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Iterated Rimge-Kutta Methods on Parallel Computers

P.J. van der Houwen & B.P. Sommeijer

Centre for Mathematics and Computer Science
Post box 4079, 1009 AB Amsterdam, The Netherlands

In this paper, we study diagonally implicit iteration methods for solving implicit Runge-Kutta methods
with high stage order on parallel computers. These iteration methods are such that after a finite number of
m iterations, the iterated Runge-Kutta method belongs to the class of diagonally implicit Runge-Kutta
methods (DIRK methods) using mk implicit stages where k is the number of stages of the generating
implicit Runge-Kutta method (corrector method). However, a large number of the stages of this DIRK
method can be computed in parallel, so that the number of stages that have to be computed sequentially is
only m. The iteration parameters of the method are tuned in such a way that we get fast convergence to
the stability characteristics of the corrector method. By means of numerical experiments we show that
also the solution produced by the resulting iteration method converges rapidly to the corrector solution so
that both stability and accuracy characteristics are comparable with those of the corrector. This implies
that the reduced accuracy often shown when integrating stiff problems by means of DIRK methods already
available in the literature (which is caused by a low stage order), is not shown by the DIRK methods
developed in this paper provided that the corrector method has a sufficiently high stage order. Moreover,
by iterating e.g. Radau correctors, we can construct methods of any order, whereas the order of accuracy of
the conventionally constructed DIRK methods is limited to four.

1980 Mathematics Subject Classification: 65M10, 65M20
1982 CR Categories: 5.17
Key Words and Phrases: Diagonally implicit Runge-Kutta methods, parallelism, stability.

1. Introduction
1.1. Runge-Kutta methods

Suppose that we want to solve stiff initial-value problems for systems of first-order, ordinary differential
equations (ODEs), i.e.,

(1.1) %L ft, y(©), yto)=yo, y:R—-o>RYI, f:Rx RI R4,

by means of a Runge-Kutta (RK) method. Then the stiffness of the problem requires that the RK method should be
sufficiently stable, preferably A-stable, and therefore implicit. This leads us to fully implicit RK methods (IRK
methods) in which the Butcher array

c A
12 ‘l ------ ,

has a full A matrix. Most widely used are the IRK methods based on Gaussian quadrature formulas (such as Gauss-
Legendre, Lobatto and Radau methods), which are known to be A-stable for any order of accuracy. However, the high
degree of implicitness of these methods implies that solving the implicit relations is rather costly. In general, a k-stage
IRK method (that is, b and c are k-dimensional vectors and A is a k-by-k matrix) requires in each step the solution of a
system of dimension kd, so that the computational complexity is of order (kd)3. This compares unfavourably with
implicit linear multistep methods which require in each step the solution of a system of dimension d.

In order to reduce the computational labour involved when using implicit RK methods, one has proposed
diagonally implicit RK methods (DIRK methods) possessing a lower triangular A matrix and therefore requiring (in
general) in each step the solution of k systems of dimension d. Hence, the computational complexity is now of order
kd3 instead of order (kd)3. Unfortunately, the price we have to pay for the less expensive DIRK methods is a
considerable drop in accuracy in many stiff problems. This is caused by the phenomenon of order reduction which
reduces the observed order of RK methods to their stage order (or their stage order plus one). Most DIRK methods are
particularly sensitive to order reduction because their stage order is only one or two, which is much smaller than for k-
stage Gauss-Legendre, Lobatto IIIA and Radau ITA methods which have all stage order k.

An alternative for the DIRK methods are the singly implicit RK methods (SIRK methods) of Butcher which
possess a high stage order and, like DIRK methods, are only diagonally implicit. However, they require, additionally, in
each step special transformations so that the total costs per step are considerably higher than for DIRK methods.
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Yet another possibility is the use of parallel processors. In this paper, we shall show that on parallel computers
the fully implicit relations associated with IRK methods can be solved efficiently by using the highly parallelizable
iteration methods of diagonally implicit type proposed in van der Houwen et al. [9]. This brings us back to using IRK
methods as corrector method instead of using DIRK or SIRK methods. In particular, we shall concentrate on iterating
IRK methods possessing high stage orders.

