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INTRODUCTION

Virtually all semantic equivalences employed in theories of concurrency are defined in terms of actions
that concurrent systems may perform (cf [1-18]). Mostly, these actions are taken to be atomic, mean-
ing that they are considered not to be divisible into smaller parts. In this case, the defined
equivalences are said to be based on action atomicity.

However, in the top-down design of distributed systems it might be fruitful to model processes at
different levels of abstraction. The actions on an abstract level then turn out to represent complex
processes on a more concrete level. This methodology does not seem to be compatible with non-
divisibility of actions and for this reason PRATT [15], LAMPORT [11] and others plead for the use of
semantic equivalences that are not based on action atomicity.

As indicated in CASTELLANO, DE MICHELIS & POMELLO [4], the concept of action atomicity can be
formalized by means of the notion of refinement of actions. A semantic equivalence is preserved under
action refinement if two equivalent processes remain equivalent after replacing all occurrences of an
action a by a more complicated process r(a). In particular, r(a) may be a sequence of two actions a,
and a,. An equivalence is strictly based on action atomicity if it is not preserved under refinement.

Most semantic equivalences can be positioned in a two dimensional classification diagram, such as the
one of Figure 1. On the x-axis equivalences are ordered with respect to the preserved level of detail
of runs of processes. Three well-known points on this axis are interleaving semantics, where runs are
represented by sequences of action occurrences, step semantics, where runs are represented by
sequences of multisets of action occurrences - the multisets (or steps) representing simultaneous
occurrences - and partial order semantics, in which all causal dependencies between action occurrences
in runs of processes are preserved. On the y-axis the equivalences are ordered with respect to the
preserved level of detail of the branching structure of these runs. Two well-known points on this axis
are trace semantics, where a process is fully determined by the set of its possible (partial) runs, thereby
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completely neglecting the branching structure of processes, and bisimulation semantics, where also the
information is preserved where two different courses of action diverge (although branching of identi-
cal courses of action is still neglected). In between there are several decorated trace semantics, where
part of the branching structure is taken into account. Mostly these are motivated by the observable
behaviour of processes, according to some testing scenario. In Figure 1 the equivalences become
finer, or more discriminating, when moving upwards or to the right.

bisimulation semantics Xy < ) il

decorated trace semantics

trace semantics =P Xy Ryt
interleaving step partial order
semantics semantics semantics

FIGURE 1. Semantic equivalences

In [4], CASTELLANO, DE MICHELIs & POMELLO show by means of a simple example that none of the
interleaving equivalences - not even bisimulation - is preserved under action refinement. Furthermore
they claim that ‘on the other hand, the approaches based on partial order are not constrained to the
assumption of atomicity’. Therefore they conclude that ‘interleaving semantics is adequate only if the
abstraction level at which the atomic actions are defined is fixed. Otherwise, partial order semantics
should be considered’.

In [6], URsULA GOLTZ & I elaborated on this argument by providing examples, showing that also
none of the step equivalences is preserved under refinement, and by formalizing the proof sketch of
[4] that trace equivalence based on partial orders is invariant under refinement. We also wanted to
prove this for bisimulation equivalence based on partial orders, but surprisingly we found that none
of the partial order bisimulation equivalences proposed before publication of [4] is preserved under
action refinement. However, we did prove a refinement theorem for a new notion of bisimulation
equivalence based on partial orders, proposed recently by Hirshfeld, RABINOVICH & TRAKHTENBROT
[16]. We chose to call this equivalence history preserving bisimulation equivalence, notation ~,. Hence,
even in bisimulation semantics, the requirements of preservation under action refinement and captur-
ing causal dependencies in processes by means of partial orders can be conciliated. But of course,
this still does not show that in case preservation under refinement is required, it is necessary to
employ partial order semantics. In this paper I will show that it is not.

Event structures and Petri nets have been established as suitable domains for modelling (both branch-
ing and causal aspects of) concurrent systems. Usually a state of a concurrent system is represented
by a configuration of the associated event structure, or by a marking of the associated net. In this
paper 1 argue that when events or transitions are considered to have a duration or structure,
configurations or markings do not properly represent all the states of concurrent systems. Instead I
propose to use so-called ST-configurations or ST-markings. The idea to model a state in a safe
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labelled marked net as the set of places (Stellen) containing a token, together with the set of transi-
tions (Transitionen) which are currently firing (an S7-marking) originates from VAN GLABBEEK &
VAANDRAGER [8]. In this paper I translate this idea to the realm of event structures by introducing
ST-configurations.

All interleaving, step and partial order equivalences on event structures or Petri nets considered so
far, have been defined in terms of configurations or markings. If the constructions from interleaving
semantics are applied on ST-configurations instead of ordinary configurations two new points on the
x-axis of Figure 1 emerge. Split-semantics is just interleaving semantics, but based on interleaving of
beginnings and ends of events, instead of entire events; ST-semantics is a refinement of split semantics
where in addition a link is required between the beginning and the end of any event. Split semantics
is more discriminating than step semantics, whereas ST-semantics is as least as discriminating as split
semantics. Furthermore ST-trace semantics is less discriminating than trace semantics based on par-
tial orders and ST-bisimulation semantics is less discriminating than history preserving bisimulation
semantics (but incomparable with the other bisimulation semantics based on partial orders proposed
so far). Hence the situation is as indicated in Figure 2.

ip b b ~STb Xy
i st 2 RsTi€ i
interleaving step split ST- partial order
semantics semantics semantics semantics semantics

FIGURE 2. More semantic equivalences

ST-bisimulation equivalence was introduced by FRITS VAANDRAGER & ME in [8]. In the same paper
we observed that for systems without autoconcurrency ST-bisimulation equivalence coincides with
split bisimulation equivalence and provided a complete axiomatization on closed ACP-terms for the
latter notion. Split bisimulation equivalence was proposed in HENNEssy [10] for a subset of CCS.
ACETO & HENNEsSY [1] proved that on this subset split bisimulation equivalence is preserved under
action refinement. HENNEssy [10] also provided a complete axiomatization for split bisimulation
equivalence on this subset. Since - if one forgets about T-moves - this proof system is sound for ST-
bisimulation equivalence, and even for history preserving bisimulation equivalence, it follows that on
the domain considered in [10] the three equivalences coincide. In combination with the refinement
theorem for history preserving bisimulation equivalence in [6], this yields an alternative proof of Aceto
& Hennessy’s refinement theorem. Split trace equivalence has been considered in VAANDRAGER [17].
In a joint paper with FRITS VAANDRAGER [9] we will show that on the domain of labelled event struc-
tures (prime event structures with binary conflict), or on full CCS, split semantics is not proof against
refinement. In fact the equivalences obtained by splitting an event into two parts (its beginning and
its end) turned out to be different from the equivalences obtainable by splitting an event into three
parts. This was established by means of a rather complicated example (the ow/ example), that also
shows that split semantics is strictly less discriminating than ST-semantics. By means of even more
complicated examples we established that for each n €N split-n semantics is also different from split-
n+ 1 semantics.



The result contributed by the present paper is that ST-bisimulation semantics as well as ST-trace
semantics are preserved under action refinement. In [8] it was shown that these semantics do not
respect causality. It follows that it is possible to abstract from the causal structure of concurrent sys-
tems without assuming action atomicity.

1. CONCURRENT SYSTEMS AND REFINEMENT OF ACTIONS

In this paper I consider systems that are capable of performing actions from a given set Act of action
names. Following [6], as my model for this kind of systems I have chosen labelled event structures
here (prime event structures with a binary conflict relation as introduced in NIELSEN, PLOTKIN &
WINSKEL [14]); I could have chosen other models like Petri nets or behaviour structures [16] as well.
In this paper I will not distinguish external and internal actions; I do not consider abstraction by hid-
ing of actions.

