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1. INTRODUCTION

In this paper we give a survey of some recent results on multi-
commodity flows and compact surfaces, derived with the help of methods
from polyhedral combinatorics. For several of the results obtained
we know, at this moment, no other proof method than polyhedral methods.

In fact, these polyhedral methods are no other than two well-known
variants of Farkas' lemma. Let al""’ak’bl""’bm be vectors in I{R

The first variant is the 'blocking polyhedron theorem' of Lehman [_-23 :

(1) if the polyhedron {xe IRnl x20; arfx>,1 (i=1,... ,k)} has vertices
bl""'bm , then the polyhedron {erRnl x$0; b?x)l (j=1,...,m)}
has all its vertices among al,...,ak

i >
(assuming al,. .. ,ak, 0).

The second variant is the 'cone-form' of Farkas' lemma:

(2) if the convex cone {erRnl a'jI_‘XQO (i=1,...,k)} is generated by
n T . ‘ .
bl""’bm , then the convex cone {xelR [bjx;D (j—l,...,m)} is
generated by Ayreeerdy .

The first variant is applied to graphs embedded on the Klein bottle
(Section 2), and the second variant is applied to graphs embedded on

compact orientable surfaces (Section 3).

2. THE KLEIN BOTTLE

We first focus on the Klein bottle and its relations to planar multi-
commodity flows. The Klein bottle is a compact surface usually represented
as follows. Consider an annulus (= cylinder), and identify the inner and

outer boundaries, in opposite orientation. Schematically:

(3) o( «

N\




There is an alternative way of obtaining the Klein bottle from the
annulus: identify opposite points on the outer boundary, and similarly,

identify opposite points on the inner boundary. Schematically:
4

(4)

Q

o

This corresponds to representing the Klein bottle as a 2-dimensional sphere
with two 'cross-caps' (one made by the outer boundary in (4), the other by
the inner boundary) .

The Klein bottle is a nonorientable surface. Hence there are two types

of closed curves on the Klein bottle:

(5) - orientation-preserving closed curves: those where the meaning of
left and right is unchanged after one turn;
- orientation-reversing closed curves: those where the meaning of

left and right is flipped after one turn.

It is not difficult to see that a closed curve is orientation-preserving
(orientation-reversing, respectively) if it traverses the cross-caps an even
(odd, respectively) number of times.

Now let G=(V,E) be a graph embedded on the Klein bottle S. (By a graph
we mean an undirected graph. Embedding assumes non-intersecting edges except
for their end vertices. We identify G with its image in S.)

We will be interested in the orientation-reversing circuits in G. (A
circuit is a simple closed curve in G. We identify a circuit with the set
of edges traversed by it.)

Call a set B of edges a blocker if it intersects each orientation-reversing

circuit. In [ld] we proved the following min-max relations:

(6) (i) If G is bipartite, then the minimum size of an orientation-revers-

ing circuit is equal to the maximum number of pairwise disjoint

blockers.

(ii) If G is Eulerian, then the minimum size of a blocker is equal
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to the maximum number of pairwise edge-disjoint orientation-

reversing circuits.

CHere a graph is Eulerian if all degrees are even.]

We here sketch a proof of these equalities. In fact, we first show
(6) (i), and next derive (ii) from (i) with the blocking polyhedron variant
(1) of Farkas' lemma.

Starting point in the proof method is the following result proved in

E7]:

THEOREM 1. Let G=(V,E) be a planar bipartite graph embedded in the plane.
Let I1 and 12 be two of its faces. Then there exist pairwise edge-disjoint
cuts S(Xl), ,(()(Xt) so that for each two vertices v,w with v,webd(Il)
or V,w F—_bd(IZ), the distance in G from v to w is equal to the number of

cuts (S(Xj) separating v and w.

Here $(X) denotes the set of edges of G with exactly one end point in X.
cut §(X) is said to separate v and w if v#w and l{v,w}n Xl=1. By bd(..)
we denote the boundary of .. . Faces are considered as open regions.

From Theorem 1 we derive (6) (i), i.e.: .

T HEOREM 2. Let G=(V,E) be a bipartite graph embedded on the Klein bottle S.
T"hen the minimum length of any orientation-reversing circuit in G is equal

to the maximum number of pairwise disjoint blockers.

PROOF. Clearly, the maximum is not larger than the minimum. To show equality,
we may assume that each face of G is orientable, i.e., contains no cross-cap.
Inideed, if a face contains a cross-cap, we can add a path to G over this
Cxoss—-cap, in such a way that the graph remains bipartite and such that the
minimum length of any orientation-reversing circuit remains unchanged (by
taking the path even and long enough).

