128 S(apf(F:n:l~s. k)) = s 

129 I:(default(x,s)) = x 

130 I:(i(v)) = i(i(v)) 

131 I:(i(c)) = i(i(c)) 

132 I:(apf(f, k)) = i(i(f)) + /(+", *I:"(k}, 0) 

133 i(v)e x = T => [v/e]«default(x,s)» = default((i(v) /1 x) + I:{e), s) 
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134 i(v)e x = F => [v/e]«default(x,s)» = default(x,s) 

135 eq(v,w) = T => [v/e]«i(w)» = e 

136 eq(v,w) = F => [v/e]«i(w)» = i(w) 

137 [v/e]«i(c)» = i(c) 

138 [v/e]«apf(f, k)» = apf(f, *[v/e](k)) 

139 FV(v, e) = i(v) e :E(e) 

140 r·default(x,s) = default(r·x, r·s) 

141 r·i(v) = i(r·v) 

142 r·i(c) = i(r·c) 

143 r·[]=[] 

144 r·(e:k) = (r·e):(r·k) 

145 r·apf(f, k) = apf(r·f, r·k) 

end equations 

end module EXPRESSIONS 

The axioms for expressions must define the visible signature of all expressions, taking into account the 

rule that the signature of an expression is just the collection of all constants, variables, relations and 

function symbols that occur in it. An incorrectly typed expression should be equated with the default 

expression of the corresponding signature and sort (127). One needs that for all closed expressions of 

type EXPRESSION the visible signature can be calculated. 

Next, we look at formulas over these expressions. 

module FORMULAS 

begin 

begin signature 

FOR 

FIGURE 4. Signature of FORMULAS. 

sort of formulas 
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T SIG~FoR: SIG ~FOR 

Fs1G~FoR: SIG ~FOR 

apr: RD x L(EXP) ~ FOR 

eqfor: EXP x EXP ~ FOR 

forall: VD x FOR ~ FOR 

exists: VD x FOR ~ FOR 

_and_ : FOR x FOR~ FOR 

_or_: FOR x FOR~ FOR 

non: FOR~ FOR 

implies: FOR x FOR ~ FOR 

constant formula true with signature 

constant formula false with signature 

application of a relation 

atomic formula equating two terms 

universal quantification 

existential quantification 

conjunction 

disjunction 

negation 

implication 

I:FoR~s1G: FOR~ SIG signature of formula 

U_JvoxEXP~F(FOR,FOR): VD x EXP~ F(FOR,FOR) 

substitution of an expression for a variable 

FVvoxFOR~sooL: VD x FOR~ BOOL variable is free in formula 

_ . .....ATRENxFOR~FoR: ATREN x FOR~ FOR application of atomic renaming 

end signature 

begin equations 

variables x e SIG, k e L(EXP), s e SD, re RD, I e L(SD), n e GN, p,q,e e EXP, 

f,g,he FOR, v,we VD 

146 eq(I, *S"(k)) = F => apr(R:n:I, k) = F(i(i(R:n:I)) + /(+", *:E"{k), 0)) 

14 7 :E{T(x)) = x 

148 :E(F(x)) = x 

149 :E{apr(r, k)) = i(i(r)) + /(+", *:E"{k), 0) 

150 :E{eqfor(p,q)) = :E{p) + :E{q) 

151 :E{forall(v, f)) = i(i(v)) + :E{f) 

152 :E{exists(v, f)) = i(i((v)) + :E{f) 

153 :E{f and g) = :E{f) + :E(g) 

154 :E{f or g) = :E{f) + :E{g) 

155 :E{non(f)) = :E{f) 

156 :E{implies(f ,g)) = :E{f) + :E(g) 

157 non(f) or f = T{:E{f)) 

158 non(f) and f = F{:E{f)) 

159 implies(f, g or f) = T{:E{f) + :E{g)) 

160 forf=f 

1 61 f or g = g or f 

162 implies((f or g) and (non(f) or g), g) = T{:E{f) + :E{g)) 

163 f and g = non(non(f) or non(g)) 

164 implies{f,g) = non(f) or g 

165 f and implies(f ,g} = (t and implies(t ,g)) and g 

166 i(v)e x = T => [v/e]CT(x)» = T((i(v) t:,. x) + :E{e)) 

- ,:. : ~ . 