DEFINITION. A (labelled) event structure (over an alphabet Acr) is a 4-tuple 6=(E, <, §, /), where
- E is a set of events,
- < CEXE s a partial order (the causality relation) satisfying the principle of finite causes:

{e’eE|e’<e} is finite for ecE;

- #CEXE is an irreflexive, symmetric relation (the conflict relation) satisfying the principle of
conflict heredity:

effe;<<ez = e ffes;

- 1I: E>ACct is a labelling function.

An event structure represents a concurrent system in the following way: action names aeAct
represent actions the system may perform, an event e € E labelled with a represents an occurrence of a
during a possible run of the system, e’<<e means that e’ is a prerequisite for e and e’fe means that e’
and e cannot happen both in the same run.

One usually writes e’<<e for e’<<e VV e’=e, > for < ! and = for <~ '. Causal independence (con-

currency) of events is expressed by the derived relation ~CEXE defined by: e*e iff
—~(e'te V e’<e V e’>e V e’=e¢). By definition <, =, >, ¢ and - form a partition of EXE. The
concurrency relation co CE X E, originating from Petri net theory, is defined slightly different from ~:
e’ coeiff ee \V e’'=e.

The components of an event structure & will be denoted by respectively Eg, <g, #s and /g. The
derived relations will be denoted ¢, cog, <g, > and =g.

Throughout the paper, I assume a fixed set Act of action names as labelling set. Let E denote the
domain of event structures labelled over Act.

DEFINITION. An event structure isomorphism between two event structures 6,9€E is a bijective map-
ping f: Eg—Eg such that

- SO <sfle) & e <ge,

- flO) 45 fle") & efs e’ and

- s(f(e)) = [g(e).

& and ¥ are isomorphic - notation 6=9 - if there exists an event structure isomorphism between them.
Generally, one does not distinguish isomorphic event structures.

DEFINITION. The restriction of an event structure & to a set X CEg of events is the event structure
EMIX=(X, <gN(XXX), s N(XXX), Ig [ X).



An event structure & is finite if Eg is finite; & is conflict-free if ffg = 2.
0 denotes the empty event structure (&, 2, 3, D).

In [4] it is shown that equivalence notions based on interleaving are not preserved when replacing an
action in a system by a sequence of two actions. In [6] we considered a more general version of this
operation, which I will also use in the present paper: replacing actions by finite, conflict-free, non-
empty event structures. Replacing actions by infinite event structures could in general invalidate the
principle of finite causes. As explained in [6], replacing actions by event structures containing
conflicts would require a more sophisticated notion of refinement or, alternatively, a more general
form of event structures where the axiom of conflict heredity is dropped, e.g. flow event structures [3].
Finally, replacing actions by the empty event structure can drastically change the structure of
processes; it can not be explained by a change in the level of abstraction at which processes are
regarded. In the concluding section I will discuss possible extensions of my result to these cases.

A refinement will be a function r specifying for each action a an event structure r(a) which is to be
substituted for a. Interesting refinements will mostly refine only certain actions, hence replace most
actions by themselves. However, for uniformity (and for simplicity in proofs) I consider all actions to
be refined.

Given an event structure & and a refinement r, the refined event structure r (&) is constructed as fol-
lows. Each event e labelled by a is replaced by a disjoint copy, r(e), of r(a). The causality and
conflict structure is inherited from &: every event which was causally before e will be causally before
all events of r(e), all events which causally followed e will causally follow all the events of r(e), and
all events in conflict with e will be in conflict with all the events of r(e).

DEFINITION. A refinement r:Act—E—{0} is a function that takes any action a €Act into a finite,
conflict-free, non-empty event structure r(a)€E. If 6€E and r is a refinement, then (&) is the event
structure defined by:

-  E,g={(ee)|eckEs, e'€E, g}

- (ener) <, (er,e2) iff e; <g ez or (e1=ex N €1’ <,qe €2');

- (enel) B (e2,r) iff e 85 €23

- lr(&;)(e’ e )= lr(l;,(e)) (e").

PROPOSITION 1:

i. If&€E andr is a refinement then r (&) is an event structure indeed.

ii. If&€E and r,r’ are refinements with r(a)==r’(a) for a eAct, then r(&)=r'(&6).

iti. If 6,9€E, r is a refinement and 6=3, then r (&)=r(%).

ProoF: Straightforward. O

This proposition says that refinement is a well-defined operation on event structures, even when iso-
morphic event structures are identified.

2. THE BEHAVIOUR OF CONCURRENT SYSTEMS |

Let & be an event structure, modelling the behaviour of a concurrent system P. Classically, a state S
of P is given by a set of events from &. Such a set is called a configuration. Its elements represent the
occurrences of actions that happened before P reached the state S. If two events ¢’ and e cannot
happen both in the same run (e’fze) then they also cannot occur in the same configuration. So
configurations have to be conflict-free. Furthermore, if e occurs in a configuration C and e’ is a prere-
quisite for e (¢’<<ge) then also e’ must occur in C. Hence configurations must be left-closed with
respect to <g. Finally, as is usual, in this paper it is assumed that in a finite period only finitely
many actions are performed. Therefore, unlike in many other papers, configurations are required to
be finite here.
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DEFINITION. A set X CEg of events in an event structure & is left-closed in & if for all e,e’€Eg
e'<geeX = e’'eX

X is conflict-free in & if & [ X is conflict-free. A configuration of & is a finite, left-closed, conflict-free

subset of Eg. Let G(&) be the set of configurations of &. Write X —; X" if X, X’eC(k) and X CX".

X —s X’ says that both X and X’ represent states of the concurrent system represented by &, and
that this system may evolve from the state represented by X to the one represented by X".

As the lemma below will show, the behaviour of a refined event structure (&) may be deduced from

the behaviour of & and from the behaviour of the event structures which are substituted for actions.

On the other hand, one may derive information about the behaviour of & from the behaviour of r(®).
Let r(e) abbreviate r(/5(e)) and let pr, denote projection to the first component.

LEMMA 2: Let & be an event structure and r a refinement.
i. C CE, is a configuration of r (&) iff
C ={(e,e") | ecC, e’'€C,) where

C is a configuration of &,
C, is a configuration of r(e) for e C,
C.=E,(,) if e is not maximal in C with respect to <g.

ii. If C —,6C thenpri(C) —>g pri(C’).
PROOF: See [6]. U

3. EQUIVALENCE NOTIONS FOR CONCURRENT SYSTEMS |
In this section the semantic equivalences of Figure 1 are defined in terms of configurations.
The interleaving equivalences can be defined by means of the single action transition relations

5 CAB) X&) for acAct and GeE.
DEFINITION. C i)gC’ iff C —>¢C’ and C'—C ={e} with Ig(e)=a.

Here C =5’ says that if the system represented by & is in the state represented by C, then it may
perform an action a and reach the state represented by C’.

DEFINITION. A sequence a; - - - a,€Act” is a (sequential) trace of an event structure & if there exist

configurations Cy, - - - ,C, of & such that Cy=@ and C, i)gCi (=1, ---,n).
SeqTraces (&) denotes the set of all sequential traces of &.

Two event structures & and & are interleaving trace equivalent - notation b~ % - if
SeqTraces (&)= SeqTraces (%).

DEFINITION. Let 6,5€E. A relation R CC(b) X (%) is called a (sequential) bisimulation between & and
F if (&, @)eR and whenever (C,D)eR then for acAct:

- C 54C’ = 3ID’ with D 54D’ and (C’,D’)€R;

- D 5D’ = 3C with C =>:C’ and (C’,D’)eR.