Let C1 be a minimum-length orientation-reversing circuit in G, say with

1 ength tl' We 'cut open' the Klein bottle S along Cl' In this way we obtain
A bordered surface S', with a circle B1 as border, so that S arises from S'
by identifying opposite points on Bl’ So S' is a Md&bius strip. Let i:8'—»S
denote the identification map. The graph G' := i‘l]:G] is a bipartite graph

©n S', and By = i"l[clj.

Let C2 be a minimum-length orientation-reversing circuit in G' (on S'),
Say with length t (by adding

. We may assume that C, is edge-disjoint from B

2 2 1

Parallel edges). Next we 'cut open' the M&bius strip S' along C2. We now



obtain an annulus S", with two circles B1 and B2 as boundaries (in the ideal

case where C, is vertex-disjoint from B1 -~ the general case is similar).

2
The Klein bottle S arises from the annulus S" by identifying opposite

points on B1 and by identifying opposite points on B2. Let i':S"—»S be the
identification map, and let G" := (i‘)_lfG]. So G" is a planar bipartite
graph, embeddable in the planeij, in such a way that two of its faces I1

(= unbounded face) and 12 have the following properties:

(7) (i) the boundary of I1 is a circuit B1 of length 2t1, and the

boundary of I, is a circuit B2 of length 2t2;

2

(ii) S arises from m?\(l UIz) by identifying pairs of opposite

1

points on B, and by identifying pairs of opposite points on B2'

1

In fact, we identify S" andiRz\(IleZ).

Since t, is the minimum length of an orientation-reversing circuit in G,

1
each pair of opposite vertices on B1 has distance exactly tl' Similarly,
since t2 is the minimum length of an orientation-reversing circuit in G"',
each pair of opposite vertices on B2 has distance exactly t2.

By Theorem 1, there exist pairwise disjoint cuts 3(X1),...,6(Xt) so
that each two vertices v and w of G" with v,webd(Il) or V,w ebd(Iz) , the
distance in G" from v to w is equal to the number of cuts 5(Xj) separating
v and w. We may assume that each 8(Xj) separates at least one such pair v,w
(all other cuts can be deleted).

1 of length t1 at most once
of the 5(XJ), as P is a shortest path between

Each cut 5(X ) intersects any subpath P of B

(as P is lntersected by t1

its end points). So if é(Xj) intersects B it intersects B, exactly twice,

1’ 1
in two opposite edges. Similarly, if 8(Xj) intersects B2, it intersects B2

exactly twice, in two opposite edges.

We classify é(xl),...,S(Xt) into three classes:

(8) (1) those intersecting both B1 and B2, say 8(x1),.. S(X )i
(ii) those intersecting B1 but not B2, say 5(XS+1),.. 3(Xt )
(iii) those intersecting B2 but not Bl’ say 6(Xt +1),...,3(}( ).
1
Note that B2 is intersected by exactly t2 of the S(Xj), and hence t2=s+(t~t1),
i.e., s=t1+t2~t.

Now it is not difficult to see that the images of the S(Xj), properly

composed, give blockers in G as required. In fact, we can take:

(9) RN R EIR PRRRRER | 1E30) DERI L TC SR IV 1E S0 IO I {0 yubix,,
1 1



A standard corollary in polyhedral combinatorics now is:

THEOREM 3. Let G=(V,E) be a graph embedded on the Klein bottle S. Then each

vertex of the polytope in Igl determined by:

(10) (1) x(e)2 0 (e gE),
(ii) Zj x(e) > 1 (C orientation-reversing circuit),
c€eC

is the incidence vector of some blocker.

PROOF. Let x be a positive rational vector satisfying (10). We show that

there exist blockers B ...,At)>0 so that A1+...+A

.,Bt and rationals A

17" 1’ t

=1 and so that
B B
1 t
(11) x>,,‘\1x b o +z\tx

(where R? denotes the incidence vector of B). This suffices to prove the
theorem.

