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Introduction

The analysis of term rewriting systems is of growing interest for a large number of applications
having to do with computing with equations. Two main streams can be distinguished in the study of
term rewriting systems: (1) theory and applications of Knuth-Bendix completion procedures — here
the point of departure is a given set of equations for which one tries to generate a complete (i.e. con-
fluent and terminating) term rewriting system, and (2) theory and applications of orthogonal term
rewriting systems; here the term rewriting system is fixed but subject to the restrictions of being
‘left-linear’ and ‘non-ambiguous’, for short ‘orthogonal’. (Previously, we used ‘regular’ instead of
‘orthogonal’.) The restriction of orthogonality enables one to develop a quite sizeable amount of
theory, for a large part due to the efforts of the ‘French school’ (Berry, Boudol, Huet, Lévy e.a.; see
(31, [4], [8D.

The present paper is exclusively concerned with orthogonal term rewriting systems. In an
admirable paper ([8]), Huet and Lévy investigated the issue of parallel versus sequential reduction in
an orthogonal term rewriting system. More specifically, they formulated a criterion ‘strong sequen-
tiality’, guaranteeing the existence of an effective sequential normalizing reduction strategy, that is a
strategy @ such that its iteration on a given term ¢ leads to a reduction sequence

1 = D) > PH(1) > ...

which ends in the (unique) normal form of # if it exists and is infinite otherwise. The sequentiality is
in the fact that the strategy indicates in each step just one redex to be rewritten, rather than a set of
redexes to be rewritten in paraliel. Actually, Huet and Lévy prove that every orthogonal term rewrit-
ing system possesses a sequential normalizing ‘call-by-need’ strategy: a deep theorem in [8] says that
every term ¢ in an orthogonal term rewriting system contains a ‘needed’ redex, that is one which has
to be rewritten in any reduction to normal form. A call-by-need strategy is then obtained by rewriting
in each step such a needed redex, and it is proved in [8] that such a strategy is normalizing. Unfor-
tunately, it is undecidable in general whether a redex is needed or not. However, Huet and Lévy go on
to show that in ‘strongly sequential’ term rewriting systems, a needed redex can be found effectively.
This does not mean that in a strongly sequential term rewriting system all needed redexes can be
determined effectively. For instance Combinatory Logic

Ap(Ap(Ap(S,x),y),z) — Ap(Ap(x,2),Ap(¥,2)),
CL =4 Ap(Ap(K,x),y) - X,
Ap(,x) - x,

is a strongly sequential term rewriting system where this is impossible; cf. the analogous statement
for A-calculus in [1]. In fact, a needed redex is very easy to determine in the case of CL; the leftmost
redex is always needed. By contrast, consider CL @B, that is CL extended with B (*Berry’s term
rewriting system’, also called ‘Gustave’s term rewriting system’ in [7]):

F(A,B,x) —» C,
B=4F@B,x,A) =» C,
F(x,A,B) —» C.

In the term rewriting system CL@B it is not clear at all how to find a needed redex: in a term
F(t,,t,,13) the redexes in 7, may be non-needed because ¢,,¢; reduce to the constants A,B respec-
tively, and likewise for redexes in ¢, and ¢;. Actually, we do not know whether there is an algorithm
to determine a needed redex in a term of CL @B (cf. the surprising fact in [10] where it is shown that
every orthogonal term rewriting system, including CL @B, has a computable normalizing one-step



-3-

reduction strategy), but it seems safe to conjecture that if such an algorithm exists, it will not be very
‘feasible’.

However, in strongly sequential term rewriting systems a needed redex can be found really
effectively, as shown in [8]. Moreover, it is decidable whether a term rewriting system is strongly
sequential. This brings us to the point dealt with in this paper: in [8] a proof of the decidability of
strong sequentiality is given with great ingenuity; but it is also very complicated, and in the present
paper our endeavour is to analyze the notion of a strongly sequential term rewriting system in order to
arrive at a simplified proof of the decidability. We present two proofs of which the first is the most
direct; but the corresponding decision procedure itself is only of mathematical relevance as its com-
putational complexity forbids a practical application. We feel however that this proof is conceptually
simple and gives a good insight in the structure of a strongly sequential term rewriting system. Some
of the underlying notions in [8] are eliminated here; notably: the ‘matching dag’, ‘directions’,
‘increasing indices’ and ‘A-sets’ (or: ‘properties Q, Q,"). Also our proof is direct in the sense that it
does not take the form of a correctness proof of some algorithm. The second proof is of comparable
computational complexity as the one in [8]; conceptually it is harder than the first, though still
simpler than the one in [8]. This proof is essentially already in [8] and uses their notions of increasing
indices and A-sets (the latter with a slight simplification by us). In both proofs our concepts of an
‘preredex’ and of a ‘tower of preredexes’ play a crucial role. We construct a term rewriting system
which is ‘inherently difficult’ with respect to deciding strong sequentiality, and we make the simple
but useful observation that strong sequentiality is a ‘modular’ property, i.e. depends on the ‘disjoint
pieces’ of a term rewriting system. In the last section we give an overview of other notions of sequen-
tiality proposed in the literature.

Especially in the first part of our paper we follow [8] quite closely; also some proofs there are
repeated for the sake of completeness. Although our paper is self-contained, familiarity with term
rewriting systems might be helpful (e.g. [5], [9], [11]).
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1. Orthogonal Term Rewriting Systems: Preliminaries

We start with a number of definitions. Let U be a countably infinite set of variables. A term
rewriting system is a pair (#,R). F is a set of function symbols; associated to every f€ F is its arity
n =0. Function symbols of arity O are called constants. The set of terms built from ¥ and ¥, notation
J(F,1+), is the smallest set such that
- VcIF, V),

- ifFe% hasarityn and t,,...,1,€ (¥, V) then F(t4,...,1,) € T(F, V).

A ground term is a term without variables. & is a finite set of pairs (/,r) with /,re 7(%,1*) subject to
two constraints:

(1) the left-hand side / is not a variable,
(2) the variables which occur in the right-hand side r also occur in /.

Pairs (/,r) are called rewriting rules or reduction rules and will henceforth be written as / —»r. We
usually write £ instead of (¥,R), assuming that ¥ contains no function symbols which do not occur
in the rewriting rules &.

A substitution G is a mapping from ¥ to (¥,1*). Substitutions are extended to (%,V*) in the
obvious way; we denote by ¢ the term obtained from ¢ by applying the substitution 6. We call t° an
instance of t. An instance of a left-hand side of a rewriting rule is called a redex (reducible expres-
sion).

A context C[] is a ‘term’ which contains exactly one occurrence of a special symbol 0. Con-
texts are inductively defined by:

- Ois acontext,

- if C[]is a context then F(t,...,%;_1,C[ 1,#;,1,...,1,) is a context for every n-ary function symbol
F and terms £q,...,t;_1,tiiqs-- 5 L, €T(F V).

If C[]is a context and te 7(%,V) then C[¢] is the result of replacing the symbol O by ¢; ¢ is said to

be a subterm of C[¢].

The rewriting relation —4 c I(F,V)xJ(F, V) is defined by s —4 t iff there exists a rewrit-
ing rule / —r, a substitution ¢ and a context C[ ] such that s = C[/°] and ¢ = C[r°] (the symbol =
stands for syntactic equality). The transitive-reflexive closure of —4 is denoted by —»%; if s 5 ¢
we say that s reduces to t and we call ¢ a reduct of s. We often omit the subscript &.

EXAMPLE 1.1. Let

_JAx0) oo,
S AKSO) - SAK,Y)).

Consider the term A(A (0,0),A (5(0),0)). To this term we can apply the following reduction sequence
(at each step the rewritten redex is underlined):
A(A(0,0),A(S(0),0)) = A(0,A(5(0),0)) = A(0,5(0)) = S(A(0,0)) = S(S(0)).

The term S (S (0)) is a normal form, i.e. a term which contains no redexes.

We denote the set of normal forms of # by NF; (NF for short). A precise formalism is
obtained through the notion of occurrences. For any term te (% ,V+), the set O(t) of its occurrences
is inductively defined as follows

- AeO(r) (the empty occurrence),
- ift=F(y,...,1,) and ue O(1;) then iue O(F (ty,...,1,)).
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If we view terms as trees, an occurrence of ¢ denotes a unique node in the tree of ¢. If ue O(¢), the
subterm of t at u, notation t/u, is defined by

- tlA=1,

- FQy....t)iu=tlu.

The symbol of t at occurrence u, notation t(u), is defined for ue O(t) by

- xM)=x,

- F@p..1,)(M=F,

- F@y,....t,)0u)=t;(u).

Finally, if ue O(t), for every term s the replacement in t of the subterm at u by s, notation ¢[u < s1],
is defined by

- t[Aes)=s,

- Fy,....t)liuesl=Fy,....;[uesl,....t,).

EXAMPLE 1.2. Consider again the term rewriting system of Example 1.1. The occurrences of
t = S(A(S(0),0)) are exhibited in the following figure.