& and ¥ are interleaving bisimulation equivalent - &6~,;% - if there exists a sequential bisimulation
between them.
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Step equivalences can be defined by generalizing the single action transition relations
. . A . .
S CAE)XCB) to step transition relations —> g CO(6) X (&), where A4 is a multiset over Act.

DEFINITION. Let & be an event structure and A4:Act—IN a multiset over Act. For XCE; let
Ie(X)eIN4“ be the multiset of labels of the events from X, defined by /5(X)(a@)= | {e€X | lg(e)=a}|.

Then C 4> .C" iff C —>¢C’ and C’'—C =G CEg such that Ve,e’eG: e cog ¢’ and /5(G)=A.

Here C —A-)E;C’ says that if the system represented by & is in the state represented by C, then it may
concurrently perform the multiset of actions 4 and reach the state represented by C’. Since 4 is a
multiset rather than a set, actions may occur concurrently with themselves (‘autoconcurrency’).

DEFINITION. A sequence 4, - - - A, of multisets 4, eIN““ (i =1,...,n) is a step trace of an event struc-

A
ture & if there exist configurations Cy, - - - ,C, of & such that Co= & and C;—; —25C; (i =1,..,n).
StepTraces (&) denotes the set of all step traces of &.

Two event structures & and F are step trace equivalent - 6~ - if StepTraces (&)= StepTraces (%).

DEFINITION. Let & %cE. A relation R CA&)XX9) is called a step bisimulation between & and ¥ if
(3, @)eR and whenever (C,D)€R then for A eN*:

- C AQE,C’ = 3D’ with D A%gDI and (Cl,D’)ER;

- B i%D’ = 3C’ with C i>5c' and (C’,D")eR.
& and ¥ are step bisimulation equivalent - &~ 4% - if there exists a step bisimulation between them.

A trace equivalence preserving causal dependencies between action occurrences in runs of processes is
the pomset trace equivalence as implicitly employed, for instance, in PRATT [15].

DEFINITION. A partially ordered multiset (pomset) is an isomorphism class of conflict-free event struc-
tures. A pomset u is a pomset trace of an event structure & if u is the isomorphism class of & IC for
some configuration C €&(&). Pomsets (&) denotes the set of all pomset traces of &.

Two event structures & and F are pomset trace equivalent - 6=,,F - if Pomsets (6)= Pomsets ©).

Sequential traces, step traces as well as pomset traces of an event structure & represent possible (par-
tial) runs of the system represented by &. A trace of each of these three types specifies a multiset of
actions, executed during such a run. However, whereas sequential and step traces in addition only
specify a possible order in which these actions may occur (with and without the possibility of simul-
taneous occurrences), a pomset trace specifies all causal dependencies between the occurrences of
these actions, through the partial order inherited from &. From this information all the possible ord-
ers in which the actions may occur can be derived.

Like pomset trace equivalence, most of the equivalences that preserve causal dependencies between
occurrences of actions are defined by means of partial orders. Therefore, such equivalences are called
partial order equivalences. It happens that on E there is only one reasonable trace equivalence based
on partial orders - namely ~, - and the same can be said about trace equivalences based on steps
and on interleaving and about bisimulation equivalences based on steps and on interleaving. How-
ever, of late years several bisimulation equivalences based on partial orders have been defined on E:
1986: the NMS partial ordering equivalence of DEGANO, DE NICOLA & MONTANAR!I [5],

1986: the pomset bisimulation equivalence or equipollence of BOUDOL & CASTELLANI [2],

1987: the generalized pomset bisimulation equivalence of VAN GLABBEEK & VAANDRAGER [8] and

1988: the behaviour structure bisimulation equivalence of RABINOVICH & TRAKHTENBROT [16].

In my opinion only the last - and finest - one fully captures the interplay of causality and branching
and is most worthy of filling up the right upper corner of Figure 1. Originally it was defined on
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behaviour structures [16], but in [6] the notion was defined on event structures as well, under the
name history preserving bisimulation equivalence.

DEFINITION. Let &,9€E. A relation R CO&E) XAF)XP(Eg X Eg) is called a history preserving bisimula-
tion between & and 7 if (&, &, @)eR and whenever (C,D,f)€R then:

- f:C—D is an isomorphism between & [ C and 5 D;

-  C —C’ = 3D',f with D —>gD’, (C’,D’,f)eR and fIC=f,

- D =D’ = 3C,f with C —>:C’, (C",D’,f)eR and f IC=f.

& and F are history preserving bisimulation equivalent - b~,% - if there exists a history preserving
bisimulation between them.

PROPOSITION 3: For all equivalences ~, and ~, defined in this section, the formula
V6,5ek: b~ T = b9
holds iff there is a path ~, — -+ — =, in Figure 1.

ProoF: The implications follow directly from the definitions; in order to prove the absence of other
implications, it suffices to provide counterexamples against &, — ~;, ~; — ~y and ~g —> ~,.

COUNTEREXAMPLES. In the graphical representations of event structures below, the conventions of [17]
are followed: the conflict relation is denoted by means of dotted lines, only immediate conflicts - not
the inherited ones - are indicated; the causality relation is represented by arrows, omiting those deriv-
able by transitivity; and instead of events only their labels are displayed, if a label occurs twice it
represents two different events. Thus these pictures determine event structures only up to isomor-
phism.

S\ Vo
b c b c

FIGURE 3. Pomset trace equivalent but not interleaving bisimulation equivalent (standard example)

The two event structures of Figure 3 are pomset trace equivalent: their pomset traces are a—b, a—-c,
a and the empty pomset. However, they are not interleaving bisimulation equivalent: both systems
represented perform first the action @ and then either b or c, but the first system makes the choice
between b and c after the execution of @ whereas the second one starts with making this choice.

a b

FIGURE 4. Interleaving bisimulation equivalent but not step trace equivalent (standard example)

The first system represented in Figure 4 performs two actions a and b concurrently. The second one
either performs b after completion of a or vice versa. In interleaving semantics these systems are
identified. However, they are not step trace equivalent: only the first system can perform a and b
simultaneously.
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FIGURE 5. Step bisimulation equivalent but not pomset trace equivalent (new)

The two systems represented in Figure 5 are step bisimulation equivalent: both systems perform the
actions a, b and c exactly once; in both cases a is a prerequisite for b, and ¢ can happen before a,
simultaneous with @, between a and b, simultaneous with b, or after b; and in both cases all choices
between alternative courses of action are made only when one of the alternatives actually occurs.
However, they are not pomset trace equivalent: the pomset resembling the first event structure of Fig-
ure 5 is a pomset trace of this first event structure, but not of the second one. |

THEOREM: Of all equivalences mentioned in this section, only ~, and =, are preserved under action
refinement.

PrOOF: The two event structures of Figure 5 are step bisimulation equivalent. However, after refining
¢ in ¢, —c; the resulting event structures (below) are not even interleaving trace equivalent.

a Cq

— - 8

o
L)
N)
oS
o
¥

o

FIGURE 6. Refined event structures

Only the first one has a trace ¢y a b c;. This shows that no equivalence that is at least as fine as
interleaving trace equivalence and at least as coarse as step bisimulation equivalence is preserved
under refinement of actions. More counterexamples and the refinement theorems for ~,, and ~, can
be found in [6]. O

4. THE BEHAVIOUR OF CONCURRENT SYSTEMS II

A configuration of an event structure & represents a state S of the system represented by & by consid-
ering two kinds of events with respect to S: those that happened before the system reached this state
and those that did not happen (yet). I argue that when events or transitions are considered to have a
duration or structure, such configurations do not properly represent all the states of the represented
system. Instead I propose to consider a third kind of events with respect to S: those that are
currently happening when the system is in state S. This gives rise to the introduction of ST-
configurations (a name explained in the introduction).
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DEFINITION. An ST-configuration of & is a pair (C,P) of subsets of Eg, such that P CC, C is finite
and conflict-free and
e'<geeC = e’eP.