Let N be a natural number so that Nx(e) is an even integer for each
edge e. Replace each edge of G by a path of length Nx(e) (that is, put
Nx(e)-1 new vertices on e). We obtain a bipartite graph G'. Let C' be a
minimum-length orientation-reversing circuit in G', of length t say. As x
satisfies (10), we know t>=N. By Theorem 2 there exist t pairwise edge-

disjoint blockers B .,Bé in G'. Their 'projections' to G give t blockers

1
10

Bl""’B in G with the property that each edge e of G is contained in at

t
most Nx(e) of the Bj' Hence

! o
(12) tx;Nx>P< +"'+X .
Taking Aj := 1/t for each j gives (11). []

Lehman's theorem (1) now implies the dual statement of Theorem 3:

THEOREM 4. Let G=(V,E) be a graph embedded on the Klein bottle S. Then the

vertices of the polytope in Iggdetermined by :

(13) (1) x(e) 20 (e € E),
(ii) Z x(e)=>1 (B€E, B blocker),
eeB

are exactly the characteristic vectors of orientation-reversing circuits.



This is in fact the fractional packing version of (6) (ii). We derive

the integer packing result (6) (ii):

THEOREM 5. Let G=(V,E) be an Eulerian graph embedded on the Klein bottle S.
Then the minimum size of a blocker is equal to the maximum number of pairwise

edge-disjoint orientation-reversing circuits.

PROOF. Clearly, the maximum is not more than the minimum. Suppose equality

does not hold, and let G form a counterexample with

(14) 23 2deg(v)
veV

as small as possible (where deg(v) denotes the degree of v). Then:
(15) each vertex of G has degree at most 4.

For suppose v has degree at least 6:

(16)

Replace this (on the Klein bottle) by:

(17)

This modification does not change the minimum size, t say, of a blocker, as

one may check. However, it reduces the sum (14), so in the new graph there



exist t pairwise edge-disjoint orientation-reversing circuits. This gives
also in the original graph t pairwise edge-disjoint orientation-reversing
circuits, contradicting our assumption.

This shows (15). Let t be the minimum size of a blocker in G. Hence the
vector x with all entries equal to 1/t satisfies (13). So by Theorem 4 there
exist orientation-reversing circuits C

reals f\l,...,xk>0 so that:

;-..,C  (pairwise different) and

1 k

(18) (i) /\1+...+Ak =1,

C C
(ii) )‘1?( 1+...,\ka < x

Consider a vertex v of G of degree 4, and the edges el,e incident

2'3"%4
to v in cyclic order:

(19) v

Thus ey and e, are 'opposite' in v, and similarly, e, and e, are opposite

in v. We show that for each circuit Ci:

(20) (i) Ci traverses e,

(ii) Ci traverses e, [ — Ci traverses e

& Ci traverses e3i’
4"

Having shown this for each vertex v and each Ci' it follows that C,,...,C

1
are pairwise edge-disjoint. Since k2t (since Aig'l/t for each i), this

k

proves the theorem.
If (20) does not hold, we may assume without loss of generality that

C, traverses e, and e,. Replace (19) by:

1 1 2°

2 °3
(21) > <
el e4



Let G' be the new graph obtained. So G arises from G' by identifying v' and v".
Graph G' is Eulerian again, with sum (14) smaller than for G. So by the
minimality assumption, the theorem to be proved holds for G'.

Let t' be the minimum size of a blocker in G'. If t'2>t, there exist
t pairwise edge-disjoint orientation-reversing circuits in G', and hence
also in G, contradicting our assumption. So t'<t. By the Eulerity condition,
t'<t-2. Let B' be a blocker of size t' in G'. Then B := B'Ll{el,eZ} is a
blocker of size at most t'+2 in G. Since [B|>»t, we know |B[=t.

Since \CinB]>,1 while lClnB|>1, this gives the contradiction:

C C
(22) 1 = Z: 1/t 2 E:(A 1(e)+...+>\ kCe)) =
Zolen i

e¢B

Al B+ d I aBl e o\ [ aBSA .k = 1 n|

Theorem 5 has a number of corollaries. First, a theorem of Lins [3]
follows, which is in fact the analogue of Theorem 5 for the projective plane.
Nore that the orientation-reversing circuits in the projective plane are

exactly the nonnullhomotopic circuits, and exactly the nonseparating circuits.

THEOREM 6 (Lins' theorem). Let G=(V,E) be an Eulerian graph embedded in the
projective plane. Then the maximum number of pairwise edge-disjoint nonnull-
homotopic circuits in G is equal to the minimum number of edges intersected

by any nonnullhomotopic closed curve not intersecting V.