S A
|
Al
1.1 / \0 1.2
1.1.1 (!)
FIGURE 1.1.

We have ¢t/1=A(5(0),0), 1(1.1.1) =0and ¢[ 1.1 <¢/1.2] = S(A(0,0)).

The set of occurrences O (t) of a term ¢ is partially ordered by the prefix ordering <, i.e. u <v iff
there exists a w such that uw =v (if such a w exists, it is unique). In this case we define v/u=w. We
say that two occurrences u and v are disjoint, notation u_Lv, if neither u <v nor v<u. If u<v and
u#v, we write u <v. If uy,...,u,e O(t) are pairwise disjoint, we write #[u; «s; | 1<i<n] as an
alternative for t[u,<s,]...[u, «s,] (the order of the u;’s is irrelevant). Sometimes we write
t[s «s’) instead of t[u s’ | t/u =s1].

The depth |u | of an occurrence u is defined by

IAl =0,
liuwl=1+lul.

In this paper we restrict ourselves to the subclass of orthogonal term rewriting systems. A term
rewriting system is orthogonal if it satisfies the following two constraints:

(1)  left-linearity: the left-hand side / of a rewriting rule / = r does not contain more than one
occurrence of the same variable (Vu,ve O()ifl/u =x =1/v thenu=v).

(2)  non-ambiguity: the left-hand sides of the rewriting rules do not overlap. This means that when-
ever I, —r,, [;—r, are rewriting rules and ue O(/,) such that /,/ue?*, there are no substitu-
tions o, T such that (/,/u)° =17, except in the case where /, —r, I, —r, are the same rewriting



rule and u =A.

EXAMPLE 1.3. The system

IF(T,x,y) - x,
R=yIF(F,x,y) > v,
IF(x,y,y) - vy,

is neither left-linear (the left-hand side of the rule /F(x,y,y)—y contains two occurrences of the
variable y) nor non-ambiguous (take !/, =IF(T,x,y), I, =1F(x,y,y) and u =A in the above defini-
tion). The system of Example 1.1 is orthogonal.

Orthogonal term rewriting systems have some very nice properties. Among these is the impor-
tant Church-Rosser property. A term rewriting system is confluent or has the Church-Rosser property
if for all terms s,¢,,¢, with s —» ¢, and 5 —» ¢, we can find a term ¢5 such that r; —» ¢ and ¢, —» ¢
(see Figure 1.2). Such a term ¢4 is called a common reduct of t; and ¢,.

N

t CR ty

I3
FIGURE 1.2.

THEOREM 1.4 (Rosen [17]). Every orthogonal term rewriting system has the Church-Rosser pro-
perty. O

An immediate consequence of Theorem 1.4 is the fact that if a term s has a normal form ¢ (i.e.
s —» t with teNF), then ¢ is the unique normal form of s (i.e. if s —» ¢’ and t’e NF then ¢t =¢’). In
the next section we will see some more important properties of orthogonal term rewriting systems.
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2. Strongly Sequential Term Rewriting Systems

There are orthogonal term rewriting systems in which some terms have a normal form, but also
admit an infinite reduction sequence.

EXAMPLE 2.1 Let

F(x,B) —» B,
R=1A - B,
C - C.

The term F(C,A) has a normal form
F(C,A)—> F_(Cﬂ — B,

but always choosing the leftmost redex fails
F(C,A)>F(C,A)>F(C,A)>....

Therefore, it is important to have a “good” reduction strategy. Informally, a reduction strategy
tells us, when presented a term, which redex(es) to rewrite. To be more precise, a one-step reduction
strategy is a function ®: 7(¥,V*)—> J(F,V) such that
- @)=t ifteNF,

- t > ®(t) otherwise.
A many-step reduction strategy is a function ®: 9(%,V)— (% ,1*) such that
- P(t)=t ifteNF,
-t " ®(1) otherwise (—* is the transitive closure of —).
A reduction strategy @ is normalizing if for each term ¢ having a normal form, the sequence
t, O@), D(P()), ..., D), ...
contains a normal form. We are only interested in effective normalizing strategies. (A reduction stra-
tegy @ is effective if ®(r) can be computed from ¢.)

An important normalizing many-step reduction strategy for orthogonal term rewriting systems is
the parallel-outermost strategy: rewrite simultaneously all maximal (outermost) redexes. (In a term ¢
a redex at occurrence u is maximal if for every v with A<v <u, t/v is not a redex.) For a proof that
the parallel-outermost strategy is normalizing for orthogonal term rewriting systems, see [15] or the
appendix of [2]. Alternatively, this fact can be obtained as a corollary of Theorem 2.3 below. The fol-

lowing example shows that the parallel-outermost strategy not always gives the shortest reduction
sequence to normal form.

EXAMPLE 2.2. Let

IF(T,x,y) —> «x,
R=3yIF(F,x,y) > vy,
A - B.

Consider the term /F (/F (T ,F,T),A,A). The parallel-outermost strategy rewrites a total of 4 redexes
IF(F(T,F,T),A,A)-» IF(F,B,B) — B,

but the following sequence uses only 3 redexes
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IF(F(T,F,T),A,A)> IF(F,A,A) > A 5 B.

In the example above it is not necessary to rewrite the redex at occurrence 2 in the term
IF(F(T,F,T),A,A) in order to get a normal form. Before we make this more precise, we introduce
the notion of “descendants” in reductions.

Consider the reduction rule F(x,y)>G({F(x,x)). When instantiated to, say,
F(t1,.t;)>G(F(t,,t)) it is clear that ¢, in this step is doubled and that ¢, has been erased. Obviously
we have an intuition of the subterms in ¢, as propagating to the right. We say that a subterm s of ¢,
has (two) descendants in G (F(t,t,)). In general, suppose we have a reduction ¢; —»¢, and a subterm
s of t;. The descendants of s in 7, are computed as follows:

Underline the head (leftmost) symbol of s and perform the reduction ¢; —»¢,. Then the
descendants of s in ¢, are the subterms of ¢, which have an underlined head symbol.

A formal definition can be found in [8]. Orthogonal term rewriting systems have the property that
descendants of redexes remain redexes.

A redex s in a term ¢ is called needed if in every reduction of ¢ to normal form a descendant of
s is rewritten. A needed redex must eventually be rewritten in order to get a normal form. In Example
2.2 the underlined redex in IF (IF(T,F,T),A,A) is not needed. Huet and Lévy proved the following
very important theorem.

THEOREM 2.3. Let R be an orthogonal term rewriting system. For all te I(F,V} ) we have
(1)  if t contains redexes then t contains a needed redex;

(2) ift has a normal form, repeated rewriting of needed redexes leads to that normal form.
O

This theorem gives us a normalizing one-step reduction strategy: just contract some needed
redex. However, the definition of ‘needed’ refers to all reductions to normal form, so in order to
determine what the needed redexes are, we have to inspect the normalizing reductions first, which is
not a very good recipe for a reduction strategy. In other words, the determination of needed redexes
involves look-ahead, and it is this necessity for look-ahead that we wish to eliminate.

Every term ¢ not in normal form can be written as ¢t =C[ry,...,r,] where C[,...,] denotes a
context in normal form with n 21 holes (occurrences of O0) and ry,...,r, are the outermost redexes of
t. It is not difficult to see, using Theorem 2.3 and the orthogonality of the term rewriting system
under consideration, that one of the r; is needed. The actual i such that r; is needed depends on the
‘substitution’ of the redexes ry,...,r, for the O’s in C[,...,]. A more pleasant state of affairs is
expressed in the following definition.

DEFINITION 2.4. An orthogonal term rewriting system is sequential® if for every context C[,...,]in
normal form there exists an i such that for every substitution of redexes r,,...,r, for the @’s in
Cl[,...,).r;isneededinC[r,...,r,].

This concept is only introduced for expository purposes. It is not a satisfactory property as it is
undecidable. The property defined in the next definition turns out to be more tractable.

DEFINITION 2.5. Let & be an orthogonal term rewriting system.
(1)  The reduction relation —, (arbitrary reduction) is defined as follows:



Cls] =, C[1]

for every context C[], redex s and arbitrary term t. As usual, —», denotes the transitive-
reflexive closure of —,.

(2) Aredex s in a term ¢ is strongly needed if in every reduction ¢ —», ¢’ to normal form, a descen-
dant of s is rewritten.

(3) R is strongly sequential® if for every context C[,...,] in normal form there exists an i such
that for every substitution of redexes ry,...,r, for the O’s in C[,..., ], r; is strongly needed in
Clry,....rpl.

Notice that the property of being strongly sequential® is determined by the left-hand sides of a
term rewriting system only. Because —» < —»,, every strongly needed redex is needed. Hence,
every strongly sequential® term rewriting system is also sequential®. The reverse is not true, as the fol-
lowing example of Huet and Lévy shows.