Thus both P and C are configurations and C —P contains only maximal elements in C. An ST-
configuration (C,P) represents the state of a concurrent system where C is the set of events whose
execution has been started and P (the past) is the set of events whose execution has been completed.
An ordinary configuration can be regarded as an ST-configuration with P=C. Let §(&) be the set of

ST-configurations of &. Write (C,P) —>5(C’, P’) if (C,P),(C’,P")e&(6), CCC’ and PCP’.

As in Section 2, the behaviour of a refined event structure r (&) may be deduced from the behaviour of
& and from the behaviour of the event structures which are substituted for actions.

NoTaTION. For each pair (C, P )eP(E, ) XH(E, ) with P C C, there are unique sets C,,P, CE,,
for every eepr,(é) such that C :{(e,e’)leeprl(é), e’'eC,} and P ={(e,e’)|eepr1(é), e'eP,}.
In fact C,={e’|(e,e’)eé} and Pe={e’|(e,e’)e}~’ }. Now r~1(C,P) denotes the unique pair
(C,P)eP(Eg) X F(Eg) such that C =pr (C ) and P ={eeC |P,=E,}.

LEMMA 4: Let & be an event structure and r a refinement.
i. (C,P YEXE, ) XNE, ) is an ST-configuration of r (&) iff
Cc ={(e,e)| ecC, e’'eC,} and P ={(e,e’)|e€C, e’eP,} where

(C,P) is an ST-configuration of &,
(C,,P,) is an ST-configuration of r(e) for ecC,
Pe:Er(e) iﬁ'e eP.

ii. If(C,P)—>,6(C",P" )thenr '(C,P)—>5r '(C",P").

PROOF: i. "=". Let (C, P )eS(r(6)). First I show that (C,P):=r (C, P)eS(6).
P C C by definition.
C is finite and conflict-free since C is finite and conflict-free.
Suppose d<<geeC. I have to show that deP.
Since e e C=pr( C ) there exists (e,e’)e C ;
since r(d) is non-empty there exists (d,d")€E,@);
since d<<ge one has (d,d") <, (e,e)e C;
and since (C, P ) is an ST-configuration it follows that (d,d") e PEC.
Thus deC. So it remains to be proven that P;=E, . Obviously P,CE, .
Now let d’€E, . Then (d,d)eE,s. Exactly as above one obtains (d,d)e P, and hence
d’eP,. Thus P,=E,, and deP.
Nextlet eeC. Put C,={e’|(e,e’)e C } and P,={e’|(e,e’)e P }. I show that (C,,P,)eS(r(e)).
P,CC, since P C C.
C, is finite since C is finite.
C, is conflict-free since r(e) is conflict-free.
Suppose e’<<,()e”’ €C,. Then (e,e")<,)(e,e”)e C . Hence (e,e)e P and e'eP,.
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Finally the third requirement is met by construction.
"&<". Let (C,P)ed(®) and (C,,P.)ed(r(e)) for eeC. Suppose P,=E,,) <> ecP for eeC. Put
C ={(e,e")|ecC, e’eC,}) and P ={(e,e’)|e€C, e’eP,}. 1show that (C, P )eS(r(8)).

P C C since P, CC, for ecC.

C is finite since C and C, are finite.

C is conflict-free since C =pr( C) is conflict-free.

Suppose (d,d")<,¢)(e,e) e C. Then d<geord=eNd'<,ye’.

If d<ge then deP, since eeC and (C,P)ed(6). Thus deC and P,=E,y. Since
d’'€E,4=Pz={d’|(d,d")e P } it follows that (d,d)e P .

If d=e then d’eP,= Py, since d’'<<,)e’€C, and (C,,P,)ed(r(e)). So also in this case one has
(d,d’)e P, which had to be proved.

ii. Suppose (C, P) —>,(C’, P’),ie. (C,P),(C",P')eS(r(E), C CC’ and P CP'.
Then r'(C,P), r (€', P’ )eS(®) (byi)and r'(C,P) —>5 r (C’, P’) by definition. O

I will end this section with a proposition saying that the ST-configurations of an event structure &
describe the behaviour of the represented concurrent system in the same way as the ordinary
configurations of the .?ht event structure split (&), obtained from & by splitting every action g into the
sequence of actions @™ and a —, representing the beginning and the end of a.

DEFINITION. For A a set of labels, let E(A) denote the domain of event structures labelled over A.
So E=E(Act).

A A-refinement r:Act—E(A)— {0} is a function that takes any action @ €Act into a finite, conflict-free,
non-empty event structure r(a)€E(A). So a refinement as defined in Section 1 is an Act-refinement.
If &€E and r is a A-refinement, then r(&)eE(A) is defined exactly as in Section 1.

DEFINITION.  Put Acti—{a |aeAct}U{a_ |acdct}. Let split:Act—»IE(Act”’) be the Act™-
refinement defined b)’ split(a) — {a ,a } a <J7Jhl(ll)a and Is Ixr(a)(a ) a’ ’ spllt(a)(a ) a . It
induces a function split :E(Act)—>E(Act ™). This function was introduced on Petri nets in [8], and on
event structures in [17].

PROPOSITION 4: For each event structure &€E, there exists a bijective mapping ig:3(&)—>X(split (&)), such
that for S €&(6):

S —955' 5 lg;(S) %splil(E)iE'(S,)-

PROOF: ig(C,P)={(e, (Is(e))")|eeC}U{(e, (Is(e)) ) |e€P)}. Verification of all requirements is
straightforward. O

5. EQUIVALENCE NOTIONS FOR CONCURRENT SYSTEMS 11

In this section the remaining equivalences of Figure 2 are defined in terms of ST-configurations.

The most straightforward generalization of interleaving semantics to the setting of ST-configurations
yields split semantics. Split equivalences can be defined by generahzmg the single action transition

relations —> & CE&) X&) to split transition relations —95, —)g CS(B)XS(®), for acAct and &eE.
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DEFINITION. (C,P) 54(C",P") iff (C,P) —>§(C’,P"), P’=P and C'—C = (e} with Ig(e)=a.
(C,P) 54(C",P") iff (C,P) —>§(C",P’), C'=C and P’'— P = {e} with lg(e)=a.

Here (C,P) L;E(C’,P’) says that if the system represented by & is in the state represented by (C,P),
then it may start performing an action a and reach the state represented by (C’, P").

Furthermore (C,P) L)g(C',P’) says that if the system is in the state represented by (C,P), then it
may end performing an action a and reach the state represented by (C’,P’).

DEFINITION. A sequence a; - - * a,€(Act™)" is a split trace of an event structure & if there exist ST-
configurations (Cy,Py), * - - ,(Cp, P,) of & such that (Co,Po)=(2, ) and (C;—1,P;—1) i)E;,(C,»,P,»)
(i=1, - --,n). SplitTraces (&) denotes the set of all split traces of &.

Two event structures & and ¥ are split trace equivalent - 6~,,% - if SplitTraces (&)= SplitTraces ().