PROOF. Directly from Theorem 5 by putting a cross-cap in one of the faces of
G, thus transforming the projective plane to a Klein bottle. Note that the
minimal blockers in G are exactly the minimal sets of edges intersected by

some nonnullhomotopic closed curve not intersecting V. []

Theorem 5 also implies two results on planar multicommodity flows. Let
G=(V,E) be a graph, and let LyreeerTprSyreeesSy be vertices of G (so that
ri#si for all i). Clearly, the following cut condition is a necessary

condition for the existence of pairwise edge~disjoint paths P .,P, where

17" k

P, connects r, and s, (i=1,...,k):
i i i

(23) (cut condition): for each X ¢V: !S(Xﬂ 2 number of pairs r.es;
separated by 5(X).

Simple examples show that this cut condition is not sufficient in general.



However, an Eulerity condition turns out to be gquite helpful:

(24) (Eulerity condition) the graph (V,Euﬁ{rl,sli,...,{ik,skl})is

Eulerian.
First we sketch how to derive:

THEOREM 7. Let G=(V,E) be a planar graph embedded in the plane R2 and

let rl”"’rk'sl""’sk be vertices of G so that the Eulerity condition
holds. Let rl,...,rk be incident to the unbounded face I1 in clockwise order.
Let 51""’Sk be incident to some other face 12 in anti-clockwise order.

Then there exist pairwise edge-disjoint paths Pl""’P where Pi connects

k
r, and o (i=1,...,k), if and only if the cut condition is satisfied.

2
PROOF. Let the cut condition be satisfied. Extend R N\ (I uIz) to the Klein

1
bottle, by adding a cylinder between the boundaries of I1 and 12. Extend G
to a graph G' on the Klein bottle by adding edges €yr--.,8 oOver this
cylinder, in such a way that e, connects ry and s; (i=1,...,k). Then a

circuit in G' is orientation-reversing if and only if it contains an odd

number of edges from SIRERERL So it suffices to show that G' contains k

K
pairwise edge-disjoint orientation-reversing circuits.

Since G' is Eulerian, we can apply Theorem 5. That is, we must show that
each blocker in G' has size at least k. It is not difficult to derive this

from the cut condition. []
Also a theorem of Okamura [4] can be derived:

THEOREM 8 (Okamura's theorem). Let G=(V,E) be a planar graph embedded in the

2
plane R and let rl,...,rk,s1 X

condition holds. Let there exist two faces 11 and 12 of G so that for each

i=1,...,k: ri,siebd(Il) or ri,sie bd(I2). Then there exist pairwise edge-

;.--,8_be vertices of G so that the Eulerity

disjoint paths P where Pi connects r, and si (i=1,...,k), if and only

1""’Pk
if the cut condition is satisfied.

PROOF. Without loss of generality, I1 is the unbounded face, and LyreeeX

tl

Sll...,stEbd(Il) and r ..,skebd(I2). By an argument due

e .,rk,st+1,.

to S. Lins we may assume that rl,...,rt,sl,...,st

ally around bd(Il). To see this, first note that we may assume that the

occur in this order cyclic-

vertices r,,...,Y. ;,S,,...,S
1l 7 tl 1’ 14 t

a new vertex of degree 1 to any ri or si and replace this ri or si by the

are distinct and have degree 1 (as we can add
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new vertex). Call two pairs ri,si and rj,sj on bd(Il) crossing if i#j

and ri,rj,si,sj occur in this order cyclically around bd(Il), clockwise
or anti-clockwise. Suppose not all pairs of pairs r.,s, are crossing. Then
there exist i,j so that ri,si and rj,sj are noncrossing and so that there

h
and that does not contain s, or Sj (maybe after exchanging r, and si).

is no pair r, :Sy on that part of the boundary of I1 that connects r, and s,

Now we can add in I1 three new vertices w,ri and r! and four new edges

as follows:

(25) w

Replacing r, and rj by ri and r% does not violate the cut condition. Moreover,
any pair of edge-disjoint paths Pi,Pé in the extended graph, where Pi
connects ri and s, and Pé connects ri and sj , contains edge-disjoint paths
Pi and Pj in the original graph, where Pi connects r, and s and Pj connects
r, and s..
J

Repeating this construction, we end up with rl,...,rt,sl,...,st occurring

in this order cyclically around bd(Il) (possibly after reordering indices and

exchanging r, and si). Similarly, we can assume that r I o

e+l k' Ste1’ 5k

occur in this order cyclically around bd(IZ)'
2
Now extend R \(Ilulz) to the Klein bottle, by adding two cross-caps

(in fact, two Mdbius strips) along the boundaries of I, and of I,. Extend

1 2
G to a graph G' on the Klein bottle by adding edges‘el,...,ek over the
cross—-caps, in such a way that e connects T, and S5 (i=1,...,k). The
remainder of the proof is similar to that of Theorem 7. [j

Okamura's theorem has as special case the theorem of Okamura and Seymour

[5] , where TiresesXypsSqse..ys, are all on the boundary of one face.
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3. COMPACT ORIENTABLE SURFACES.