EXAMPLE 2.6. Let

F({GA,x),B) — =x,
F(G(x,A),C) > x,
Z=1F0,x) > ox,
G(E,E) - E.

We leave it to the reader to show that every redex of a given term is needed. Therefore, & is sequen-
tial*. Consider the context F(G(O,0),0). The following arbitrary reductions show that £ is not
strongly sequential® (r is an arbitrary redex):

F(G(r,r).r) = F(G(r,A),C) —» A,
F(G(Lvr)'L) _»? F(G(A9r)9B) _)? A’
F(G(r,r),r) —»y F(G(E,E),r) =9 F(D,r) — A.

Huet and Lévy defined the properties ‘sequentiality’ and ‘strong sequentiality’ in a different
way. Our ‘sequentiality*’ does not exactly coincide with ‘sequentiality’, but ‘strong sequentiality*’ is
equivalent to ‘strong sequentiality’. We will define these concepts now, but first we introduce some
more formalism,

We add a new constant Q to our alphabet. { will represent an unknown part of a term. We
abbreviate 7(F U { Q},V) to T q. The prefix ordering < on J g is defined by

- x <x forevery xelt.

- Q<t foreveryteJgq,

- ifs;<t;fori=1,...,nthen F(s,...,5,) S F(ty,....1,),

Clearly, s <t iff s =C[Q,...,Q] and t =C[t,,...,t,] for some context C[,...,] not containing Q
and Q-terms ¢y,...,¢,. If s <t and s#¢, we write s <t. If teTg we write Oq(t) for the Q-
occurrences of ¢ and O (¢) for the other occurrences. The greatest lower bound of two Q-terms s and
t, notation s M ¢, is defined by

- XNXx=x,

- F(sy..08)NF(ty,.. 1) =F(sNty,...,5,N1,),

- snt=Q in all other cases.
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We partition the set of Q-terms without redexes according to the presence or absence of £2’s:

- anormal form is a term t€ J g such that ¢ does neither contain redexes nor Q’s (O q(t) = 9);
- an Q-normal form is a term t€ 9 g without redexes containing at least one Q (O q(t) # ©).

The set of all normal forms is denoted by NF and NF g, denotes the set of all Q-normal forms.

DEFINITION 2.7.

(1) A predicate P on 9 is monotonic if P(t) implies P (t") whenever ¢t <¢'.
(2) The predicate nf is defined on 7 g as follows:

nf(t)holds <> t —»t’ for some t'e NF.
(3) The predicate nf, is defined on J  as follows:

nfo(t) holds & t —», t’ for some t’e NF.

It is easily proved that nf and nf, are monotonic predicates.

DEFINITION 2.8.

1)

€)

3

Let P be a monotonic predicate on Jq and let te . An occurrence u€ Ogq(t) is called an
index with respect to P if for every t’ 2t, P(t") implies ¢'/u # Q. (In particular, if ¢ has an
index with respect to P then P (¢) is false.) The set of indices of ¢ with respect to P is denoted
by Ip(t).

An orthogonal term rewriting system is sequential if every te€ NF g has an index with respect to
nf.

An orthogonal term rewriting system is strongly sequential if every te NF g has an index with
respect to nf,.

To link the beginning of this section, which used the terminology of contexts, with the present

set-up via Q-terms, we note that a context in normal form corresponds to a term in NF  (by viewing
a as Q).

Figure 2.1 exhibits the relationship between the properties introduced so far. The inclusions in

this picture are easily proved. Notice that not every sequential* term rewriting system is sequential.
For example, one can show that

FA,B,x) —» C,
R=3yF@B,x,A) > C,
F(x,A,B) —» C,

is sequential®, but R is not sequential: the term F(Q,Q,Q) does not have an index with respect to nf .
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strongly sequential *

strongly sequential

FIGURE 2.1.
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3. Indices with respect to Strong Sequentiality

In this section we will describe a procedure of Huet and Lévy to compute the indices of a given
Q-term with respect to nf,. But first we prove two useful properties of indices, not necessarily with
respect to nf,.

PROPOSITION 3.1. Let P be a monotonic predicate on 9 g and let te I g,

(1) Ifuelp(t),t <t andt’lu = Q then uclp(t’).

) Ifuvelp(t) thenuelp(t{u «-QJ).

PROOF.

(1)  Suppose ug Ip(t’). Then there exists a term ¢” 2 ¢” such that ¢”/u = Q and P@") is true. Clearly
t” 2t and therefore ue Ip(t).

(@) If uelp(t[u <)) then there exists a term ¢’ 2 t[u « ] such that t’/lu =Q and P(t’) holds.
Let t” =t'[u «t/u]. From ¢” 2 ¢’ and the monotonicity of P we obtain P (t"). Together with
t”/uv = Q, this implies uve Ip(t").

The two properties are depicted in Figure 3.1, where an arrow points to an index with respect to
tl
t{u Q]
=

FIGURE 3.1.

oD B

In the remainder of this paper index means index with respect to nf,, unless stated otherwise.
Furthermore, we abbreviate /,;, to I.

DEFINITION 3.2.
(1) An Q-term ¢ is redex compatible if ¢ can be refined to a redex (i.e. # < ¢’ for some redex t’).
(2) The reduction relation —¢ (Q2-reduction) is defined as follows:

Clt] = CIQ]

for every context C[ ] and redex compatible term ¢ # Q.

EXAMPLE 3.3. Let



-13-

F(F(A,x),y) = x,
=] G@B,B) - A,

and t = F(F(Q,A),G(B,Q)). Figure 3.2 shows all Q-reductions starting from ¢.

t

N

F(Q,GB,Q) — Q <«— F(F(Q,A),Q)

N

F(Q,Q)

FIGURE 3.2.

The next proposition relates Q-reduction to arbitrary reduction.

PROPOSITION 3.4.

(D

Ifs —»qt then s’ —»q t for some s’ 2 5.

(2) Ifs —», t thens —»qt’ for somet’ <t.
PROOF.
(1) We use induction on the length (number of —g-steps) of s —»q . The case of zero length is

2
m

trivial. Suppose s —q t; g t. We have s = C[s,] =g C[Q] =¢, for some redex compatible
subterm s, # Q of 5. From the induction hypothesis we obtain the existence of a term ¢, 2 ¢,
such that t, —», t. Because 1,2t;=C[Q] we can write t,=C’[t;] for some context
C’[12C[] and term 13 2 Q. Let r be any redex with 5, <r. Define s’ = C’[r]. Now we have
the following arbitrary reduction:

S,EC'["] =l C’[t3]=—=t2 —%9 t.

Similar to (1).

PROPOSITION 3.5.

(1) Q-reduction is confluent: Vs,t,1,€Tq if s gt and s —»qgt, then ;€T o such that
t1—»qls and 1, »qts.
(2) Q-reduction is terminating: there are no infinite reductions
to -q tl —q t2 ~>Q ...
PROOF.
(1) Let —g be the reflexive closure of —q. Suppose s =g t; and s —q ;. By considering the

2

relative positions of the redex compatible subterms rewritten in each step, one easily proves
that there exists a term t3€ 9 g such that t; —q t5 and ¢, —q t5. From this the confluence of Q-
reduction follows by induction.

If s —q ¢ then the length of ¢ is less than the length of s, so every sequence of Q-reductions
must eventually terminate.
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DEFINITION 3.6. The fixed part ®(t) of an Q-term ¢ is the normal form of ¢ with respect to Q-
reduction. Notice that (¢) is well-defined by Proposition 3.5.

The following properties are heavily used in the sequel. Their proofs are left to the reader as
simple exercises.

PROPOSITION 3.7. Let s,teJq.

- @) <t

- oW =w([u—aw(t/u)]) forallue O(t);
- ifs <t then 0(s) S (),

- (@) =w0(@),

- ifs o9t then o(s) S (t);

- ift is redex compatible then 0 (t) = Q.

Let te 9 and ue Oq(t). Let © be a fresh constant symbol. The following procedure determines
whether # is an index of ¢:

(1) replace in ¢ the Q at occurrence u by e, result ¢’ = t[u ¢ °];
(2) compute the normal form of ¢’ with respect to —q, result @ (¢’);

(3) u isanindex of t & ° occurs in 0 (2’).

Graphically:

u is an index

u is not an index

FIGURE 3.3.

Intuitively, the persistence of the ‘test symbol’ e in w(¢’) means that whatever the redexes in
the other (Q2-) places are and whatever their reducts might be, the ® does not vanish. So if instead of o
an actual redex r was present, the only way to (—,-)normalize the term at hand is to reduce r itself,
eventually. The formal justification of the above procedure is given by the following lemma.

LEMMA 3.8. LetteIqand ue Oq(t). The following three statements are equivalent:
(@ uelQ);

(b) o@lueDEo@)

© ueO(@([uc*])).