DEFINITION. Let 6,5cE. A relation R CS(&)XS(9) is called a split bisimulation between & and ¥ if
((2,92),(2,2))eR and whenever ((C,P),(D,Q))€<R then for acAct™:

- (CP) D4(C",P) = 3D',Q’ with (D,Q) S«(D’,Q") and ((C',P’),(D’,Q")€ER;

- (D,Q) DD, Q) = 3IC’,P’ with (C,P) =>4(C’,P’) and ((C’,P"),(D’,Q")€R.
& and ¥ are split bisimulation equivalent - &~,,F - if there exists a split bisimulation between them.

Alternatively, split equivalences can be defined as ordinary interleaving equivalences on split event
structures, and even as step equivalences on split event structures. The following proposition says
that this yields the same trace and bisimulation equivalences as the definitions above.

PROPOSITION 5.1: & &y, §F <« split(6) =, split(9) & split(6) =~ split(9)
by T o split(6) =~y split(F) < split(b) ~g split (9).
PROOF: Let i5:5(6)—>C(split(6)) be the bijection from the previous proposition, then for S e3(6) and
acdct™: S 55" & ig(S) =D pu)is(S). Furthermore, if C,C’esplit(€)) and 4 is a multiset
over Act™ consisting of the actions a;", - - - ,a, ,by, - - - ,b,, then
a, by

A , ay b, ”
C DoieC & C g Dpir® Dpit® " —Dpi@C"

From this the proposition follows immediately. d

Split-semantics is just interleaving semantics, but based on interleaving of beginnings and ends of
action occurrences, instead of entire action occurrences. However, since different occurrences of the
same action can not be distinguished, it is in general not possible to tell when an occurrence of a*
and an occurrence of ¢~ originate from to the same occurrence of a. ST-semantics is a refinement of
split semantics, where occurrences of @ * and a ~ are explicitly connected if they represent the begin-
ning and end of the same occurrence of a.

DEFINITION. A pre-interval sequence is a triple (E,/,0) with E a set, /: E—Act a labelling function and
o a sequence over E*={e" |ecE}U{e |ecE} whose elements are all different, and which can
contain e~ only after e* (for e€E). For I: E—Act define I=: E*—Act™ by I(e")=(l(e))" and
l(e )=(l(e)) . Let(E,o0) witho=a; - - - a,€(E™)" be a pre-interval sequence and let 1<<i <j<n.
«; and «; are connected, notation o;<a;, if a;=e*’ and a;=e" for certain eeE. Now two pre-
interval sequences (E,,a; - - - a,) and (E",Z",B, - - - B,,) are isomorphic if n =m, 1™ (e;)=1""(B;) for
1<i<n, and o;<q; & B;<p,; for 1<<i <j<n. An interval sequence is an isomorphism class of pre-
interval sequences.



13

EXAMPLE: Let E = {eg,e1,ey e3,e4}, [(eg)=1(es)=b and I(e,)=I(e;)=I(e3)=a. Figure 7 shows a
pre-interval sequence over E, together with its associated interval sequence. The connectedness rela-

tion < is represented by arcs.

eq el el ey ey e; ei e3

FIGURE 7. Pre-interval sequence and interval sequence

DEFINITION. (C,P) —e:)g,(c’,P,) iff (C,P) —&(C’,P’), P’=P and C'—C ={e}.
(C,P) e%g,(C',P') iff (C,P) —>¢(C’,P’), C’=C and P'—P ={e}.

A structure (Eg,lg,a; - - - a,) is a pre-ST-trace of an event structure & if there exist ST-configurations

(Co,Po), * * * ,(Ca,P,) Of & such that (Co,P)=(2,2) and (C;1,P;-1) =>s(Ci,P) (=1, --
An ST-trace of & is an interval sequence which is the isomorphism class of a pre-ST-trace of &.

ST-Traces (&) denotes the set of all ST-traces of &.

Two event structures & and ¥ are ST-trace equivalent - 6~ g1, ¥ - if ST-Traces (6)= ST-Traces(%).

- sh).

Next I propose another characterization of ST-trace equivalence that will be more convenient later on.

DEFINITION. & Sgp, Fiff for every chain of ST-configurations
(Q’ﬂ) QE(CI’PI) 65 T QE(CmPn)
in & there is a chain

(ﬂ’g) -%@"(DI:QI) %‘fi T —ég(Dan)

in & and a bijection f :C,—D,, satisfying I(f(e)) = lg(e), f(C))=D; and f(P)=Q; fori=1, - -

PROPOSITION 5.2: 6~gp,F o (6SsnT N TSsrib).
PROOF: Write &6 < gpy Fiff for every chain

a, a a,
(2,8) =>6(C1,P) =5 -+ —>6(Cp, Pp)
in & (with a; €EZ") there is a chain

2,2) 250,00 Bs- - 540,00

in  and a bijection f :C,—D,, satisfying /5(f(e)) = lg(e), f(C;))=D; and f (P;)=Q, fori =1, - -

Furthermore write & < g7, & iff for every chain
(2,8) 2>6(C1,P)) =5 -+ =6(Cy Py)
in & (with o; €EZ") there is a chain
B B B,
(E’@) _éﬁ(Dl;QI) _2>‘5 T %“J(Dan)

in 9 such that Ig (&;) =I5 (B;) for 1<i<n, and a;<aq; & B;<B; for 1<i <j<n.
CLAIM 1: SSST'G} = 853'716}.

CLAIM 2: 6551, © 6559

CLAIM 3: 6551 F < ST-Traces (&) CST-Traces ().

- ,n.
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Now the proposition follows by combination of these claims.

Proof of claim 1: "=". Suppose 6<spF and (8, 8) —>(C1,Py) =g - -+ —>5(C,, P,) is a chain
in & with o;€EZ. Then there must be a chain (&, ) —2¢(D,Q) s —25(Dp,Qn) in &
and a bijection f :C,—D,, satisfying /5(f(e)) = Ig(e), f(C))=D; and f(P)=Q; for i=1, - - - ,n.
Because of this bijection - only considering the ‘sizes’ of D, and Q; - there must be B eEzF for
i= 1, ct,n such that (CiA],P,‘_l) £‘95(C,‘,P,').
7<=’  This follows from the observation that whenever in an event structure &
(C,P) —>¢(C’,P"), there exist ST-configurations (Co,Py), - - - ,(Cx,Py) of & and a sequence
o oue(EF) such that (Co,Po)=(GP), (Ci—1,P;—1) =>5(C,P) (i=1,-+,k), and
(Cr, P)=(C", P"). . "

Proof of claim 2: "=”. Let (2,9) —D¢ -+ ~¢(Cp,P,) and (2,0) s+ =>«(D,,0,) be
chains of ST-configurations in & and ¥ with o;€E; and B.€EF for i=1,---,n and let
f:C,—D, be a bijection, satisfying I5(f(e)) = lg(e), f(C)=D; and f(P)=Q; for i=1, - - - ,n.
Since f(C;)=D; and f(P;)=Q; it follows that ao=e” o B;=f(e)" and ¢;=e” & Bi=f(e)”

fori=1, - - - ,n. Hence lg (o;)=I5 (B;) for 1<i<n, and a;<q; & B;<p; for 1<i <j<n.
v Let (8,2) 25 5(C1LPy) B¢ 6(C,Py) and (2,2) D5 B54D,,0,) be
chains of ST-configurations in & and ¥ with a;€E and B;€EsF for i=1, - --,n such that

I (@)=l (B) for 1<i<n, and a;<a; & B;<pf;, for I1<i<j<n. Note that
C,={e€Eg|3j<i:a;=e"} and P;={ecEg|3j<i:a;=e } and similarly for D; and Q,.
Define f:C,—D, by f(e)=d < Ji<n: (;=e™ A B;=d™). Since I (a;)=IF (B;) for 1<i<n,
f is well-defined and bijective, and satisfies /g(f(e)) = ls(e) and f(C)=D; for i=1, - - - ,n.
Finally eeP, & 3k<j<i:(y=e’ Noy=e ) & Ik<j<i:(B=f(e)" N (using
o=<a; e B<B) Bi=f()) & flOe@  sof(P)=Qfori=1,---,n.