19 
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167 i(v)e x = F => [v/e]fr(x))) = T(x) 

168 i(v)e x = T => [v/e]«F(x)» = F((i(v) ll x) + I:(e)) 

169 i(v)e x = F => [v/e]«F(x)» = F(x) 

170 [v/e]«apr{r, k)» = apr(r, *[v/e](k)) 

171 [v/e]«eqfor(p,q}» = eqfor([v/eJ«p». [v/e]«q») 

172 eq(v,w) = T => [v/el«forall(w, f)» = forall(w,f} 

173 eq(v,w) = F & FV(w,e) = F => [v/el«forall(w, f)» = forall(w, [v/e]«f))) 

174 eq{v,w) = T => [v/e]«exists{w, f)» = exists{w,f) 

175 eq{v,w) = F & FV{w,e) = F => [v/e]«exists{w, f)» = exists{w, [v/e]«ij) 

176 [v/e]«f or g» = [v/e]«ij or [v/e]«g» 

177 [v/e]«non(f)» = non([v/e]«ij) 

178 FV(v, T{x)) = i(v)e x 

179 FV(v, F(x)) = i(v)e x 

180 FV(v, apr(r, [])) = F 

181 FV(v, apr(r, e:k)) = FV(v, e) v FV(v, apr{r, k)) 

182 FV(v, eqfor(f ,g)) = FV(v,f) v FV(v,g) 

183 eq(v,w) = T => FV{v, forall{w, f)) = F 

184 eq(v,w) = F => FV{v, forall(w, f)) = FV(v, f) 

185 eq(v,w) = T => FV(v, exists(w, f)) = F 

186 eq(v,w) = F => FV(v, exists{w, f)) = FV(v, f) 

187 FV{v, f and g) = FV{v,f) v FV{v,g) 

188 FV(v, for g) = FV(v,f) v FV(v,g) 

189 FV{v, non(f)) = FV(v,f) 

190 FV{v, implies(f ,g}} = FV{v,f) v FV{v,g) 

191 FV(w, f) = F & eq(S(i(v)},S(i(w))) => forall(v, f) = forall(w, [v/i(w)]f) 

192 FV(w, f) = F & eq(S(i(v)),S(i(w))) => exists{v, f) = exists{w, [v/i(w)]f) 

193 eqfor(f,f) = T{I:{f}) 

194 implies(eqfor(f ,g) and [v/p]f, [v/p]g) = T((i(i(v)) + I:{f)) + {I:{g) + I:{p))) 

195 forall(v, f) = non(exists(v, non(f)) 

196 FV(v, e) = F => implies([v/e]f, exists(v, f)) = T(I:{e) + (i(i(v)) + I:(f))) 

197 FV{v, g) = F => implies(implies(f,g), implies(exists(v, f), g)) = T((I:(f) + I:{g)) + i(i(v))) 

198 r·T(x) = T(r·x) 

199 r·F(x) = F(r·x) 

200 r·apr(q, k) = apr(r·q, r·k) 

201 r·eqfor(f,g) = eqfor(r·f, r·g) 

202 r·(f or g) = r·f or r·g · 

203 r·(non(f)) = non(r·f) 

204 r·(exists{v, f)) = exists(r·v, r·f) 

end equations 

end module FORMULAS 
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The situation with formulas is comparable with that of expressions, be it that the role of the default 

formula is now played by F(x) for the right signature (146). Moreover, the visible signature must be 

defined for all formulas. Then we need axioms that allow a-conversion of variables bound by existen

tial and universal quantification (191, 192). Further, all axioms of predicate logic can be coded in the 

format of module algebra by writing them as equivalences between conjunctions of axioms (157 - 165, 