PROOE.
() = (b)

(b) = (c)

(€)= (a)
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If o(t[u & °])=w(t) then t{u « ] —»g w(t). Proposition 3.4(1) yields a term ¢’ such
that ¢’ —», w(t) and t’ 2 t[u o). Let t” = t'[Q¢x][u Q] and o(1)’ = 0 (1) Q &« x].
It is not difficult to see that we can transform the reduction ¢’ —» @(f) into
t” —», (t)’. Because @(f) is an Q-normal form, w(z)’ is a normal form and hence
nfs(t”) is true. Clearly ¢t” 2 ¢ and t"/u = Q. Therefore ueI(z).

If ueO(@(t[uee°])) then w(t[ue-°])<t and thus W(t[u < °]) <w(¢). Because
t <tlu o] we also have 0(t) S w(t[u « °]). Combining these two facts, we obtain
o(¢t[ue—e])=w().

If ueI(t) then there exists a term ¢’ 2¢ such that ¢/u = Q and nfy(z) is true. Thus we
have an arbitrary reduction ¢" —»¢ n from ¢’ to some ne NF. Because n does not contain
any occurrences of €2, we can transform this reduction into ¢’[# < ®] —», n. Using Pro-
position 3.7 or the second part of Proposition 3.4, we obtain w(¢’[4 ¢« °]) < n. Now sup-
pose ue O(w(t[u « °])). Using the fact that ¢ is not redex compatible, it is not difficult
to show that @(t[u < °])/u = o. But this is contradictory to w(t'[u < ©]) < n and there-
fore ue O (W (t[u « °])).

The decision procedure for strong sequentiality is much more difficult. The main problem is
that we do not have the following transitivity property for indices, which at first sight one might
expect to hold: if ue/(s) and veI(¢t) then uvel(s[u «1t]).

EXAMPLE 3.9. Consider the term rewriting system

F(G@A,x),B) > «x,
R=4F(Gx,A),C) > x,
G(D,D) - D.

Occurrence 1 is an index of F(Q,Q), as is easily seen by applying the ‘e-test’: @ (F(°,Q)) = F(°,Q).
Similarly, occurrence 1 is an index of G(Q,Q). However, occurrence 1.1 is not an index of
F(G(€,9Q),Q): o(F(G(°,0),Q))=Q.

The next two propositions express properties of indices which are used in the proof of the deci-
dability of strong sequentiality.

PROPOSITION 3.10. Ifuvel(t) thenvel(t/u).

FIGURE 3.4.
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PROOF. If vel(t/u) then @((t/u)[veeol)=w(t/u) by Lemma 3.8. Therefore
o@[uv « o)) = 0(t[u —o(@u)veel]) =w@u—n@/u))=n() and from Lemma 3.8 we
obtain uve I(t). O

PROPOSITION 3.11. Ifuel(t), ulv and @ (t/v) = Q then uel(t[v «QJ).

t tiv Q]

FIGURE 3.5.
PROOF. If uel(t[v «QJ) then o(t[v « Q)[u ¢« °]) = w(t[v « Q]) by Lemma 3.8. Proposition 3.7
yields o()=o(¢[veo(m)])=o([veQl) and likewise o(t[u«°])= o@[u «o][v<Ql.
Hence o (1[u ¢ °]) = & (¢). Another application of Lemma 3.8 gives u¢/(t). O

The next example shows that the condition w(¢/v) = Q in Proposition 3.11 is necessary.

EXAMPLE 3.12. Let ® be the same as in Example 3.9. We have 1.1 I(F(G(Q,Q),B)), 1.11L2 and
®(B) = B, but occurrence 1.1 is not an index of F (G (R,Q),Q).
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4. Decidability of Strong Sequentiality

A term te NF g is called free if ¢t does not have indices. By definition, a term rewriting system
R is strongly sequential if and only if & does not have free terms. In this section we will show that
we can restrict the search for a free term to a finite subset of NF g, thus proving the decidability of
strong sequentiality. We first prove that we only have to consider terms te NF g with o () = Q.

DEFINITION 4.1. An Q-term ¢ is called rigid if o(z) =¢; t is called soft if w(¢) = Q. The subset of
soft terms of NF g is denoted by NF;.

Soft terms ‘melt away’ completely by Q-reduction. Because w(z) <t¢, every Q-term ¢ can be
written as ¢t = w(¢)[u; < ¢t; | 1<i<n] where {u,,...,u,} = Oq(®(t)) and ¢; =t/u; (i=1,...,n). Notice
that @(¢) is rigid and ¢,,...,¢, are soft.

PROPOSITION 4.2. Let t=(@)[u;1t; | 1<i<n] with Og(w(t)) = (uy,...,u,}. If vel(t;) then
wvel(t).

FIGURE 4.1.
PROOF. By Lemma 3.8 it is sufficient to show that w(¢[4;v « ¢]) and w(¢) are different. We have

O(luyv o) =@y —o([veeD) =)y —n(;[v < o]l

where the first identity follows from Proposition 3.7 and the second identity is due to the fact that
ueOqg(w(t)) and (), o@;[vee]) are rigid. Because vel/(s;) and ¢; is a soft term,
@(t;[v « o)) # Q. Therefore o (t[u;v «°])# @(t). O

COROLLARY 4.3. A term rewriting system is strongly sequential if and only if every term te NF has
anindex. O

Let ¢ be a soft term. Every Q-reduction ¢t —»q € induces a partition of ¢ into redex compatible
subterms.

EXAMPLE 4.4. Let

F(x,G(y,A)) - «x,
“1G@A,.B) - A,

and t =F(F(A,G(Q,Q)),F(Q,G(B,Q))). Figure 4.2(a) shows the decomposition of ¢ into redex
compatible terms with respect to the Q-reduction
F(F(A,G(Q,0),F(Q,G(B,Q) -q F(F(A,Q),F(Q,G(B,Q)))
=a F(F(A,Q),Q) 5 F(Q,Q) = Q,
and Figure 4.2(b) shows the decomposition corresponding to the Q-reduction
F(F(A,G(Q,Q)),F(Q,G(B,Q))) =g F(F(A,G(Q,Q)),Q) —q Q.
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(a) (b)
FIGURE 4.2.

A possible formalization of the decomposition of a term into redex compatible terms is given in
the next definition.

DEFINITION 4.5. Let te 9 be a soft term. Suppose
t=tyoqgt;Ig...2ql, =8

is an Q-reduction from ¢ to Q such that in each step #; &g 1;,; the redex compatible term at
occurrence y; is replaced by Q. Then the set { (u;,1;/u;) | 0<i <n-1} is a decomposition of t.

EXAMPLE 4.6. The Q-reductions of the previous example correspond to the following two decompo-
sitions of F(F(A,G (2,Q)),F (2,G (B,))):

{(MF(Q.Q)), (1,F(A,Q), (1.2,G(Q,Q), 2,F(Q,G(B,Q)),
{(MF(F(A,G(Q,),Q), (2,F(Q,G(B,Q)).

In an attempt to decide whether a term rewriting system is strongly sequential, we will try to
construct a free term. We are particularly interested in a minimal free term, minimal with respect to
its length. According to Corollary 4.3 we may suppose that a minimal free term, if it exists, is soft. So
a minimal free term is built from redex compatible terms. However, this observation is not yet suffi-
cient for a sensible attempt to construct a minimal free term, for there are in general infinitely many
redex compatible terms. Fortunately, we may even suppose that a minimal free term is built from a
special kind of redex compatible terms, the so-called preredexes, of which only finitely many exist.

DEFINITION 4.7.

(1) A redex scheme is a left-hand side of a reduction rules in which all variables are replaced by €.

(2) A preredex is a term which can be refined to a redex scheme.

(3) Two Q-terms t,,t, are compatible, notation ¢, Tt,, if there exists an Q-term ¢ such that ¢, <t,
and 1, <t3.

Clearly, ¢ is redex compatible if and only if there is a redex scheme r such that ¢ Tr. Notice that
every preredex is redex compatible and every redex scheme is a preredex. Because we assumed that a
term rewriting system has a finite number of reduction rules, there are only finitely many preredexes.
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Xy 2z Q o0

left-hand side redex scheme preredex

Q Q

redex compatible term
FIGURE 4.3.

EXAMPLE 4.8. Let

F(A,F(A,x)) > =x,
= F(B,x) - X

The preredexes are listed below:
Q, F(Q,Q), FA,Q), F(Q,F(Q,Q)), F(A,F(Q,Q)), F(Q,F(A,Q)),
F(A,F(A,Q)), F(B,Q).

The last two are redex schemes.

DEFINITION 4.9. Let te 9 be redex compatible. Like Procrustes, we cut off all parts of ¢ that stick
out:

<@M)=tNnriNn..Nr,,

0,()=0(1)N 0= (1)),
where {r,,...,r,) is the set of all redex schemes compatible with ¢. Notice that O.(¢) is the set of
Q-occurrences that are created in cutting down ¢ to &<(¢).

FIGURE 4.4.

PROPOSITION 4.10. Let te I g be redex compatible. If u€ O . (t) then ug I(><(1)).