Finally claim 3 follows directly from the definitions. a

ST-bisimulation equivalence will be defined in the same style as the alternative characterization of
ST-trace equivalence. The connection of occurrences of a* and a~ that represent the beginning and
end of the same occurrence of a is implemented by means of a bijection between related ST-
configurations.

DEFINITION. Let &6,9€cE. A relation R CS(E) XS(F) X P(Eg X Eg) is called an ST-bisimulation between
& and Fif (2, 2),(2, @), 2)eR and whenever ((C,P),(D,0),f)eR then:

- f:C—D is a bijection, satisfying /5(f(e)) = lg(e) and f (P)=Q;

- (C,P) =>(C’,P") = 3D’,Q’,f with (D,Q) —>s(D",Q"), (C',P),(D’,Q),f)ER and f I C=f,

- (D,Q) =>«D’,Q") = 3IC',P',f with (C,P) —&(C",P"), (C",P"),(D",Q"),/)eR and f' [ C=F.
& and F are ST-bisimulation equivalent - 6~ g1, F - if there exists an ST-bisimulation between them.

Remark that the same equivalence is obtained if in the definition above the general transition rela-

tions —> are replaced by the split transition relations -2 for acAct™. One direction follows from
the requirements for the bijection f; the other one follows as in the proof of Proposition 5.2. Analo-
gously, in [6] it was shown that the definition of history preserving bisimulation equivalence is invari-

ant under replacement of the general transition relations —> by the single action transition relations

> for acAct. Now it is not difficult to show that if in this version of the definition of ST-
bisimulation equivalence the requirement f (P)=Q would be skipped, the resulting equivalence would
be split bisimulation equivalence again. This requirement ensures the connection of occurrences of

a” and a originating from the same occurrence of a.
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As for split equivalences, the ST-equivalences can be defined alternatively by means of split event
structures. First some preliminary definitions.

DEFINITION. For 6eE(Act ™), define the connectedness relation <g CEg X Eg by

e’<ge iff Ig(e)=a  for certain aeAct and for deEg: (d <ge & d<ge').

DEFINITION. Write C =>¢C’ iff C —>zC’ and C’—C ={e}. A sequence a; - - - a,€E} is a pre-
trace of an event structure &eE(4ct ™) if there exist configurations Cy, - - - ,C, of & such that Cy= &
and C;_, -a—’)gC,- (i=1,---,n. Two pre-traces a; ---a, and B;---B, of & and ¥ are <-
isomorphic if n =m, lg(a;)=1(B;) for 1<i<n, and o;<ga; & B;<gp; for 1<i <j<n. A <-trace of
& is the isomorphism class of a pre-trace of &. <-Traces (&) denotes the set of all <-traces of 6. Two
event structures & and FeE(Act ™) are <-trace equivalent - 6~ _,% - if <-Traces (&)= <-Traces(%).

DEFINITION. Let &,cE(Act™). A relation R CAE)XCAF)XP(EgX Eg) is called a <-bisimulation
between & and ¥ if (&, @, @)eR and whenever (C,D,f)€eR then:

- f:C—D is a bijection, satisfying /5(f(e)) = Is(e) and f(e) <5 f(e") & e <z €',
- C —C’ = 3D',f with D —¢D’, (C',D’,f)eR and ' C=f;

- D —>¢D’ = 3IC,f with C —>3C’, (C",D’,f)eR and f' I C=F.
& and 7 are <-bisimulation equivalent - 6=~ ¥ - if there exists a <-bisimulation between them.

PROPOSITION 5.3: & ~gp, F < split(b) ~ <, split(9)

& ~gp T o split(b) ~<p split(9).
ProOF: For 6€E define i:Eg —Eg @ by i(e")=(e, (Ig(e))") and i(e )=(e, (/s(e))"). Now the
bijections ig:5(6)—C(split (5)) from Proposition 4 satisfy for S €5(6) and acEg:

’ . i(a) .
S 568" & i5(S) B pu)is(S).

Hence a; - * - a, €(Eg )" (actually (Eg,l5,0) with 6=a; - - - a,) is a pre-ST-trace of an event structure
& iff i(ay) - - i(a,,)eE:?,,-,(g) is a pre-trace of split(&). Furthermore two pre-ST-traces a; - - - a, and
Bi - - - B, of & are isomorphic iff i(a;) - - - i(a,) and i(By) - - - i(B,,) are <-isomorphic. Thus <-
Traces (split (§)) is derivable from ST-Traces (&) and vice versa. From this the first statement of the
proposition follows.

As for the second statement, let &,F€E.

RE,9) = {((CP),(D,0).f)ESEO)XHF) XNEg X Eg) |
f:C—D is a bijection, satisfying /5(f(e)) = lg(e) and f(P)=Q}.
For (S,7.f) and (S, T",/) €R(6,9) write (S,T,f) —> (S, T',f)if S =S, T —>5T", and f rc=f.
@bsplit(é;’g) = {(C’D,f)ee(split (@)X@(SPI” (G‘D)X@(Esplft(&?) XEsplit(fr))l
f:C—D is a bijection, satisfying Is(f(e)) = Is(e) and f(e) <g f(e) & e <g e€'}.
For (C,D,f) and (C',D’,f) €Ryyis(6,9) write (C,D,f) —> (C',.D",f") if C =244t C’s D —giirD’,
and ' 1C=f. Define i :RUb,5) >Ry (6,9 by i(S, T./)=(g(S),i(T),i(f)) where iz and i are the

bijections from Proposition 4 and i(f):ig(S)—>i(T) is defined by i(f)(ea )=(f(e),a™) and
i(f)ea )=(f(e),a ). Now it is not difficult to establish that i is a bijection, satisfying

(S, T.f) = (S, T.f) « i(S,T.f) = i(S,T,/).

From this it follows that R CA(&,%) is an ST-bisimulation between & and ¥ iff
i(R)={i(S,T,/)|(S,T.f)eR} CRypi(6,9) is a <-bisimulation between split (&) and split (9). O
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PROPOSITION 5.4: For all equivalences ~ and ~, on E defined so far, the formula

V6,5ckE: b~ F = b6~,F
holds iff there is a path =~ — - - — = in Figure 2.
PrROOF: In order to prove the announced implications, it suffices to restrict attention to the ones
corresponding with an arrow ~; — ~, in Figure 2. Five of them are dealt with in Proposition 3
already. In order to prove the implications ~; — =, and ~y — ~g, consider, for &6<E, the map-
ping j:A6)—>8(&) defined by j(C)=(C,C). Note that j is a well-defined injection with
range(j)={(C,P)eS(&)| C =P}. Now for Ce@{), A a multiset over act, and a, * - - a,EAct an arbi-
trary enumeration of 4, it is easily obtained that

AC: C 450 A J(C)=(ST) & J(©) Dg--- g Dp oo DS,

From this the required implications follow immediately. In order to prove the remaining six implica-
tions, first consider the implications between equivalences on E(Act ™) displayed in Figure 8.

X - N p€

h

S ——

[

R <

R

pt
FIGURE 8. Some semantic equivalences on E(Act™)

These implications follow immediately from the definitions. The proofs in [6] that =, and =, are
preserved under refinement can be trivially extended to a setting with A-refinements for any labelling
set A. So it follows that

&~y § = split(6) ~, split(5) and & ~; § = split(6) = split (9).