We next show how some results on curves and graphs on compact orientable
surfaces can be derived with the help of polyhedral combinatorics. Recall
that a compact orientable surface is a 2-dimensional sphere added with a
finite number of 'handles'.

Let S be a compact orientable surface. A closed curve on S is a

continuous function C:S,~—>»S, where S is the unit circle. We call two closed

1
curves C and C' homotopic, in notation: C®C', if C can be shifted conti-
nuously to C', without fixing a base point. That is, there exists a conti-
nuous function §: [0,1] X Sl-—-> S so that:

(26) $(0,2) = c(z) ana §(1,2) = C'(2) for all zes,.
We call a closed curve primitive if there do not exist a closed curve D and
an integer n>2 so that ceD".

By cr(C,D) we denote the number of intersections of C and D (counting

multiplicities):
(27) cr(c,m) := [{ty,2) esxs, | cy)=p(zi}|

By mincr (C,D) we denote the minimum number of intersections of C' and D',

ranging over all C'NC and D'eD:
(28) mincr (C,D) := min{cr(c',n')| c'e~c, D'eD}.

One objective in this section is deriving the following result in
combinatorial topology [8] . It describes under which conditions two systems
of primitive closed curves are homotopically the sanme:

THEOREM 17. Let C ..,C,_ and C! C!., be primitive closed curves on S. Then

1 k 1tk
the following are equivalent:
(i) k=k' and there exists a permutation w of {1,...,k} so that C%(i)GJCi

or C! ., oJCTl for each i=1,...,k;
(i) i

.. k . k! . .
(ii) for each closed curve D on S: z;, mincr(C, ,D) = zi_ mincr(C!,D).
i=1 i i=1 i

The implication (ii)=»(i) is the essence of the theorem. It asserts
that if two systems of primitive closed curves cannot be shifted to each
other, then there exists a closed curve D distinguishing between them. Note

that we cannot skip the primitiveness condition.
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A second objective is a result in topodlogical graph theory [11] . We
need some further terminology and notation. If G is a graph embedded on S
and D is a closed curve on S, we denote by cx(G,D) the number of inter-

sections of G and D (counting multiplicities):
(29) cr(6,0) := |{zes, | D(2) e c}|.

By r&(D) we denote the minimum number of intersections of G and D', ranging

over all D'« D:
(30) VG(D) 1= min{Er(G,D‘)f D'maD}.

If G' arises from G by deleting edges and contracting nonloop edges,
we say that G' is a minor of G. It is called a proper minor if at least
one edge is deleted or contracted. Note that if G' is a minor of G then
HG‘Sfﬁy We call G a kernel (on S) if for each proper minor G' of G one

i.e., D).
has VG' # TIG (i.e VG'(D)</JG<D) for at least one D)

The theorem states that a kernel G is in a sense determined by rb:

THEOREM 18. Let G and G' be kernels on S with HG = FG" Then G' can be obtained
from G by a series of the following operations:

(1) shifting the graph homotopically over S;

(i1) taking the (surface) dual graph;

(iii) AY-exchange.

Here we take the dual graph only if the graph is cellularly embedded
on S (i.e., every face is a disk). AY-exchange means replacing a triangular
face by a new vertex of degree three, connected by edges to the three

vertices of the triangle:

u u

(31)

or conversely.
Note that each of the operations (i), (ii), (iii) keeps the function/JG

invariant. For the projective plane the analogue of Theorem 18 was proved

by Scott Roundby [6] -
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We sketch how Theorems 17 and 18 are proved with the help of polyhedral
results. Basic is the notion of a tight graph on S. For any graph G=(V,E) on
S and any closed cuxrve D on S, let PC(D) denote the minimum number of inter-
sections of G and D', ranging over all D'® D not intersecting V:

(32) VG(D) := min{br(G,D')l D'&D, D' does not intersect V}.

If G is 4-regular and v is a vertex of G, call replacing

(33) v by > <

opening of G at v (there are two possible openings at v). If G' arises from
G by a series of openings, we call G' an opening of G. If there is at least
one opening, it is called a proper opening.

Note that if G' is an opening of G then PG|€ Pb. We call G tight (on S)
if for each proper opening G' of G one has rb‘ # Pb (i.e., FG,(D)<'}JG(D)
for at least one D).