193 - 197). In the following section on modules, one will find an axiom that allows us to split an 

atomic module consisting of the conjunction of two formulas, in a combination of atomic modules 

(205). Thus it will be possible to remove the long conjunctions that are generated by the coding of 

predicate logic inference rules in this section. 

module MODULES 

begin 

begin signature 

ASM 

FlGURE 5. Signature of MODULES. 

sort of algebraic specification modules 

U: FOR ~ ASM atomic module 

Ts1G~AsM: SIG ~ ASM embedding of signatures in ASM 

_ + ....ASMxASM~AsM: ASM x ASM ~ ASM combination of modules 

D: SIG x ASM ~ ASM export operator 

:EAsM~s1G: ASM ~ SIG visible signature 

+ 

_"....ATRENxASM~AsM: ATREN x ASM ~ ASM application of atomic renaming 

end signature 

begin equations 

variables f,g e FOR, u,v e SIG, X,Y,Z e ASM 

205 (f and g) = (f) + (g) 
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206 E{(f)) = E{f) 
207 E{T{u)) = u 

208 E{X + Y) = E(X) + E(Y) 
209 E(uoX) = unE(X) 

210 /+"([])=T(0) 

211 X+Y=Y+X 

212 (X + Y) + Z = X + (Y + Z) 
213 T(u + v) = T(u) + T(v) 

214 X + T{E{X)) = X 

215 X + (uoX) = X 

216 E{X)DX = X 

217 uo(voX) = (unv)oX 

218 uo(T(v) + X) = T(unv) + (uoX) 

219 u ;;;;! E{X)nE{Y) => uo(X + Y) = (uoX) + (uoY) 
220 E(r·X) = r·E(X) 

221 r·(g) = (r·g) 

222 r·T(u) = T{r·u) 

223 r·(X + Y) = r·X + r.Y 

224 r·(uoX) = (r·u)o(r·X) 

225 r·(r·X) = X 

226 L{r) n L{X) = invl:{r) => r·X = X 

end equations 

end module MODULES 

These equations for algebraic specification modules require just the axioms of module algebra for the 

part of the signature written above (206 - 225). 

Next, we look at declarations. When we combine declarations with algebraic specification mod

ules, we extend the signature of such modules, and we will have to re-examine some axioms. A pic

ture for the signature of the modules DECLARATIONS and ENVIRONMENTS can be found be

tween the two. 

module DECLARATIONS 

begin 

begin signature 

DE 

(asm:_ = _): GN x ASM --+ DE 

sort of declaration environments 

asm declaration 

(sig:_ = _): GN x SIG --+ DE signature declaration 

(boot:_ =_): GN x BOOL --+ DE boolean declaration 

imPGN~s1G: GN --+ SIG 

imPGN~AsM: GN --+ ASM 

import signature expression 

import module expression 

_ + _DExDE~oE: DE x DE --+ DE combination of declaration environments 
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0oE : DE empty declaration environment 

_ ._ATRENxDE-?DE: ATREN x DE--+ DE application of atomic renaming 

_ ·_ATRENxBOOL-?BOOL: ATREN x BOOL --+ BOOL application of atomic renaming 

end signature 

begin equations 

variables p,q,q' e DE, X e ASM, u e SIG, be BOOL, n e GN 

227 p +0= p 
228 p + q = q + p 
229 (p + q) + q' = p + (q + q') 

230 p + p = p 

231 r-(asm: n=X) = (asm: n=r·X) 

232 r-(sig: n=u) = (sig: n=r·x) 

233 r-(bool: n=b) = (bool: n=r·b) 

234 r·(D + E) = r·D + r·E 

235 r·0=0 

236 r·T = T 

237 r·F = F 

end equations 

end module DECLARATIONS 

FIGURE 6. Signature of DECLARATIONS, ENVIRONMENTS. 