1.2. IRK methods with high stage orders

Most IRK methods are designed in such a way that they have a high order at the step points. However, as already
remarked above, a high order at step points is often spoiled by order reduction, so that it seems more natural to look for
IRK methods with as high a stage order as possible. In order to achieve this, we shall consider (k+1)-stage IRK methods
of the type

o] o oT
c a A

(1.3) ,
| bo T

where by is a scalar, a, b and ¢ are k-dimensional vectors, and A is again a k-by-k matrix. IRK methods of this type
have roughly the same computational complexity as the IRK methods of type (1.2), but they possess the additional
parameter vector a which can be used for increasing the stage order. To see that (1.2) and (1.3) are (almost) equally
expensive, let us assume (for simplicity of notation) that (1.1) is a scalar problem (i.e., d=1), and let us introduce the
vectors

Yn+1 = ()’n,l, (LA ] Yn.k)T’ = (C], sy Ck)T!

where yp, ; denotes a numerical approximation to the exact solution value y(ty+cih), h being the stepsize. Then we can
write (1.3) in the form

(13)  Yns1 - hAf(etn + ch, Yny1) = eyn + haf(tn, Yn),  Yn+1 = Yn + hbof(tn, yn) + hbTf(etn + ch, Yn41).

Here, e is the vector with unit entries, and we used the convention that for any given vectors v=(v;) and t=(t;), f(t,v)
denotes the vector with entries f(tj,v;). If bo=0 and a=0, then it follows from (1.3") that (1.3) reduces to (1.2), so that in
each step the computational complex1ty of (1.2) and (1.3) differ by the evaluation of f(tn,yn) but both methods require
the solution of a system of dimension kd. Since the bulk of the computational effort goes in solving this system, the
methods (1.2) and (1.3) may be considered as equally expensive.

The vectors Yp4+1 and ¢ will respectively be called the stage vector and the block point vector, and the points t,
and ty+cjh will respectively be called step points and block points. The minimal order achieved at the block points and
step pomts are respectively the stage order and step point order.

If the method parameters are chosen in such a way that the stage order is as large as possible with ¢ arbitrary,
then (1.3) is equivalent to the IRK method derived from Lagrange quadrature formulas and will be called a Lagrange
method. If c;=j/k, then Lagrange methods reduce to the Newton-Cotes methods studied in Watts and Shampine [17], and
if the components of ¢ equal the Lobatto quadrature points, then they reduce to the Lobatto IIIA methods. However,
Newton-Cotes and Lobatto IIIA methods are only (weakly) A-stable. It is our aim to construct Lagrange methods with
better stability properties than Newton-Cotes and Lobatto IIIA methods, i.e., strongly A-stable methods.

An important family of IRK methods are the so-called stiffly accurate methods (cf. Alexander [1]). If the IRK
method is of the form (1.3), then this family is obtained by setting

(1.4) bo=exla, bl =eTA, cx=1,

where ey is the kth unit vector. Notice that, when represented by their Butcher array (1.3), the last row in (1.3) equals
the preceding one. It was shown by Hairer et al. [7] that this property implies that for certain classes of stiff problems
the method does not suffer the effect of order reduction. Examples of stiffly accurate IRK methods are the Lobatto IIIA,
Radau ITA and Newton-Cotes methods.

1.3. Diagonally implicit iteration of IRK methods

After a finite number of m iterations of the implicit relation for Y41 given in (1.3") by the aforementioned
diagonally implicit iteration process (or briefly diagonal iteration), the resulting scheme actually is an (mk+1)-stage
DIRK method. One of these stages is explicit and the other mk stages are of diagonally implicit form. However, a large
number of these mk implicit stages can be computed in parallel, resulting in a process where only m stages have to be
computed sequentially.