If G is a 4-regular graph on S, the straight decomposition of G is
the partition of the edges of G into closed curves obtained as follows.
Follow an edge, e say, until one of its end points, v say. Next continue

along the edge, e' say, opposite in v to e:

(34) v

el

Similarly, if we arrive in the other end point of e', v' say, we continue
along the edge opposite to e' in v'. Repeating this, we finally will return
in e. Thus we have obtained a closed curve.

Repeating this for the edges left, we obtain a system of closed curves
Cl""'ck traversing each edge exactly once. Clearly, this system is unique
up to the choice of the beginning points of the curves and up to reversing

any of the closed curves. We call Cl,...,C the straight decomposition of G.

k
In [9] we proved the following theorem:
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THEOREM 9. Let G be a 4-regular graph embedded on the compact orientable
surface S. Then G is tight if and only if the straight decomposition Cl’

...,C, forms a minimally crossing system of primitive closed curves.

k

Here Cl""’c is called minimally crossing if any Ci has a minimum number

k
of self-crossings (over all Cim)ci), and any two Ci and Cj have a minimum
number of mutual crossings (over all CioJCi and C%oJCj).

Our proof in [9] is quite hard. From Theorem 9 one can derive quite

easily (see [9]):

THEOREM 10. Let G be a tight graph on the compact orientable surface S, with

straight decomposition C .,C. . Then for each closed curve D on S:

17" k

k
(35) ,./G(D) = iz=:1 mincr (C, ,D) .

We show that this implies:

THEOREM 11. Let G be an Eulerian graph embedded on the compact orientable
surface S. Then the edges of G can be partitioned into closed curves C1’
. ,Ck in such a way that for each closed curve D on S: -

k
(36) VG(D) = 351 mincr(Ci,D).

PROOF. By applying the same modification as given by (16) and (17), we may
assume that G is 4-regular. Moreover, we may assume that G is tight, as we
can open G at vertices as long as we do not change the function Fb' Hence

the theorem follows from Theorem 10. Ij

The analogue of Theorem 11 for the projective plane is Lins' theorem
(Theorem 6 above). At the moment we do not know a similar result for
arbitrary compact nonorientable surfaces.

By passing to the surface dual graph Theorem 11 transforms to:

THEOREM 12. Let G=(V,E) be a cellularly embedded bipartite graph on 'the
compact orientable surface S. Then there exist closed curves Dl,...,Dt not
intersecting V and crossing (altogether) each edge exactly once, in such
a way that for each closed curve C on S there exists a closed curve C'&C
in G with the property:

t

(37) length_(C') = 7, miner (C,D,) .
j=1
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[ﬁere lengthG(C') is the number of edges of G traversed by C' (counting multi-
plicities).)

PROOF. The theorem follows directly by applying Theorem 11 to the surface
dual graph of G. []

It should be noted here that the theorem is not true if we delete
'cellularly embedded'.

Observe the analogy of Theorem 12 with Theorem 2 on the Klein bottle.
We now can derive theorems analogous to Theorems 3 and 4, using the cone-
version (2) of Farkas' lemma. We in fact only give the analogue of Theorem 4.

Let G=(V,E) be a graph embedded on the compact orientable surface, and

E

k
let Cl,...,c be closed curves on S. Consider the convex cone K in R xR

k
generated by the vectors:

(38) (1) (Ei;gF) (i=1,...,k;C closed curve in G with CNCi);
(ii) (9_;£e) (e E).

C E
Here K is the vector in R defined by:
C .
(39) X (e) := number of times C traverses e

for e € E. Moreover, Ei and Eé denote the i-th and e-th unit basis wvectors in
I£< and EF, respectively, while O is the all-zero vector in PF.

The cone K is a polyhedral cone, i.e., is generated by only finitely
many vectors among (38). To see this, observe that for each fixed i=1,...,k,
there exist only finitely many minimal vectors in the collection {RC lC is a
closed curve in G with Ceuc;g (minimal with respect to componentwise comparison).
This follows from the fact that these are vectors in Zfi We can restrict (38)

(i) to those with‘;)(C such a minimal vector.

Now the analogue of Theorem 4 is:

THEOREM 13. K is exactly the set of vectors (z;x) in IﬁcijE satisfying:

(40) (1) x(e) 20 K (e € E),
(ii) Z XD(e) -x(e) 2 Z minecr (C,,D) "z, (D closed curve in S not
e E i=1 * * intersecting V).