PROOF. Suppose ue O.(t). Let R be the non-empty set of redex schemes compatible with ¢. It is
easy to show that there exists a re R such that ue O o(r). Because r > #<(t) and /(r) = & we obtain
u¢ I ($<(t)) from Proposition 3.1. O

The next proposition states that the ‘Procrustes procedure’ does not create new indices.

PROPOSITION 4.11. Ifte 9 is redex compatible then 1(3<(t)) c I1(1).
PROOF. If uel(¥<(t)) then ue Og(><(t)). According to the previous proposition we cannot have
ue 0.(1), hence ue O o(t). Proposition 3.1 yields uel(t). O
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We may however loose some indices.

EXAMPLE 4.12. Let

F(A,F(x,A,A),A) = x,
=\ F@,x,B) - x

The term t=F(A,F(A,Q,Q),A) is redex compatible We have I(t)={22,2.3},
=<@)=FA,F(Q,Q,Q),A) and I(><(1)) = {2.3}.

We now extend the ‘Procrustes procedure’ to soft terms.

EXAMPLE 4.13. Let

F(G(A,x),y) - x,
R =4 F(GB,x),G(B,x)) — «x,
G(,0) - C,

and t = F(F(G(F(Q,A),Q),F(Q,G(C,Q))),G(B,Q)). Figure 4.5(a) shows a decomposition of ¢. If
we replace the redex compatible term ¢'=F(G(Q,Q),F(Q,Q)) at occurrence 1 by
=< (1) = F(G(Q,Q),Q) we obtain Figure 4.5(b). Notice that we have lost one redex compatible term,
viz. G(C,Q) at occurrence 1.2.2.

(a (b)
FIGURE 4.5.

DEFINITION 4.14. Let D be a decomposition of a soft term ¢. We write t —.t’ if
t'=t[uv Q| veO..(s)] for some (u,s)e D such that &=<(s)#s.

PROPOSITION 4.15. Ift =, t' thent’' <t and I(t") c I(1).

PROOF. The first part is obvious. Suppose we I(t’). If we Oq(t) then weI(t) by Proposition 3.1. So
let us assume we O (t). We know that t* = t[uv < Q | ve Os<(s)] for some (u,s) in some decompo-
sition of ¢, and hence w=uv for some ve O..(s). From Proposition 3.10 we obtain vel(t'/u).
Together with $<(s) < t’/u and ve O..(s) this gives us ve/(><(s)), by repeated application of Propo-
sition 3.11. This is contradictory to Proposition 4.10. O

PROPOSITION 4.16. Let t be a soft term. If t —» t’ and t’ is @ —.<-normal form, then t'<t,
1(t") € I(t) and all decompositions of t contain only preredexes.
PROOF. This is an immediate consequence of Proposition 4.15 and Definition 4.14. O
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The subset of NF;—{ Q) containing all normal forms with respect to —.. is denoted by NF ...
The reason for excluding € is only a matter of convenience. Notice that I(Q) = { A} because the lefi-
hand side of a rewriting rule is not a variable.

COROLLARY 4.17. A term rewriting system is strongly sequential if and only if every term te NF ..
has an index. O

We will now show that we only have to consider terms of NF .. with a bounded height, in order
to decide whether a term rewriting system is strongly sequential.

DEFINITION 4.18. The height of an Q-term ¢, notation p(t), is defined by

1+max {p(ty),...,p(t,)} if t=F(t,,...,t;) and n 21,
p(t) =
0 otherwise.

The maximal height of the left-hand sides of the reduction rules of a term rewriting system R is
denoted by pg:

per=max {p()|l>reR).

As usual, we often omit the subscript £.

The following lemma states a partial transitivity result for index propagation. It plays a crucial
role in our first proof of the decidability of strong sequentiality, because it enables us to restrict the
search for a free term to a finite set of Q-terms which are entirely built from preredexes.

LEMMA 4.19. Let teI g and u,v,we O(t) such that u <v <w. If vel(t[v < Q)), w/uel(t/u) and
iviulzp-1, thenwel(t).

FIGURE 4.6.

PROOF. Suppose wel(t). According to Lemma 3.8 we O(w(t[w « °])) and hence there exists an
Q-reduction

tiw o] -nqt; 2qt, g O(E[we o))

such that ¢/w = and wg O(ty). Let t,/u’ be the redex compatible subterm rewritten in the step
t, =g ty. We have u’ <w. We distinguish two cases: (1) u <u’<w and (2) u’<u.
(1)  Because ue O(t;) we can transform the Q-reduction t[w < o] —»g t; —q #, into

tlw e olu =tiulwlu o] —»q ti/u —q t)lu.
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Clearly w/ue O(t,/u) and therefore w/ug O (w(t,/u)) = O(@(t/u[w/u ¢ °})). This contradicts
the assumption w/uel(t/u).

Let r be a redex scheme with tllu'Tr. Consider the term tj=t,[vee]. We have
tv/u't > lviul 2p—1, so if tj/u’ is not compatible with r, then v/u’e O(r). Because t,/v is not
a constant, r(v/u’) must be a function symbol of arity greater than zero. But then p(r)2p+1,
which is impossible. So ¢{/u’ is redex compatible. Noting that occurrence v is preserved in
t[w < o] —»q t;, we now transform the Q-reduction t[w « ] —»qg t; —q ¢, into

tlvee] omgrylveel=t; ogtiu’«Q]l=t,.

A similar argument as in the previous case shows the impossible ve/(¢[v «Q]).

The bound p~1 in Lemma 4.19 cannot be relaxed, as the following example shows.

EXAMPLE 4.20. Let

F(GH((x),A) — «x,
“1G@HB),C) - B,

andt = F(GH(Q),Q)). Take u=1,v=1.1 and w=1.1.1. We have

vel(lve« QD) =I1(F(G(Q,Q)))= (1.1},
wliuel(t/u)=1(GH(Q),Q)) ={1.1,1.2}

and Iv/ul=1=p-2,butwel(t) = {1.2}.

We will now try to construct a minimal free term ¢ in a tree-like procedure, as suggested in Fig-

ure 4.7. Because we want ¢ to be in Q-normal form, we start with the finitely many proper
preredexes, where a preredex is proper if it is neither a redex scheme not equal to Q. In the next con-
struction step we attach at every index position again a proper preredex, such that the resulting term is
in Q-normal form. (According to Proposition 4.23 below, there is no need to attach proper
preredexes at non-index positions.) A branch in the thus originating tree of construction terminates
‘successfully’ if a free term is reached. In that case the term rewriting system under consideration is
not strongly sequential. However, there may arise infinite branches in the construction tree.

DEFINITION 4.21. Let D be a decomposition of a term € NF ...

(D

@

3

A non-empty subset D’ of D is a tower of preredexes if the following two conditions are satis-
fied:

- if (uy,$,) and (u,,s,) are different elements of D” then either u; <u, or u, <uy;

- if (uy,5,),(42,5,)€ D’ and (u,s)e D such that u; <u <u, then (u,s)eD’.

For convenience, we will assume that u; <u,<...<u, whenever {(u;,s;) | 1<i<n} is a tower
of preredexes.

A tower of preredexes { (4;,s;) | 1<i<n} is a main tower if u;=A\ and there does not exists an
element (u,s)eD with u, <u.

Let D’ = {(u;,s;) | 1<i<n} be a tower of preredexes. The term n(D°) is defined by

5, if n=1,
(D) =
n({ (u;,8;) 1 1<iSn—-1Plu,/uy<s,]  if n>1
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FIGURE 4.7.

(4) A tower of preredexes {(u;,s;)|1<i<n} is sufficiently high if n>2, \u,/u;l2p-1 and
|u"_1/u1| <p—1.

EXAMPLE 4.22. Let

F(G(x,F(y,A)),B) — x,
] Gx,A) - x
Consider the term F (F (G (Q,G (Q,Q)),G(Q,Q)),G (2, Q)) with decomposition
{(AF(Q,Q)), (1,F(G(Q,2),2)), (1.1.2,G(Q,Q)), (1.2,G(Q,Q)), (2,G(Q,Q))},

see Figure 4.8. Table 4.9 lists all towers of preredexes consisting of at least two elements. In this
table, s means that the tower under consideration is sufficiently high and m means that it is a main
tower.
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FIGURE 4.8.

tower D (D)
{(AF(Q,Q)), (1,F(G(Q,),2)} F(F(G(2,9Q),Q),Q)
{(1,F(G(2,),)), (1.1.2,G(RQ,Q))} F(G(2,G(2,Q)),Q) )
{1, F(G(Q,Q),Q), (1.2,G(Q,Q))} F(G(Q,Q),G(Q,Q)
{(AF(Q2,9Q)), (2,G(Q,Q2))} F(Q,G(Q,L)) m
{(LF(Q,Q), 1,F(G(Q,Q),Q), (1.1.2,G(Q,Q)) | F(F(G(Q,G(Q2,Q)),Q2),Q) | ms
[ (A F(Q,Q), (1,F(G(Q,Q),Q)), (1.2,G(2,2))} F(F(G(Q,Q),G(Q,2),2) | ms

TABLE 4.9.