23 

The main equation for the abbreviation mechanism is a body replacement axiom that allows to replace a 

name with the module that it stands for (260, 261). Renamings have to be specified as well for the ab

breviation declaration. Notice that since we allow declarations with module expressions, we also will 

get them with each target sort of ASM. In this case, this is only SIG, which in tum has BOOL as a 

target sort. The axioms are phrased so that the construct DASM (and DSIG, DBOOL) can be moved 
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to the outside, so that each module expression can be written in the form DASM(p, X), where X con

tains no declarations. 

module ENVIRONMENTS 

begin 

begin signature 

DASM: DE x ASM-7 ASM asmodule with declarations 

DSIG: DE x SIG -7 SIG signature with declarations 

DBOOL: DE x BOOL -7 BOOL boolean with declarations 

end signature 

begin equations 

variablesX,Ye ASM,u,v,xe SIG,b,ce BOOL,p,qe DE,se SD,ve VD,ne GN, 

le L(SD),ae ATSIG,ee EXP 

238 X = DASM(0, X) 

239 u = DSIG(0, u) 

240 b = DBOOL(0, b) 

241 DASM{p, DASM{q, X)) = DASM(p + q, X) 

242 DSIG(p, DSIG{q, u)) = DSIG(p + q, u) 

243 DBOOL{p, DBOOL{q, b)) = DBOOL(p + q, b) 

244 DASM(p, X) + DASM{q, Y) = DASM(p + q, X + Y) 

245 DSIG(p, u) + DSIG(q, v) = DSIG(p + q, u + v) 

246 DSIG(p, u) n DSIG(q, v) = DSIG(p + q, u n v) 

247 DBOOL{p, b) & DBOOL{q, c) = DBOOL(p + q, b&c) 

248 DBOOL{p, b) v DBOOL(q, c) = DBOOL(p + q, bvc) 

249 -.DBOOL(p, b) = DBOOL{p, -.b) 

250 I:(DASM{p, X)) = DSIG(p, I:{X)) 

251 T(DSIG(p, u)) = DASM(p, T(u)) 

252 eq(DSIG(p, u), DSIG(q, v)) = DBOOL{p + q, eq(u,v)) 

253 a e DSIG{p, u) = DBOOL{p, ae u) 

254 a 6. DSIG(p, u) = DSIG(p, a6.u) 

255 DSIG{p, u) ;;;::! DSIG(q, v) = DBOOL(p + q, U;;;:!V) 

256 DSIG(p, u) o DASM(q, X) = DASM(p + q, u o X) 

257 (asm: n = DASM(p,X)) = p + (asm: n = X) 

258 (sig: n = DSIG(p,u)) = p + (sig: n = u) 

259 (boot: n = DBOOL(p,b)) = p + (bool: n = b) 

260 r·DASM(D, X)) = DASM(r·D, r·X) 

261 r·(DSIG(D, x)) = DSIG(r·D, r·x) 

262 r·(DBOOL{D, b)) = DSIG(r·D, r·b) 

263 DASM((asm: n = Y)i imp(n)) = DASM((asm: n = Y), Y) 
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264 DSIG((sig: n = u), imp(n)) = DSIG((sig: n = u), u) 

265 i(s)e x = DBOOL(p, F) ~ i(i(s)) n x = 0 

266 i(C:n:s)e x = DBOOL(p, F) ~ i(i(C:n:s)) n x = i(i(s)) n x 

267 (R:n:l)e x = DBOOL(p, F) ~ i(i(R:n:I)) n x = /(+", "(i"oi")(l), 0) n x 

268 i(F:n:l-4S)e x = DBOOL(p, F) ~ i(i(F:n:l-4s)} n x = /(+", *(i"oi")(s:I), 0) n x 

269 i(V:n:s)e x = DBOOL(p, F) ~ i(i(V:n:s)) n x = i(i(s)) n x 

270 ae x = DBOOL(p, T) ~ i(a) n x = i(a) 

271 i(v)e x = DBOOL(p, T) ~ [v/e](default(x,s)) = default((i(v) ti x) + :E(e), s) 

272 i(v)e x = DBOOL(p, F) ~ [v/e](default(x,s)) = default(x,s) 