The iteration parameters of the method can be tuned in such a way that we get fast convergence to the stability
characteristics of the corrector method, provided that the corrector is stiffly accurate (in Section 3.3.1, we will show that
the diagonal iteration of the type employed in this paper is not suitable for iterating nonstiffly accurate correctors).

Secondly, it turned out that the iterated methods based on strongly A-stable correctors (such as the Radau IIA
correctors and the Lagrange correctors derived in Section 4) are within a few iterations strongly A-stable themselves. It



is highly unlikely that this nice property is shared by the methods based on (weakly) A-stable IRK correctors because
the stability function of the iterated methods should converge to a (weakly) A-acceptable function. In fact, for a number
of Newton-Cotes and Lobatto IIIA correctors it was checked that the stability function becomes A-acceptable only after
an infinite number of iterations.

Finally, numerical experiments reveal that the drop in accuracy, exhibited by the conventionally constructed
DIRK methods for many stiff problems, is not shown by the DIRK methods constructed by diagonal iteration. In a
forthcoming paper it is intended to present a theoretical analysis of this phenomenon using the error analysis proposed
in Burrage [2].

2. Accuracy and Stability of the Corrector
In the the following two subsections, we discuss the stage order, step point order, and stability of the corrector
equation (1.3").

2.1. Stageorder

Let Y(tn+1) denote the vector with components y(ty+c;h) where y is the locally exact solution of (1.1) satisfying
y(tn)=yn, then, following Butcher [3], (1.3") is said to have stage order r if the residual left upon substitution of
Y(tn+1) into the formula for Yy 41 is of order r+1 in h, i.e.,

(PA)) Y(tn+1) - hAf(ety + ch, Y(tn+1)) - €yn - haf(ty, yn) = O(*1).
The stage-order conditions for (1.3") are straightforwardly derived (cf. [16]) and are given by
(22 Cj=0,j=1,..5 Ci:=a+Ae-¢; Cj:=jAdl-d, j=2,3,...

Thus, to achieve stage order r for a given block point vector ¢, we have to solve rk linear equations in k2+k unknowns,
so that the maximal stage order equals k+1. The corresponding methods will be called Lagrange methods.

2.2. Step point order
Consider the formula for y+1 given in (1.3"):

2.3) Yn+1 = ¥n + hbof(ty, yn) + hbTf(ety + ch, Yne1)-

Since Yn+1 approximates Y (tn+1) with (local) order r+1, r being the stage order (cf. (2.1)), we can derive that y,,1 has
(at least) order p=min{r+1,q} if the conditions

(2.4) Dj=0, j=1,.,q Dj:=bg+bTe-1; Dj:=jbTci-l-1, j=2,3,..
are satisfied. We remark that p may be larger than min{r+1,q} if the methods possesses the property of so-called

'superconvergence' which for example is the case in Gauss, Radau and Lobatto methods. The error constant of (2.3) is
given by

_Dgr1 _ (q+1)bTed-1
@3 B =Enr = T g

Assuming that ¢ is given, the conditions (2.4) present a linear system of q equations in k+1 unknowns, so that
by setting g=k+1 we achieve at least step point order p=min{r+1,k+1} for any block point vector c.

As already observed in the introduction, the usual approach in exploiting the vector ¢ is the maximization of the
step point order (to obtain 'superconvergence'). Alternatively, one may use ¢ for improving the stability of the method
or for the minimization of error constants. In this paper, we shall use ¢ for achieving strong A-stability.

In the special case of stiffly accurate methods satisfying condition (1.4), yn+1 equals the last component of Yo+
so that the step point order p is also at least the stage order r, but is sometimes higher. For instance, the Newton-Cotes
methods have stage order k+1 and, if k is even, step point order k+2.