If we observe at some branch in the construction tree the arising of a term which has a main
tower containing two disjoint occurrences of a sufficiently high tower of preredexes, that branch is
stopped unsuccessfully. So every branch of the construction tree terminates, either successfully in a
free term, or unsuccessfully. Because the construction is finitely branching, we obtain a finite con-
struction tree. A term rewriting system is strongly sequential if and only if all branches in the con-
struction tree terminate unsuccessfully. The justification for unsuccessfully closing branches at which
a repetition of sufficiently high towers occurs is given in Lemma 4.24.

PROPOSITION 4.23. If t is a minimal free term then I(t[u « Q]) = {u} for all ue O(t) such that the
length of t/u is greater than 1.

PROOF. Because the length of 7[u « Q] is less than the length of ¢, we have /(t[u «Q]) # D. Let
vel(t[u «Q)). By Proposition 3.1, v cannot be disjoint from u, hence I(t[u «Q]) = {u}. O

LEMMA 4.24. Suppose t is a minimal free term and let D be a decomposition of t. If a main tower
D’ < D contains two distinct sufficiently high towers of preredexes D {,D, c D’, then ©(D ) £ (D).
PROOF. Suppose a main tower D’ = { (4;,5;) | 1<i<n} in a decomposition of ¢ contains two suffi-
ciently high towers of preredexes

Di={(u,s;) | j<i<k}

Dy={(u,s) 1 1<i<m)
such that 1<j<k</<m<n and ®D,) =n(D,). Let t'= t[u;v «t/uv] where occurrence v is
defined by ve Oq(n(D)) and ujve {ugi1s...,4;), see Figure 4.10. It is not difficult to show that
t’e NFq. In order to arrive at a contradiction, we will prove that ¢’ is a free term. Suppose /(") # &.
Let wel(t'). If wLlu;v then we](t'[ujv «Q)) =1(t[u;v «QJ) by Proposition 3.11, and therefore
wel(t) using Proposition 3.1. This is impossible because ¢ is a free term. So if wel(¢’) then w 2u;v.
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From Proposition 3.10 we obtain w/u;eI(t’/u;). Repeated application of Proposition 3.11 and a single
application of Proposition 3.1 yields w/u;el(t/u;). Proposition 4.23 gives us u,el(t[u, < QJ).
Because D, is sufficiently high, we have lu,,/u;| 2p—1. Finally we can use Lemma 4.19 to obtain the
impossible we (). Therefore, ¢’ is a free term and the lemma is proved. O

FIGURE 4.10.

COROLLARY 4.25. Strong sequentiality is a decidable property of orthogonal term rewriting systems.
PROOF. Because there are only finitely many sufficiently high towers of preredexes, a repetition of a
sufficiently high tower along a main tower must occur within a computable bound. Inspection of all
terms te NF .. with height up to this bound reveals strong sequentiality or the absence of it. O
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5. A-sets and Increasing Indices

Huet and Lévy proved the decidability of strong sequentiality by showing the equivalence of
strong sequentiality and the existence of so-called A-sets:

for every proper preredex ¢, A(t) is a non-empty subset of /(z) subject to the following
constraint: for all ueA(t), if s is a proper preredex such that ¢t[u «s] is again a proper
preredex, then {v | uve A(t[u «s])} is a non-empty subset of A(s).

Assuming the existence of A-sets, Huet and Lévy constructed a ‘matching dag’, a special kind of
graph on which they defined an efficient algorithm to find a strongly needed redex in a given term.
(In [8] it is proved that strong sequentiality is equivalent to the existence of a function Q satisfying
two constraints O, and Q,. The equivalent notion of A-sets stems from [7].) Actually, the notion of
A-sets in [7], [8] is more complicated than the one we use, since in {[7], [8] it involves so-called
‘directions’, not introduced in the present paper.

The second part of the equivalence proof (existence of A-sets => strong sequentiality) is in
essence a correctness proof of their algorithm. In this section we will give a direct proof of this impli-
cation. For the other implication (strong sequentiality = existence of A-sets) we use the increasing
indices of [8].

DEFINITION 5.1. Let te Jq. An occurrence u€l(t) is an increasing index if for every term se NF

there exists an index ve/l(t[u «s]) such that u <v. The set of all increasing indices of ¢ is denoted
by J(1).

The following proposition shows that every term t€ NF g has at least one increasing index, pro-
vided R is strongly sequential.

PROPOSITION 5.2. If R is strongly sequential then for any term te NF  we have J(t) # O.

PROOF. Suppose R is strongly sequential and let te NF. We have I(t) # D, say I(¢t) = (uq,...,u,}.
If J@)=< then for every ie{l,...,n} there exists a term s;eNF; such that
{vel(lu; s Ivzu;} =B. Consider t'=t[u;«s; | 1<i<n]. It is not difficult to show that
t’eNFq. Hence I(¢')# @. Let vel(t’). If v>u; for some i€ {1,...,n} then vel(t[u; «s;]) by n—1
applications of Proposition 3.11. This is impossible, so v1lu; for all i€ {1,...,n}. Now we have
vel (1), again by applications of Proposition 3.11. Butve {u,,...,u, }. We conclude that J(1) # &. O

The ‘suffix property’ (Proposition 3.10) also holds for increasing indices.

PROPOSITION 5.3. IfuveJ(t) thenveJ(t/u).
PROOF. If veJ(t/u) then there exists a term se NF, such that {wel(t/u[v «s])|w2v}=0. Let
t’=t[uves). We have {wel(t") | w2uv} = @ by Proposition 3.10 and therefore uve J(¢). O

PROPOSITION 5.4. Suppose R is strongly sequential. Let te NFq and se NF;. If ueJ(t) then there
existsaveJ(t[u «s]) withu<v.

PROOF. Suppose {veJ(t[ues])|v=u}=@. From Proposition 5.2 we know that the set
{(vel(t[ues]) lv2u} is non-empty, say {vel(t[ues))lv2u)={uy...,u,}. For every
ie(1,...,n} there exists a term s;€ NF, such that {vel(t[u «s][u; «s;]) | v=u;} =D. Consider
the term 5" = s[u;/u <5, | 1<i<n]. We obtain a contradiction like in the proof of Proposition 5.2. O

DEFINITION 5.5. A proper preredex ¢ is called atomic if ¢ does not contain other proper preredexes,
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i.e. t/u is not a proper preredex for all ue O (¢)—{ A}.

PROPOSITION 5.6. Let t be an atomic preredex. If uel(t) then (t{u < o)) =t{u o).
PROOF. Easy. O

We call a decomposition D of a term te NF.. elementary if D consists only of atomic
preredexes, i.e. s is an atomic preredex whenever (u,s5)eD. Clearly every decomposition of a term
te NF .. can be refined to an elementary decomposition.

We are now ready for the main theorem of this section. First we will give an intuitive descrip-
tion of the proof idea. As noted before, the problem with indices is that they are not ‘transitive’. How-
ever, ‘partial transitivity’ properties do hold; in our first proof of the decidability of strong sequential-
ity this was embodied by Lemma 4.19, in the following proof this is embodied by the A-sets. To show
that the existence of A-sets guarantees the existence of an index in a term te NF .., we consider an
elementary decomposition of ¢ and we select a main tower as in Figure 5.1(a) which has the property
that A-indices are transmitted along the tower, in the following sense. The main tower in Figure
5.1(b) may contain next to the atomic preredexes, larger preredexes formed by some consecutive
atomic pieces of the tower, e.g. as indicated in Figure 5.1(c) where every line segment denotes a
preredex between some u;,u;. Now for every such preredex between u;,u; we have that u;/u; is a A-
index of that preredex. The result is that the main tower leads indeed to a position u,,; which is an
index of that tower, and hence of the whole term ¢. This can be seen as follows: if the test symbol e is
inserted at u,,;, then the tower is perfectly rigid, no chunk can be melted away. First by our use of
atomic preredexes, so no chunk away from the main path u;—u,—...—u,,, of the main tower can be
melted away, and second by the arrangement that all preredexes in the tower ‘looking at’ the test
symbol e at position u,,,; have an index at that point. We will now give the formal proof.

(a) (b) ©
FIGURE 5.1.

THEOREM 5.7. R is strongly sequential if and only if there exists A-sets for R .

PROOF.

= If R is strongly sequential then the increasing indices satisfy the conditions for being A-sets, by
Propositions 5.2, 5.3 and 5.4.

<  We have to prove that every term € NF g has an index. By previous results (Corollary 4.17) it
is sufficient to prove that every term te NF.. has an index. Let te NF .. and suppose D is an
elementary decomposition of ¢. We will construct a sequence of towers of preredexes
D,cD,c...cD,cD and an occurrence u,,; such that D, = { (4;,s;) | 1<i<n} is a main
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tower and the following property (*) holds:

if Di = {(u;,s;) | j<i<k} is a tower of preredexes such that n(Di) is a preredex,
then u.,,/u;€ A(R(DY)).