273 i(v)e x = DBOOL(p, T) ~ [v/e](T(x)) = T((i(v) ti x) + :E(e)) 

27 4 i(v)e x = DBOOL(p, F) ~ [v/e](T(x)) = T(x) 

275 i(v)e x = DBOOL(p, T) ~ [v/e](F(x)) = F((i(v) ti x) + :E(e)) 

276 i(v)e x = DBOOL(p, F) ~ [v/e](F(x)) = F(x) 

277 DSIG(p, u) ;;;;i :E(X) n :E(Y) ~ u D (X + Y) = (u D X) + (u D Y) 

278 :E(r) n :E(X) = DSIG(D, inv:E(r) + v) ~ r · X = X 

end equations 

end module ENVIRONMENTS 

7. MODELS OFBMASF 

In this section, we give some heuristics on how to construct models for BMASF. 

BMASF is a large specification and it is almost impossible to provide an elaborate account of its 

consistency and a survey of its various models in a reasonable and theoretically meaningful way. In 

particular, proving that it is a complete TRS or an attempt towards completion seems pointless to us. 

Semantically, one may say that the specification has an initial algebra and one needs some information 

about its structure and its homomorphic images. 

The first step in the right' direction is to view BMASF as an increasing sequence of specifications 

S1, S2, ... , Sk. Here, we discuss the following division: 

81 =modules ELEMENTS, ATOMICSIGNATURES and SIGNATURES; 

82 = S1 +module EXPRESSIONS; 

S3 = S2 +module FORMULAS; 

S4 = S3 +module MODULES; 

S5 = S4 +module DECLARATIONS; 

SS = S5 +module ENVIRONMENTS. 

7.1 SIGNATURES. 

The initial algebra ll(S 1) is unproblematic, it can be described in terms of simple set theoretic con

structions given the point of view that a signature is more or less a set of atomic signatures. Thus, the 

general names are to be interpreted by the natural numbers (one can choose to have character strings, 
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instead), for the various names one talces the appropriate kinds of pairs and tuples, and for the atomic 

signatures one talces the finite sets of the declarations of ingredients. 

There is no reason to investigate any of its homomorphic images because of this, and one would 

be satisfied if ll(81 ) is the final algebra of 81 as well (which is probably true and otherwise can be 

made true by means of a harmless extension of the axioms). 

7.2 EXPRESSIONS. 

The initial algebra of 82 is an expansion of ][(81 ). To validate this, one must prove that every closed 

identity between terms over the signature of 81 provable from 82 is already provable from 81 (no 

confusion) and that every closed term over the signature 82 of a sort that occurs in the signature of 81 

is provably equal to a closed term over the signature of 81 (no junk). One may prove the first fact in a 

model theoretic way by finding a model of 82 that is an expansion of the initial algebra of 81. The 

second fact requires inspection of the equations. By viewing them as rewrite rules one can prove with 

induction on the structure of closed expressions (of sort EXP) that 8 and 1: yield known values. 

The model that proves 'no confusion' equates two expressions if they have the same signature and 

if in all algebras of that signature equipped with a default value for each sort, they compute the same 

polynomial functions with the understanding that minimal incorrectly typed expressions are replaced 

by the default corresponding to the target sort of their outermost function symbol. Notice that the de

faults are never declared in the signature of an expression. These defaults are introduced in an external 

(meta) way. Thus, although the expressions seem to be over algebras of their signature, they must be 

interpreted in algebras with some additional structure, viz. the defaults for each sort. 

As all expressions have a signature and not just a type, their interpretation in the models will take 

the form of a pair of a signature and a well-typed term over that signature (this term may involve the 

value default and may use just a part of the signature). 

Thus, if M is a many-sorted algebra with an interpretation of the constant, relation and function 

symbols of our language, and if 81G is the class of signatures, then we are considering models of the 

form M x 81G, with as elements pairs of the form (a.a) (a an element of a sort, a a signature). Func

tion application looks as follows: 

f((a1 ,a1 ), ... ,(an, O'n)) = (f(a1, ... , an). 0'1 + ... + O'n + f: t1 x ... xtn -7 t) 

Notice that for all operations except substitution, the signature will increase. 