2.3. Stability
By applying (1.3") to the test equation y'=Ay, we are led to recursions of the form

(2.6) Yo =1I- zA]1[e + zalyn, Yn+1 = (1 + bpz)yn + szYn+1, z = \h.
Hence,

Q.7 Yn+1 =R@yn, R(2):=1+boz + zbT[I - zA] 1[e + za].



R(z) is called the stability function of the one-step method. In the special case of stiffly accurate methods where (1.4) is
satisfied, (2.7) reduces to

28)  Ynt1=R@yn, R(@) :=ex [I-zA][e +za).

We observe that by applying Cramer's rule, the stability functions (2.7) and (2.8) can respectively be rewritten in the
form

. det[I - zA + (e + za)bT] _ det(l - zA + (e + za)eg ]
29 R@:=1+@®p-z+z dotll - zA] , R@:=-1+ dotll - ZA]

The stability region of the method is defined by the region where R is bounded by 1. In the case of the Newton-
Cotes methods where the components of ¢ are equally spaced, it was shown in Watts and Shampine [17] that they are A-
stable for k<8 (but they are not for k=9 and k=10).

We conclude this section by summarizing in Table 2.1 the characteristics of a number of correctors available in
the literature. In this table, it is assumed that the IRK method is presented in the form (1.3"), so that for all methods
listed the dimension of the implicit relation to be solved equals kd, d being the dimension of the system of ODEs.

Table 2.1. Summary of characteristics of IRK methods.

Method Stages Orderp Stageorderr Stability Stiffly accurate Reference
Gauss-Legendre k 2k k A-stable for all k no Butcher [3]

Lobatto ITIA k+1 2k k+1 A-stable for all k yes Dekker and Verwer [5]
Radau ITA k 2k-1 k L-stable for all k yes Butcher [3]
Newton-Cotes k+1 2[(k+2)2] k+1 A-stable for k<8 yes Watts and Shampine [17].
Lagrange k+1 k+1 k+1 Strongly A-stable yes For k<4 see Section 4

3. Diagonal Iteration
We shall use a diagonal iteration method to solve the stage vector Y41 from the fully implicit (corrector)
equation defined in (1.3"). For scalar differential equations, the iteration method reads

Y - hDf(et,, + ch, Y()) = ye + haf(ty, yn) + h[A - D] f(t0), Y(O)),
(3.1a) ) ) .
Y - hDf(et, + ch, YO)) = ype + haf(ty, yn) + h[A - D] fet, + ch, Y4-D), j=2,3,..,

where (t(9),Y(0)) is an initial approximation to (ety+ch,Y,4+1) and D is a free diagonal matrix. If m iterations are
performed, then yn41 is defined by

(3.1b)  Yn+1 = ¥n + hbof(tn, yn) + hbTf(etn + ch, Y(W) or yq41 = e TY™),

respectively for nonstiffly and stiffly accurate correctors (cf. (1.4)).

By virtue of the diagonal structure of D, the iterated method (3.1) is suitable for use on parallel processors
because in each iteration the components of YU can be computed in parallel.

There are several possibilities for choosing the matrix D. The most simple choice sets D=0 to obtain an explicit
iteration method (fixed point or functional iteration). This approach was followed in Ngrsett & Simonsen [14], in Lie
[12], in van der Houwen & Sommeijer [8] and in Burrage [2]. These papers deal with the iteration of implicit methods
for solving nonstiff ODEs. Since we are aiming at stiff ODEs, we shall use matrices D#O. For instance, one may
choose D such that we have for a prescribed number of iterations favourable stability characteristics, such as A-stability
or L-stability. This approach was followed in van der Houwen et al. [9]. Alternatively, we may exploit D for improving
the rate of convergence of the iteration process. For example, by identifying the diagonal elements of D with those of A
we obtain the nonlinear Jacobi iteration method. In the present paper, we shall choose D such that the stability region
of the iterated method rapidly converges to that of the corrector (see Subsection 3.3).