D, is the singleton set { (u4,,s,)} where u;=A and (A,s,)eD. Because s, is a proper preredex,

A(sy) is non-empty, and hence we can take u,€A(s,). Suppose we have defined D,,...,D;_,

and occurrence ;. If D;_, is a main tower then we end the construction and set n =j—1. Other-

wise we extend Dj_l with the unique element (uj,sj)eD to obtain Dj. Let ke{1,...,j} be
minimal under the restriction that 7(D;)/u, is a preredex. In order to define u;,; we consider
two cases: (1) k=j and (2) k<.

(1) If k= then we choose some u;,; € A(s;). In this case the hypothesis (*) is clearly satis-
fied.

(2) If k<j then (D;_,)/u, = n(Df_l) also is a preredex. From the induction hypothesis we
obtain u j/ukeA(n(Df_1)) and the existence of A-sets implies the existence of an
occurrence u’> u;/u, such that u’e A(n(Df)) and u’'/(uj,1/u;) eA(n:(Dj)) = A(s;). Now we
define u;,;=u,u’. We still have to show that the hypothesis (*) is satisfied. Suppose
n(D,’,,) is a preredex. If m < the result follows by induction. So assume m =;. We have
k <I by the definition of k. If k =/ then we already know that u,,,,/u;=u’e A(n(D,’,,)). If
k<l then wlue A(n(D,"_l )) by the induction hypothesis. Because n(Dj'-‘) =
aDf)w/u, —7(DH]  and  wj, e AMDY), we obtain (. /u ) (Uylug)=
Ui /u€ A(D}) from the definition of A-sets.

We will now show that u,, ., €I(n(D,)). Suppose ®t(D,)[ u,,, < °] contains a redex compatible

subterm s # Q at occurrence v. Because (D, )[ u,,, < °] is a normal form with respect t0 2.,

s must be a preredex. If v is disjoint from u,,; then 5 is a proper subterm of an atomic

preredex, which is impossible. For similar reasons v cannot be distinct from u,...,u,. Sov=y;

for some i<n. Clearly s[u,, /u;«Q]=n(D.) is also a preredex. From (*) we obtain

Uy /€ (D)) € I((DL)) and hence @(s) = @(R(D}) Uy, /u; ¢« 1) # @(r(D})) = Q. This

contradicts the assumption that s is redex compatible. Therefore (D, )[«,, ¢ °] does not con-

tain redex compatible subterms # Q and thus w(n(D,)[u,, < °]) = ®(D,)[u, ., < °]. We con-
clude that u, ., €/ (n(D,)). Finally, Proposition 3.1 yields u, ., €1(t).

Because it is straightforward to give an (inefficient) algorithm for finding A-sets, Theorem 5.7
gives a decision procedure for strong sequentiality.
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6. Further Remarks on Deciding Strong Sequentiality

We conjectured for some time that, with the help of Lemma 4.19, it should be possible to prove
that the height of a minimal free term is bounded by 2p or perhaps 3p (where p is the maximum
height of the redex schemes as defined in Section 4), which would imply a very simple decision pro-
cedure for strong sequentiality: just check all terms with height up to 2p (3p). Unfortunately, this is
not the case.

DEFINITION 6.1.
(1)  The term rewriting systems &, (n 22) are defined by induction:
Fo(A,B,x) - x,
R,=1 F(Fo(x,A,B),A) - x,
Fy(F(F¢B,x,A),B),A) — x,
Rpi1 =Ry U Fpy(F,(F,_1(A,x),B),A)—x}.
(2)  The term rewriting systems ', (n 22) are defined as follows:
=R, O Fy(F(Fp(A,X),¥),2)>x}.

PROPOSITION 6.2. The term rewriting system R , is strongly sequential for every n 22,
PROOF. We will inductively define collections A; for i 22, satisfying the conditions for being A-sets
with respect to ® ;. The collection A, is defined by (the underlined Q’s denote the A-indices):

F I(Qvg)’
F(Q,9),
Fo(F1(Q,Q),9),
F(F(Q,),4)
and
Axt) =1(1)
for all other proper preredexes ¢ of ®,. It is straightforward to show that A, satisfies the conditions
for being A-sets with respect to & ,. Suppose we have defined A,,...,A;. Let ¢ be a proper preredex of
R ;.- 1f t is a proper preredex of X; then we define
{1,2} if t=F;(Q,Q),
Aja() =
A(r) otherwise,

and if ¢ is not a proper preredex of R; then A,(¢) is given below:
Fi1(Q,9),
Fi1(Fi(Q,Q),9),
Fin(Fi(Q,9),A4),
Fi(Fi(F;i1(Q,Q),Q),Q),
Fig(Fi(Fi1(Q,Q),Q),A4)

and

Ai+1(t) =1I(t)
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if ¢ is not listed above. Although very tedious, it is not difficult to verify that A;,; indeed satisfies the
conditions for being A-sets with respect to & ;.. Theorem 5.7 yields the strong sequentiality of X ,,
forevery n22. O

PROPOSITION 6.3. Let n 22. The term rewriting system ¥ ,, is not strongly sequential; its minimal free
termis F, (F,(...(F,(F (FyQ,Q,Q),Q),Q)...),Q).
PROOF. Because I(F, (F,(..(Fx(F ((F((Q,Q,Q),Q),9Q)...),Q)) =3, ¥, is not strongly sequential.
Let ¢ be a minimal free term. The following observation is easily proved:

ift(u)=F; and t(u-i)=Fy theni=1and j=k+1.

From this one obtains ¢ = F,{(F, (.. (F,(F (Fo(£2,Q,Q),Q),Q)...),2) by a sequence of routine argu-
ments. O

COROLLARY 6.4. For every n21 there exists a term rewriting system R which is not strongly
sequential such that every free termt of & has height p(t) 2 npg. O

The above gives evidence that deciding strong sequentiality is not a trivial matter. Indeed, there
is no known efficient method for finding A-sets. (We conjecture that deciding strong sequentiality is
NP-complete.) Huet and Lévy pointed out that for the practically relevant case of constructor sys-
tems, deciding strong sequentiality is easy. Laville [12] showed the close connection between strong
sequentiality of constructor systems and the existence of lazy pattern matching algorithms for func-
tional programming languages.

DEFINITION 6.5. A constructor system is a term rewriting system (¥,2) in which the set of function
symbols F can be partitioned into a set 2 of defined function symbols and a set 6 of constructors
such that every left-hand side of & has the form F(¢y,...,t,) with FeD and ¢y,...,1,€ (6 ,1).

The nice thing about constructor systems is the transitivity of index propagation for terms start-
ing with a defined function symbol.

PROPOSITION 6.6. Let R be a constructor system. Let s ,te 9 such that s(\),t(M\)e€D. Ifuel(s) and
vel(t) thenuvel(s[u «t]).
PROOF. If uvel(s[u «1t]) then uve O (w(s[u < t1[uv « o)) and hence there exists an Q-reduction

Sluetlluv o] —mgt; gt

such that t,/uv = ¢ and uve O(t,). Let ¢;/u’ be the redex compatible subterm rewritten in the step

1, —q t,. Clearly u’ <uv. We distinguish two cases: (1) u <u’<uv and (2) u’<u.

(1) The proof is the same as the first case of the proof of Lemma 4.19.

(2) Let r be aredex scheme compatible with ¢,/u’. Because ¢,(4)€ D we have either u/u’¢ O(r) or
r(u/u’)=Q. In both cases the term ¢[u «]/u’ also is compatible with r. We obtain a con-
tradiction as in the second case of the proof of Lemma 4.19.

0

COROLLARY 6.7. A constructor system is strongly sequential if and only if every proper preredex has
an index.
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PROOF.

= Trivial.

<  We have to show that every term 1€ NF.. has an index. Because every t€ NF.. can be parti-
tioned into proper preredexes, this follows from Proposition 6.6.

O

Alternatively, this fact can be obtained from Theorem 5.7 and the definition of A-sets, noting
that if s,¢ are proper preredexes and u € A(t) then ¢[u «s] can never be a proper preredex.

In order to decide whether a constructor system R is strongly sequential, we only have to com-
pute the indices of its proper preredexes. According to the next proposition, this is very easy.

PROPOSITION 6.8. Let t be a proper preredex in a constructor system. An Q-occurrence u of t is an
index if and only if t[u « °] is not redex compatible.
PROOF. Easy. O

We conclude this section with the observation that strong sequentiality is a modular property,
i.e. depends on the disjoint pieces of a term rewriting system.

DEFINITION 6.9.

(1) The direct sum R,® R, of two term rewriting systems R |, , is the system obtained by taking
the disjoint union of ® ; and R,. That is, if the sets of function symbols of % ; and R, are dis-
joint, then @R, is the union of R, and R ,; otherwise we take renamed copies R1, &5 of
R\, R, such that R]{ and R; have disjoint sets of function symbols, and define
RIBR,=R|URS

(2) A property 2 of term rewriting systems is called modular if the following holds for all £ ;, R ,:

R DR, has the property # < both £, and K, have the property 2.