7 .3 FORMULAS 

The initial algebra of 83 is a'n expansion of that of 82. This is proven in a similar way as in the case 

of 82. The model construction will equate two formulas if their signatures coincide and they have the 

same meaning in all algebras of that signature, where again we assume that these algebras have been 

equipped with default values for each sort and the application of a relation on a type incorrect parameter 

list leads to the default formula F for the appropriate signature. 

The meaning of a formula is determined as in ordinary many sorted logic. One may or may not al

low empty sorts, that will just lead to different variations of the theory. All sorts that have an expres

sion in the language are non-empty, as the default element has to be identified. 
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7.4 MODULES 

Models for S4 can be constriicted as expansions of models for S3 similar to the construction of mod

els for BMA in [BHK 88]. The objects of type FOR play the role of first order atomic modules and for 

each module a signature and a meaning is known. Models of module algebra that can be considered are 

K(BMA[fol]), Mifol), Mcifol), Tifol) as defined in [BHK 88]. 

For S4 one can establish a normalization theorem that allows to rewrite every closed module ex

pression into a form that features only a single occurrence of the export operator. 

7.5 DECLARATIONS 

Models of S5 are again expansions of selected natural models of S4. Given a model of S4, one may 

view a declaration environment as a system of definitions for signatures and modules. Two DE's can 

be identified if they define the same variety over the given models of S4. Stated differently, a DE de

fines a relation with attribute names in GN and with as domains for each attribute either the signatures 

or the modules of the chosen model. The relation contains exactly those pairs that satisfy the identities 

of the declarations in the choSen model of module algebra. 

7 .6 ENVIRONMENTS 

The step towards S6 involves an extension of previous algebras rather than an expansion. Indeed, the 

transition to S6 introduces for three sorts (BOOL, SIG, ASM) new expressions involving declaration 

environments. It is claimed that models for S6 can be found by extending the appropriate models for 

S5 at these sorts with objects consisting of a pair of a declaration environment and an original expres

sion of that sort. 

Then one may consider the closed signature and module expressions involving declaration envi

ronments as mappings from the collections determined by their declarations to signatures resp. mod

ules. This construction is entirely general in the sense that it works on a model of any theory in the 

place of module algebra. 

7.7 AXIOMS 

All axioms reflect valid assertions about the above interpretation of the language of BMASF. In fact 

BMASF is a small extension of the system BMA[fol] of [BHK 88]. It includes an explicit algebraic 

coding of first order logic. The only complication of that coding is the application of defaults to deal 

with incorrectly typed expressions. Moreover it includes a mechanism for the introduction of declara

tions and the expansion of declared names. 

The axioms are to be judged on several criteria: 

They must express facts about the operators that hold in the intended interpretation. They must allow 

all transformations that are involved in normalization procedures that allow rewriting expressions to the 

various normal forms that one may have in mind. Now it is hardly possible to survey the normal forms 

and normalization procedures that are relevant. Further as different tools may use different normaliza

tion mechanisms it is inappropriate to design the axioms on their ability to allow just one normalization 

or just a few key normalization mechanisms. The normalizations that are possible using the transfor

mations described in our axioms include: 
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(1) the disjunctive and conjunctive normal form of propositional calculus; 

(2) the prenex normal form of predicate logic; 

(3) the normal form of module algebra for closed expressions without unexpanded imports; 

(4) collecting all declarations in a declaration environment (where declared modules have no inter

nal declarations); 

(5) expanding all imports (for which a declaration is available) in a target expression; 

( 6) the flattening of module expressions to a normal form in the sense of module algebra; this may 

be done just partially because of inexpandable imports, otherwise we are in case (3); 

(7) the decomposition of complex predicate calculus formulae into a sum of atomic module 

expressions using (P and Q) = (P) + (Q); this is exactly what happens if one writes a long algebraic 

specification, though it may be inappropriate to call it normalization. 
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