3.1. Computational Costs

Each step of the (outer) iteration method (3.1a) requires the solution of a diagonally implicit relation. In order to
solve this relation, we apply Newton iteration (inner iteration). There are various possibilities for starting the iteration
method (3.1a) and the Newton iteration method, and for choosing the Jacobian matrix J:=0f/dy needed in the Newton
iteration process. Obvious choices are listed in Table 3.1.



Table 3.1. Starting the inner and outer iteration processes.

Order of approximation 0 1

Jacobian matrix diag [J(etn, eyn) ] diag [J(ety + ch, yne + hef(tnyn)) ]
Initial iterate in (3.1a) YO =y tD=et;, YO =ye+hef(ty, yn), t© =et, + ch
Initial Newton iterate YG-D yne + haf(ty, yn) + hAf(ety + ch, YG-1)

All possible combinations are equally expensive because the values of f(ty,yn), f(etn+ch,YG-1) and diag(J) are
anyhow needed. The first-order approximations will reduce the magnitude of the smooth error components (low
frequencies) more than the zero-order approximations do, but, unlike the zero-order approximations, they will also
introduce stiff error components in the case of stiff differential equations. This particularly applies to the Jacobian
matrix and the initial inner iterate because these approximations are needed in each outer iteration. Therefore, we shall
only consider zero-order approximations to the Jacobian matrix and to the initial inner iterate (notice that in the case of
systems of equations, the matrix J becomes a block-diagonal matrix). Furthermore, our experiments revealed that using
zero-order approximations for the initial outer iterate is more robust than first-order approximations, and yields
comparable accuracies.

By performing m iterations, the method (3.1) may be considered as a DIRK method with mk+1 stages, of which
one stage is explicit and the other mk stages are diagonally implicit. In fact, we may represent the method by the
Butcher array

=0 0

=1 c-De D

j=2 a A-D D

=3 a O A-D D

j=m a O O A-D D

(3.1 )

bo oT . 0T 0T bT (nonstiffly accurate correctors)
exla 0T 0T eT(A-D) eID (stiffly accurate correctors)

Since each iteration step in (3.1a) essentially requires the ‘wall clock time' involved in evaluating one component
of f(etp+ch,YU-1)) and solving one system of dimension d, we conclude that, effectively, the work involved in
performing one step by the DIRK method (3.1") consists of

(evaluation of f and J) + (LU decomposition of I - d; hJ) +

(3.2) m [evaluation off+N (forward/backward substitution + evaluation of f)]

In this expression N is defined by

33) N = N1+ N2+ ...+ Ny
. - m 'Y

with N; denoting the number of Newton iterations for computing that component of Y@ which requires the largest
number of Newton iterations. Usually, the m iterations are the most expensive part of the total effort per step, and
therefore we shall say that a DIRK method has m effective or sequential stages if there are m diagonally implicit
systems to be solved.

3.1.1. Comparison with conventional DIRK methods. In the experiments reported in this paper, we used the stopping
criterion that the Newton correction should be about the machine precision which is for our computer 10-14. It turned
out that N; rapidly decreases with j which can be explained by observing that the initial iterate for starting the next inner
iteration becomes more accurate when j increases. This is an advantage when compared with conventionally constructed
DIRK methods already available in the literature (such DIRK methods will be indicated by 'conventional' DIRK
methods), because, for conventional DIRK methods, the number of Newton iterations for solving the implicit relations
in the successive stages do, in general, not decrease.

In order to appreciate the computational costs of DIRK methods of type (3.1'), we should compare m with the
number of sequential stages of conventional DIRK methods. In Table 3.2, the characteristics of such DIRK methods are
listed together with the PARK and PDIRK methods derived in [10] and [9].



Table 3.2. Summary of characteristics of DIRK, PARK and PDIRK methods of order p=>3.