Now the remaining six implications on E(A4c?) follow from Propositions 5.1 and 5.3.

In order to prove the absence of other implications, it suffices to provide counterexamples against
Rop > Ry, Rjp = Ry, Ny — Ny, Ry — gy and ~gp — ~p. The first two counterexamples
where given already in Section 3. For the third counterexample consider the two event structures of
Figure 5. In Section 3 it was established already that they are step bisimulation equivalent. Further-
more they are not split trace equivalent, since a® ¢ a~ b™ ¢~ b is a split trace of the first one
but not of the second one.

FIGURE 9. ST-bisimulation equivalent but not pomset trace equivalent
(A variant of Example 7.1.2.a.ii of [8]).

The fourth counterexample will be provided in [9]. For the last counterexample consider the two sys-
tems represented in Figure 9. Both systems perform the actions a and b exactly once. In the first
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system these actions can only be independent, whereas in the second one b can be executed either
dependent or independent of a. The difference between the two systems does not occur before (and
unless) they reach a state where the execution of a is completed and the execution of b is not yet
begun. However, in this state both systems have exactly the same future, consisting of exactly one
occurrence of b. Hence they are identified in ST-bisimulation semantics. On the other hand the
pomset a—b is a pomset trace of the second system, but not of the first. So the two systems are not
pomset trace equivalent. This example also shows that ST-semantics does not respect causality. a

6. THE REFINEMENT THEOREMS
Finally I will prove the announced refinement theorems for ST-semantics. In VAN GLABBEEK &
VAANDRAGER [9] it will be shown that such a theorem does not hold for split semantics.

THEOREM: Let 6,F5<E and r be a refinement. Then & ~gp, § = r(6) ~gpp r(%).

PROOF: Let R CS(Eg) XS(Eg) XP(Eg X Eg) be an ST-bisimulation between & and 9. Define the rela-

tion R by:

R ={(C,P)(D, Q) f)eSNE,@5)XNE,@5)XPE, s XE,g) | I(C,P),(D,Q).f)eR
such that r~1(C, P)=(C,P), r /(D ,Q)=(D,Q)
and f:C —D is a bijection, satisfying f (e,e”)=(f (¢),e’) and f(P)= 0 ).

I show that R is an ST-bisimulation between r (&) and r ().

i. ((2,92),(9,9),2)eR since (2,2),(2,9),2)eR.

ii. Suppose (C,P),(D,Q),f)eR. Take ((C,P),(D,Q).f)€R such that r~'(C,P)=(CP),
r"Y(D,0)=(D,Q)and f:C — D is a bijection, satisfying f (e,e’)=(f (¢),¢’) and f(P)= Q.
Now three things have to be established:

1. f:C—D is a bijection, satisfying /. (f (e,¢") = g (e,e’) and f(P)=Q .
2. (C,P)—>,(C",P) = 3D’ ,Q',f with (D,Q) —>,g(D’",Q"),
(€', P)(D',Q).f)eR and f I C=7].
3. (D,0),(D',0") = 3C P, f with(C,P) —>,6(C", P"),
(C",P")(D",Q"),f)eR and f I C=F.
ad 1. By construction f:C — D is a bijection, satisfying f(P)=0.
Moreover /. (f (e,€") = Lg(f(e)e) = LagenE) = Laeye) = Lelee).
ad2.  Suppose (C,P) —>,5(C", P’), ie (C', P )es(r(&), C cC’ and P CP’.
Let (C",P)=r"'(C’, P’). Using Lemma 4.ii, (C,P) —>3(C’,P’). Since R is an ST-
bisimulation, 3D’,Q’,f* with (D,Q) —>«(D",Q"), (C',P"),(D’,Q"),f)€R and f I C=f.
Let D’ ={(f'(e).e")|(e,eNe C" },
Q" ={(f(e),e")|(e,e’)e P’ } and
f ={(ee)(fe).e)|(ee)eC’ ).
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ad 3.

For eeprl(é’ ) let C.={e’|(e,e)) e c } and P,={e’|(e,e)E Py

for depr (D’ ) let D,={e’|(d,e’)e D’ } and Q;={e’|(d,e)e Q' }.

Remark that Qp()={e’|(f(e),e") e 0’ }={¢’|(e,e")e P’ } =P, and similarly Dy, =C,.
I prove that (D, Q) —>,(D’,Q’), (€', ' ),(D",0’),f)eR and f I C =7.

I start with proving that (D’ , Q' )eS(r(9).
pri(D")={f(e)|eepri(C’)}=f(C)=D’ ¢
so D’ ={(d,e")|deD’, e’eD,} and Q' =((d,e")|deD’, e'€Qy}.
Using Lemma 4., it is then sufficient to show that

(D’,Q") is an ST-configuration of %,
(D4, Qy) is an ST-configuration of r(/¢(d)) for deD’,
Q4= E, 4y if deQ’. (#))]

The first requirement is already implicit in (D,Q) —>#(D’,Q").

Since D’=f(C’) one may substitute f’(¢) for d and eeC’ for deD’ in the
remaining two requirements.

Since D)= Ce, Qpe)=Pe, Is(f'(€)) = I5(e) and Q'=f(P’) they reduce to

(C,,P,) is an ST-configuration of r(/5(e)) for eeC’ and
Pe:Er(IE,(e)) iff ecP’.

These follow from Lemma 4.i, using that (C’, P’ )es(r(6)
and r "'(C’, P’ )=(C",P).
Hence (D’ , Q" ) eS(r (9)).
Now (1) and (2) above say that D’=pr1(ﬁ’ )and Q’'={deD’|Q;=E, gy}
Hence r (D’ , 0’ )=(D",Q"). It follows that (C’, P’ ),(D’,Q’),f )eR.
Finally / 1 C =f, D c D’ and Q C Q' by construction, using that " [ C=/.
With (D', Q" )eS(r(9)), it follows that (D, Q) —>,(D’, Q")
By symmetry. O

THEOREM: Let 6,5k and r be a refinement. Then & ~s;, § = r(b) ~gp, r(9).

PROOF: It suffices to proof & Sgp, T = 7(6) Ssrr r(9), so let 6,5k with 6<s1,F and let 7 be a
refinement. Suppose in (&) there is a chain of ST-configurations

(2,2) =.6(C1,P1) =26 —2@(Cn s Pn)

By Lemma 4.ii there is a chain of ST-configurations

(2,9) =6(C1,P1) =25 - —26(Cy, Pr)

in & with (C,,P,)=r (C,,P; ) fori=1, - - - ,n. Hence there must be a chain

(8,2) =2dD1,Q1) 5 —>5(Dn, On)

in 9 and a bijection f :C,—D,, satisfying l5(f(e)) = lg(e), f(C;)=D; and f (P;)=Q; fori=1, - - - ,n.
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Let D, ={(f(e).e)|(e.eNeC; },
0: ={(f (e),e")|(e,e)) € P; } and
7 ={(e.e)(f ()& | (e,e)e C, ).

It remains to be shown that
(2,2) —=,5(D1,01) @ " —>@(Dn,0n)

is a chain of ST-configurations in r(%) and f:C,—>D, is a bijection satisfying
Lo (f(e) = Lglee), f(C)=D; and f(P;)=Q; fori=1, - -,n. The only nontrivial part of
this consist of proving that ( D;,0,)eS(r@)) for i=1, - - - ,n. This goes exactly as in the previous
proof. d

CONCLUDING REMARKS

In this paper ten semantic equivalences for concurrent systems are defined on a domain of labelled
event structures, and their interdependencies are classified as indicated in Figure 2 of the introduc-
tion. It has been established - in [4,6] and [9] respectively - that interleaving, step and split
equivalences are strictly based on action atomicity. In particular, the owl example of [9] shows that
no equivalence that can be localized between split bisimulation and interleaving trace equivalence is
preserved under refinement of actions. On the other hand it has been shown - in [4] and [6] - that the
two partial order equivalences of Figure 2 are preserved under action refinement and thus need not to
be based on action atomicity. Now this paper added that also ST-trace and ST-bisimulation
equivalence are preserved under refinement. So the borderline is between split and ST-semantics.