D
[ﬁere 5 (e) denotes the number of times D intersects e:]
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PROOF. It is not difficult to check that each vector (38) satisfies (40).
Suppose next that some vector (z;x)e:kaIg: satisfies (40) but does not
belong to K. Then by Farkas' lemma (cone-form) there exists a vector (p;f)
in Il)&EF so that (p;£) has nonnegative inner product with all vectors

(38) but not with (z;x). That is:

(41) (i) p. + Z £(e)-ac(e) >0 (i=1,...,k; C closed curve in G
' eeE with CoC.);
(i1) Lerzo (e €E);

k
(111) 2, pz, + 20 Alerx(e)<o0.
i=1 * e E

We may assume (by increasing Cie) slightly) that £ is rational and positive.
Hence we may assume (by blowing up (p;{)) that each Le) is a positive even
integer.

Now replace each edge e of G by a path of length E(e) making the graph G'.
So G' arises from G by putting Q(e)—l new vertices on any edge e. Moreover,
we make G' cellularly embedded by adding paths over nondisk faces of length
T, where T is even and T 2> max{*plr---,‘P }-

Since G' is bipartite, by Theorem 12 there exist closed curves Dl""’D

not intersecting the vertex set of G' and crossing each edge of G' exactly

t

once, in such a way that for each i=1,.,.,k there exists a closed curve

CiaJCi in G' with the property that:

t
(42) length_, (C!) = mincx (C,,D.).
G i . 3
i=1
Note that
c! t D,
(43) length , (C!) = 2 z(e))(l(e) and de) = 3 53(e>.
G i .
egE j=1
In particular, by (41) (i):
(44) p; * lengthG,(Ci) =0 (i=1,...,k).

This implies the following contradiction to (41) (iii):

(45)

I

k k t

! = i
P2 < Z lengthG, <Ci)zi Z . mlncr(Ci,Dj)zi
i=1 i=1 j=1

D

g Jerxte) = & Lerxte). []
e E

/

A

'D4ﬁtltﬂx*

(.
]

-
[
mn

E
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Theorem 13 implies the following 'homotopic circulation theorem':

THEOREM 14. Let G=(V,E) be a graph embedded on the compact orientable surface

S and let Cl""’ck be closed curves on S. Then there exist closed curves
C..,...,C. «JC, in G and rationals,A, ,...,A, >0 for i=1,...,k such that:
il 1ri i il ir,

Ti
(46) (1) 2, AL =1 (i=1,...,%),

. ij

j=1

k rs Ci.

i) 2 L A X Te €t (e€E),
i=1 =1 *J

if and only if for each closed curve D on S not intersecting V:

x
(47) cr(6,0) ¥ 2, mincr(C,,D).
i=1

PROOF. Directly from Theorem 13, since (46) is equivalent to the all-one

vector (1;1) belonging to K, while (47) is equivalent to (1;1) satisfying

(40) . L

In general, we can not have the Aij in (46) to be integer, even not if
we require G to be Eulerian. That is, the analogue of the 'integer packing'
theorem 5 does not hold. However, if S is the torus the analogue does hold,

as was shown in [17] :

THEOREM 15. Let G=(V,E) be an Eulerian graph embedded on the torus S and let
c1""’Ck

closed curves Cinlcl, ... ,Cﬁeack

more than once) if and only if for each closed curve D on S not intersect-

be closed curves on S. Then there exist pairwise edge-disjoint

in G (such that no Ci traverses any edge
ing V.condition (47) 1is satisfied.

This theorem can be derived from Theorem 14, in a way similar to the
derivation of Theorem 5 from the fractional version of Theorem 5 (i.e.,
Theorem 4).

A consequence of Theorem 14 similar to Theorems 7 and 8 is the follow-

ing 'homotopic flow-cut theorem':

THEOREM 16. Let G=(V,E) be a planar graph embedded in the plane:m? and let
Il""’Ip be some of the faces of G, including the unbounded face. Let

Pi""’P be curves 1in Iéz\(Ilu...qu) with end points on bd(Ilu...UIp).

k

Then there exist paths P, ,..
il ir

. \

i d rational e,

-/P,, NP, in G and ratio ~,.s>"11’ ,,\lri>o
1
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for i=1,...,k such that:

DM.n

AL =1 (i=1,...,k),

(48) (1) .
1

(ii)

WM T

L P, .
3A AP (e €E),
t 4=1 HJ

. 2 , ,
if and only if for each curve D in R \(Ilu...qu) not intersecting V and

connecting two points on bdl(I u...qu):

1
k
(49) cr (G,D) > 23 mincr(Pi,D).
i=1

[gere we use similar terminology and notation as above. A curve is a continuous

function C:[b,i]-—é]Rz, while homotopic requires fixing the end points]

PROOF (sketch). We can reduce this theorem to Theorem 14 by adding for

each i=1,...,k a handle connecting the end vertices of Pi’ extending the
graph by an edge over this handle (connecting the end points of Pi) and by

extending Pi to a closed curve over the handle. []
We now finally come to showing Theorems 17 and 18.