Order Stageorder  Seq. stages Processors  Stability Reference

p=3 1 p-1 1 A-stable Ngrsett [13]

p=3 2 p-1 1 Strongly A-stable Crouzeix [4]

p=4 1 p-1 1 A-stable Crouzeix [4], Alexander [1]
p=4 1 P2 2 L-stable Iserles & Ngrsett [10]
p=3.4,5 1 p-1 [(p+1)/2]  Strongly A-stable van der Houwen et al. [9]
p=6,7 1 p-1 [(p+1)/2]  Strongly A(a)-stable ibid

p<6, p=8 1 p [(p+1)/2]  L-stable ibid

p=7,8, 10 1 p+l [(p+1)/2]  L-stable ibid

3.2.  Order of accuracy

In order to analyse the order of accuracy of the iterated method (3.1), let Y(tn+1) denote the vector with
components y(tp+cih) where y is the locally exact solution of (1.1). Then, in first approximation, we obtain
(34a) Y(tn+1) - YO = [Y(ta+1) - Yn+l] + [Yn+l - Y(j)] = [Y(tm-l) - Yn+1] +Z [Yn41- Y(j_l)]

= [Y(tm—l) - Yn+l] + ZJ [Yn+1 - Y(O)]’ J = 1’ 2, see
where Z is the iteration matrix defined by
(34b) Z:=h[I-hDJ]'1[A-D]J,
with J again denoting the Jacobian matrix of f. Let r be the stage order of the corrector (1.3), then (cf. (2.1))
Y(tn+1) - Yne1 = O(07FL).

Since Z=O(h) and Yp+1-Y(@=0(h), the local error of the stage vectors satisfy the order relation
(3.5 Y(th41) - YO = O(0™*1) + O(hi*1),
so that, after m iterations, (3.1) defines a method in which Y (M) approximates Y(tn4+1) with stage order r*=min{r,m}.
Thus, the optimal stage-order methods, that is the methods based on the Lagrange methods as defined above, have stage
order r*=k+1 provided that at least m=k+1 iterations are performed.
3.3. Stability

One may argue that there is no reason to continue the iteration process after m=r iterations, because the stage
errors of the corrector and of the iterated method have become of the same order in h and may therefore be expected to be
of comparable magnitude. However, there is no guarantee that after m=r iterations the stability properties of (1.3') are

also comparable with those of the corrector. This brings us to consider the stability of the DIRK method (3.1°). In order
to see how the stability depends on the number of iterations m, we apply the method to the test equation

6o Loayo,
where A runs through the spectrum A(J) of J. The matrix Z assumes the form

3.7 Z:=z[1-zD]'1[A-D], z:=Ah,

and (3.1a) reduces to
y(m) = (zme + [1-Z)Y1-ZM)[I-2zD] (e + za))yn.

We shall discuss the cases of iterating a nonstiffly accurate and a stiffly accurate corrector separately.

3.3.1. Nonstiffly accurate correctors. If yn+1 is computed by means of the formula

Yn+1 = [1 + zbglyn + zbTY (™),



then it can be expressed as

(38)  Yns1= (1 +2zbg + sz(zme + -2 -zm)[1 - zD] (e + za)))yn,
so that the stability function is given by
(39) Ry :=1+zbg+2zbT(Zme + [1- ZJ1[1- ZM][I - D] L(e + za) ).
It is easily verified that this function can be written in the form
Rm(2) := 1 + zbg + zbT[I - zA]"1 (e + za) - ZZbTZM[1 - zA] ! (Ae + a).
Assuming that the stage order of the corrector is at least one, we may set Ae+a=c (see (2.2)), so that
(3.10)0  Rp(2) =Reon(2) - 22bTZM{I - zA] e,

where Reorr denotes the stability function of the corrector given by (2.7). Finally, on substitution of (3.7) into (3.10)
we obtain