A well-known example of a modular property is the Church-Rosser property (Toyama [20]).
The modular aspects of other properties of term rewriting systems have been studied in [13], [14],
[18], [21], [22].

PROPOSITION 6.10. Strong sequentiality is a modular property of orthogonal term rewriting systems.

PROOF. Let R, and R, be orthogonal term rewriting systems with disjoint sets of function symbols.

We have to show that ®,UR, is strongly sequential if and only if both £, and R, are strongly

sequential.

= If R{UR, is strongly sequential then, according to Theorem 5.7, we can find A-sets for
preredexes of R UR,, say Ag 2, The restriction of Az g, to preredexes of R, clearly satis-
fies the conditions for being A-sets with respect to ®; (i =1,2). Theorem 5.7 yields the strong
sequentiality of ®; and R ,.

< If R; is strongly sequential, there exists A-sets Ag, for proper preredexes of ®; (i=1,2).
Define Az ,z, by

Ag ()  if 1 is a proper preredex of R,

Az, uz(1) =
Az () if ¢ is a proper preredex of R ,.
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It is very easy to show that Az 5, satisfies the conditions for being A-sets with respect to
R UR,. Therefore R ;U R, is strongly sequential.

It should be noted that in order to apply the previous proposition for deciding the strong sequen-
tiality of a term rewriting system R, it is sufficient that R can be partitioned into R ;U R, such that
the left-hand sides of  ; and R, do not have any function symbols in common.

REMARK. Sequentiality®, as defined in Definition 2.4, is not a modular property. For instance, the
trivial term rewriting system I = {/(x)— x} is strongly sequential (and hence sequential*, cf. Figure
2.1). We have already observed that Berry’s term rewriting system

FAB,x) —» C,
B=4yF@B,x,A) - C,
F(x,A,B) - C,

is sequential®, but I@®B is not sequential*:
F((A).IB),r) = F(A.B.r) »C,
FUB),r,I(A)) » F(B,r,A)>C,
F(r,i(A),I(B)) » F(r,A,B) > C.
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7. Different Notions of Sequentiality

In this last section we discuss two different notions of sequentiality. The first one is left sequen-
tiality introduced by Thatte [19] (not to be confused with the notion of left sequentiality by Hoffmann
and O’Donnell [6]). Left sequentiality is intuitively more satisfactory than strong sequentiality, but
Thatte showed that the notions coincide for the subclass of constructor systems. We will give a sim-
ple proof of this fact. Thatte also showed that left sequentiality is necessary for safe computation
based on the analysis of left-hand sides alone, again for the subclass of constructor systems. The
second notion of sequentiality we discuss is sufficient sequentiality introduced by Oyamaguchi [16].
Sufficient sequentiality is not only based on the analysis of the left-hand sides of the term rewriting
systems (as is the case for strong and left sequentiality) but also on the non-variable parts of the
right-hand sides. Oyamaguchi showed that the class of sufficiently sequential term rewriting systems
properly includes the class of strongly sequential systems. Furthermore, he established the decidabil-
ity of sufficient sequentiality.

The following example from Thatte motivates the introduction of left sequentiality.

EXAMPLE 7.1. Let

F(A,B,x) > x,
FB.x,A) — x,
*=1F@.4,8) > 1,
G@A) - A

Consider the term ¢ = F(G(Q), G (Q),LQ). The third occurrence of Q in ¢ is not an index with respect
to strong sequentiality (r,, 7, and r are arbitrary redexes):

F(G(r1),G(ry),r3) =9 F(G(A),G(rp),r3) =9 F(A,G(ry),r3)
—)? F(A,G(A),r3) —)? F(A ,B,r3) —)? A.

In the second step we replaced the redex G(A) by A and in the fourth step we replaced the same
redex by B. However, using Theorem 1.4 one easily shows that there does not exists a term rewriting
system &’ with the same left-hand sides as R such that G(r,) 4/ A and G(r,) —» 4+ B. Therefore,
the above arbitrary reduction sequence is impossible for any system based on the left-hand sides of
R.

DEFINITION 7.2,

(1) Two term rewriting systems R ,,R, are left equivalent, notation R ~; R,, if they have the
same left-hand sides, ie. R;={/,—r!|1<i<n} and R,= {l,~—>r,-2 | 1<i<n} for some
terms /;, !, r? (i=1,...,n).

(2) The monotonic predicate Inf is defined on I by

Inf(t)holds & ¢ -—»g t’' forsome R’ ~; R and t'e NF.

(3) An orthogonal term rewriting system is left sequential if every te NFg has an index with
respect to Inf .

EXAMPLE 7.3. The term ¢ in Example 7.1 does not have an index with respect to strong sequentiality,
but /(1) = {3} because ¢; 2 ¢ and ,/3 =Q imply that there does not exist a term rewriting system
R~ R such that t; —»%.t, for some normal form z,. Notice that R is not left sequential:
Ly (F(Q.Q,Q)=0.
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PROPOSITION 7.4.

(1)  Every strongly sequential term rewriting system is left sequential.

(2)  Every left sequential term rewriting system is sequential.

PROOF.

(1) Suppose R is strongly sequential. Take te NFg and uel(t). We will show that UE ().
Let ¢’ >t such that Inf(t") holds. Then nf,(¢) also holds and we obtain ¢'/u # Q from the
assumption uelm(t).

(2) Similar to (1), using the implication nf (t') = Inf (t').

strongly sequential

FIGURE 7.1.

PROPOSITION 7.5. Let R be a constructor system. If R is left sequential then R is strongly sequen-
tial.

PROOF. According to Corollary 6.7 we have to show that every proper preredex of £ has an index
with respect to strong sequentiality. Let ¢ be a proper preredex of R and take some u€l,,(¢). Sup-
pose u is not an index with respect to strong sequentiality. Then [ # « °] is redex compatible by Pro-
position 6.8 and hence there exists a redex ¢’ 2 ¢[u ¢« ¢]. Clearly t” = ¢[u < Q] also is a redex. Let
| —r be the rewriting rule of Z such that ¢” is an instance of /. Choose some ground normal form r’
and let R’ =R -{l—>r}u{l—r’}). Now we have t” —4.r’, t” 2t and t”/u = Q which contradicts
the assumption ue I,,,+(t). We conclude that ® is strongly sequential. O

Thatte writes: “It is less obvious that our results apply to the full class of orthogonal systems.”
We conjecture that left sequentiality does not coincide with strong sequentiality: the non-constructor
system

(F(GA,x),F(A,A) - =x,
F(Gx,A),F(B,B)) — «x,
R=4F(C,FMD,GA,x)) > x,
F(Cy,F(D,;,G(x,A)) —
“G(E,E) - E,
is not strongly sequential (the term F(G(€Q,Q),F(G(R,Q),G(L,£2))) does not have an index with
respect to nf,) but we think that R is left sequential.
This concludes our discussion of left sequentiality. We now turn our attention to sufficient
sequentiality.

X,
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DEFINITION 7.6.
(1)  The reduction relation —, is defined as follows:

L =t
if there exists a context C[ ], a reduction rule / —r and a substitution o such that ¢, = C[/9],
t,=C[t] forsometermt 2rg where rq=r{u Q| riue].
(2) The predicate term, is defined on J g as follows:
term(t) holds <« ¢ —»,t’ for some t’'e J(%F,1).

(3) An orthogonal term rewriting system is sufficiently sequential if every te NFq has an index
with respect to term,.

It would be more natural to define sufficient sequentiality in terms of a predicate nf):
nfiy(t)holds < ¢ —», ¢’ for some normal form ¢/,

but Oyamaguchi argued that it will be very difficult to obtain an (efficient) algorithm for finding
indices with respect to nf). Oyamaguchi showed that the computation of indices with respect to term,
can be done in polynomial time.

PROPOSITION 7.7.

(1)  Every strongly sequential term rewriting system is sufficiently sequential.

(2)  Every sufficiently sequential term rewriting system is sequential.

PROOF. Similar to the proof of Proposition 7.4, using the implications term(t) = nf,(t) and
nf (1) = term\(t). O

strongly sequential

FIGURE 7.2.

Oyamaguchi showed that the first inclusion of Proposition 7.7 is proper by means of the follow-
ing term rewriting system:

F(F(A,x),F(B,y)) — F(E,E),
R =1FFx,A)LF(C,y) — F(EE),
F(D,D) — F(E,E).

Because F(F(£,Q),F(F(£2,Q),Q)) does not have an index with respect to nfy, R is not strongly
sequential. The proof that R is sufficiently sequential can be found in [16], where also the decidabil-
ity of sufficient sequentiality is shown.
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THEOREM 7.8 (Oyamaguchi [16)). Sufficient sequentiality is a decidable property of orthogonal term
rewriting systems. O
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