THEOREM 17. Let C .,C. and C!

1" k (A
compact orientable surface S. Then the following are equivalent:

,C!, be primitive closed curves on the

(i) k=k' and there exists a permutation T of {1,...,k} so that C%(i)h’Ci
or C' |, eacfl for each i=1,...,k;
(i) i

(ii) for each closed curve D on S: Z}?_

. _ k! . :
1 mlncr(Ci,D) = 2:i=1 mlncr(Ci,D).

-1
PROOF (sketch). The implication (i)=>(ii) is trivial since mincr(C ~,D)=
mincr (C,D). To see the implication (ii):@;(i) we may assume that both
Cl""’ck and Ci,...,Ci,
curves, and that the system C

form minimally crossing collections of closed
1,...,Ck has at least as many crossings as
Ci,...,Ci,. Let G=(V,E) be the graph made up by C!,...,C',. Without loss
of generality, each vertex of G has degree 2 or 4.
Now by (ii), for each closed curve D on S not intersecting V:
k' k' k
(50) cr(G,D) = Z cr(Ci,D) - Z mincr(Ci,D) = 25 mincr(Ci,D).
i=1 i=1 i=1
Hence by Theorem 14 there exist Cij«JCi and Aij>(3 satisfying (46).

Now it can be proved that each Cij if it enters a vertex v over an edge
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e, it continues over the edge e' opposite to e:

(51) v

el

The reason is that Cl,...,C necessarily have at least as many crossings

k
as Ci""'c|" Hence the Cij should 'use' all crossings of the Ci - if any
Cij would make a turn in v, there is not enough room left for crossings of
the Cij' This intuitive argument can be made precise at the cost of several

technicalities - see [87] .

It follows that each Cij in fact is one of Ci,...,Ci, and their inverses.
As we may assume that the Cij are different, the theorem now follows. []
Finally:

THEOREM 18. Let G and G' be kernels on S with rb = Vg Then G' can be
obtained from G by a series of the following operations: -
(i) shifting the graph homotopically over S;

(ii) taking the (surface) dual graph;

(iii) AY-exchange.

PROOF (sketch). We assume that G and G' are cellularly embedded on S (the

general case is more complicated). From G we make an auxiliary graph H as
follows. For each edge e of G, put a vertex v of H on the 'middle' of e.
For each vertex v of G, make a circuit connecting the vertices w, on the

edges e of G incident to v:

(52)

Thus we obtain a 4-regular graph H. Note that we can reconstruct G from H,

up to shifting G and up to duality.
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Now deletion and contraction of an edge e of G corresponds to the two
ways of opening vertex W of H. Moreover, Fh = 2rb. Therefore, as G is a
kernel, H is tight.

Similarly, we make a tight graph H' from G'. Then:

(53) Ve = 2Mer = 2N = Mo

Let C .,C. and C!,...,C', be the straight decompositions of H and

1" k 1 k!
H', respectively. By Theorem 10 we have for each closed curve D:

K k'
(54) El miner (C.,D) = Ny (D) = VM, (D) = izz')l mincr (C!,D).

So by Theorem 17 we may assume that k=k' and that CimJCi for i=1,...,k.

By Theorem 9, both C .,C, and C!,...,C! are minimally crossing

1" k 17 k

collections of primitive closed curves. It can be shown (using the hyper-
bolic plane representation of the universal covering surface of S), that
cl,...,c can be shifted to C!

.,C' keeping the collection minimally

k 17 k
crossing throughout the shifting process. In fact Cl,...,Ck can be trans-
formed to Ci,. .,Ci by a number of 'swappings', i.e., replacing

(55) \\\*__ by

(and by shifting the whole graph Ciu...uCk).
Any such swapping corresponds to transforming H, and hence to trans-
forming G. One easily checks that it corresponds to the AY-exchange. Hence

G' can be obtained from G by the operations (i), (ii) and (iii). t]
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