It should be remarked that at all places where split semantics was used before it was studied for a
restricted class of concurrent systems (Petri nets without autoconcurrency in [8], a subset of CCS in
[1,10] and deterministic event structures in [17]) on which it coincides with ST-semantics. The exam-
ples of [9] suggest that outside such a class, split semantics is not an interesting notion. The reason
for mentioning it in this paper is that it seems to be a natural simplification of ST-semantics and in
order to indicate that for the purposes of this paper this simplification should not be made.

The refinement operation considered in this paper replaced actions by finite, conflict-free, non-
empty event structures. As remarked earlier, a generalization to infinite refinements, leaving all
definitions the same, is incompatible with the principle of finite causes: try to refine a in

a —= b by a, —e a, —» a; —»

If one would drop this principle, there are (at least) two possibilities of interpreting event structures:
events which have an infinite set of causes can happen in a finite time, or they can not. The last
interpretation is slightly simpler to grasp, more common, and compatible with the view of this paper,
in which the behaviour of concurrent systems - together with all semantic equivalences - is explained
in terms of finite configurations (or ST-configurations) only. Using this interpretation any ‘general-
ized’ event structure can be transformed in an ordinary event structure satisfying the principle of
finite causes, by removing all events that have infinitely many causes. A transformed event structure
and its original are equivalent with respect to all equivalences of Figure 2. On the domain of ‘gen-
eralized’ event structures one may drop the restriction that refinements need to be finite, and all
theorems and definitions of this paper remain valid. In fact also all proofs remain valid, since (except
in the proof of Proposition 1.i) the principle of finite causes is never used. However, it can be argued
that infinite refinements change the behaviour of the considered systems in a way that cannot be
explained by a change in the level of abstraction at which processes are regarded: consider a system
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performing the actions a and b one time each, where the occurrence of b is dependent of the
occurrence of a (as depicted above); after replacement of a by an infinite event structure, b cannot
happen any more; it occurs in no (finite) configuration. Finally notice that it is also possible to
describe this type of refinement on the domain of event structures of Section 1 (that is: satisfying the
principle of finite causes), by adding to the definition of refinement that after refinement in the sense
of Section 1, events with infinitely many causes should be left out.

A generalization to refinements containing conflicts can be obtained analogously as the above gen-
eralization to infinite refinements, but is technically more complicated. On the domain of event struc-
tures used in this paper, refinements with conflicts are incompatible with the principle of conflict
heredity: try to replace a in

a — b by ay oo a,.

This problem can be solved by moving to a more general form of event structures where the axiom of
conflict heredity is dropped, e.g. flow event structures [3]. This will be done in VAN GLABBEEK &
GoLtz [7], where we define a refinement operator for any function r:4ct—E — {0}, thus allowing both
infinite refinements and refinements with conflicts. I expect that after this generalization all my
theorems remain valid. Each flow event structure is equivalent to an event structure in the sense of
Section 1 (with respect to any of the equivalences of Figure 2). Hence an alternative solution consists
of appending to the definition of refinement some transformation that turns the refined event struc-
ture into an equivalent event structure in the sense of Section 1.

Contrary to the previous generalization, a generalization of the refinement operator to forgetful
refinements, where replacing actions by the empty event structure is allowed, does not seem very
natural. Such refinements can drastically change the behaviour of concurrent systems and can not be
explained by a change in the level of abstraction at which these systems are regarded [7]. Moreover,
unlike the refinement theorems for partial order semantics [6], the refinement theorem for ST-
bisimulation semantics does not hold for forgetful refinements, as is demonstrated by the following
counterexample.

SR

The two event structures above are ST-bisimulation equivalent. However, after replacing a by the
empty event structure, the resulting event structures (below) are not ST-bisimulation equivalent.

The refinement theorems for ST-semantics show that in case preservation under refinement is
required, it is not necessary to employ partial order semantics. From this the natural question arises
if it is necessary to employ at least ST-semantics, i.e. if any equivalence finer then a given interleaving
equivalence that is preserved under refinement is also finer then some ST-equivalence. Let ~, be an
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equivalence on E. Define ~,, by
&b ~, 9 iff for all refinements 7:Act—E — {0} one has r(&) ~, r(9).

Then, ~,, is finer then ~, and preserved under refinement. Moreover it is coarser then any other
equivalence with these properties. In other words, ~,, is fully abstract with respect to ~, and
refinement. Of course the definition above is parametrized by the concept of refinement. Let ~,, be
defined under reference to general refinements r:Act—[E — {0}, to be elaborated as sketched above;
and let ~,,, be defined under reference to refinements as defined in Section 1. Then I conjecture that
~ g coincides with =, i.e. ST-bisimulation equivalence is fully abstract with respect to interleav-
ing bisimulation equivalence and action refinement, and also ~gy, coincides with ~ . To be more
precise, let r. be the refinement that replaces actions a eAct by

ar ....... a;— ....... a; .......
a ay az

Then I think that & ~gp, § < r.(6) =, r.(9) and likewise & ~gp, T & r.(b) ~; r.(9), from which
the conjecture follows. Furthermore, together with Walter Vogler I observed that for finite event
structures ~gp, even coincides with ~,;,. On the other hand =, is strictly coarser then =, as
follows from an example in LARSEN [12], see also [9].

Topics for further research include

- generalizing the refinement operator to infinite refinements and refinements with conflicts, as
indicated above (this will be done in [7]),

- defining refinement on other models of concurrency, such as Petri nets, and establishing the
correspondence with refinements on event structures (cf. [7]),

- defining ‘syntactic refinement’ (replacing action symbols by terms in process expressions) on pro-
cess specification languages, investigating the interaction with communication, proving syntactic
refinement theorems and establishing the correspondence with ‘semantic refinement’, as employed
in this paper (cf. [1, 8, 12, 13]),

- proving the full abstraction results conjectured above,

- proving refinement theorems and full abstraction results for the ST-versions of decorated trace
semantics - for failure semantics this has been done already in VOGLER [18] in a setting of Petri
nets, and for a variant of trace semantics, in the absence of autoconcurrency, modelling a process
as a set of semiwords, this has been done in NIELSEN, ENGBERG & LARSEN [13] and LARSEN [12]

- and generalizing the entire theory to a setting with silent actions, or T-moves.
PRATT [15] and CASTELLANO, DE MICHELIS & POMELLO [4] use the issue of action atomicity as an
argument for using partial order semantics instead of interleaving semantics. This paper shows that it
is not necessary to employ partial order semantics if one does not want to assume action atomicity;
ST-semantics turns out to be sufficient. In VAN GLABBEEK & VAANDRAGER [8] we introduced the
(related) criterion of real-time consistency. A semantics is real-time consistent if it does not identify
systems with a different real-time behaviour. Of course interleaving semantics are not real-time con-
sistent, but again the criterion did not force us to consider partial order semantics: also for this pur-
pose ST-bisimulation semantics turned out to be sufficient. Therefore the question remains whether
or not there exists a convincing testing scenario, or some natural operator, that reveals the full distin-
guishing power of partial order semantics.
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