3.11)  Rm(2) =Reore(@ - z7+2bT ( [1-2D]1 [A - D])™ [I - zAT Le.
From this expression we can derive the convergence behaviour of Ry, to Reoyy for large values of Izl:
(3.12)  Rm(2) =Recon(2) +zbT [I- DA™ A-le as Izl — oo,

showing that for any fixed m the stability function becomes unbounded as Izl tends to infinity, unless the matrix D is
such that

bT[I-D1AMA-lc = 0.
Since we do not know m in advance and assuming that the corrector is prescribed, this condition cannot be solved.
Therefore, we conclude that diagonal iteration as defined by (3.1) is not suitable for iterating nonstiffly accurate
correctors. This excludes the Gauss-Legendre formulas as suitable corrector methods (cf. Table 2.1).
3.3.2. Stiffly accurate correctors. In the stiffly accurate case where yy,41 is computed by means of the formula

Yn+l = el Y(m),

we arrive at the stability function

(3.13)  Rm(@) =Reon(®) - 7%*1eT ([1- D)1 [A - D])™ [1 - zA}Le,

where Reory is defined by (2.8). We may express this function in the form

(13)  Rn@ =Reon@ - [Om@I™,  om(@) := [zm*1eT ( [1-2D)1 [A - D)™ [1 - zA) 1e] V™

For fixed values of m and assuming that D has positive diagonal elements, the function 6,,(z) is bounded for all z in the
nonpositive halfplane. This suggests to characterize the rate of convergence of Ry, to Reorr by means of 6,(z). We
shall call 6\ (z) the convergence factor associated with z. For example, we have

3.14) om0 =0, om():= [-eT [I-D-lamA-le]'™

In this paper, we have tried to minimize the convergence factor at infinity, i.e., Oy (). One possibility is to
determine for each m a matrix D such that 6,;,() vanishes. However, since we do not know m in advance, this is
unattractive from a computational point of view. Therefore, we determined, for a given corrector, the matrix D such that
p( - D'1A) is minimized over all possible diagonal matrices D with positive entries, and, as a posteriori test, we
computed for a few values of m the 'worst' convergence factor defined by

(3.15) Om = Max oy, (z)l.
Rez<0



Because 6y, (z) is an analytical function in the nonpositive halfplane, its maximum is assumed on the boundary,
i.e., on the imaginary axis. In calculating oy, it turned out that this quantity is larger than 1 for small values of m but
rather quickly decreases to a moderate size as m increases. The values of 6, show by what factor the (maximal)
difference between the two stability functions is reduced in each iteration if we continue to iterate when the stage order
of the corrector has been reached. Due to the fact that 6,>1 for small m, it is likely that the corresponding iterated
method is not A-stable. On the other hand, assuming that the iteration process (3.1) is convergent, we know that
[6m(2)]™—0 for m—eo, i.e., Ry(z) converges to the A-acceptable stability function Reorr(z). Therefore, it is of interest
to know the minimal value of m such that R, (z) is A-acceptable for all m equal to or larger than this minimal value.
This for the iteration process critical number of iterations will be denoted by mcrj;. Evidently, the value of mcrj is
expected to be large if the corrector is not strongly A-stable. Hence, the Lobatto IIIA and the Newton-Cotes formulas
seem to be less suitable as corrector methods (cf. Table 2.1). In fact, for the Newton-Cotes and Lobatto IIIA correctors
we verified that (for z in the nonpositive halfplane) maxIRp(z)!l 4 1if m — o, so that A-stability is only obtained in
the limit. For the strongly stable Lagrange correctors and the L-stable Radau ITA correctors however, we found modest
values of m¢yy, S0 that after a few iterations the resulting method is already A-stable (see Section 4).

4, Construction of Methods

In this section, we consider a number of stiffly accurate correctors and construct the corresponding matrices D for
use on two-, three- or four-processor computers (i.e., methods of dimension k=2, 3, 4).

For k=2, we shall give a rather detailed derivation, because in this case, it is still possible to construct suitable
matrices D analytically. We derive matrices D for correctors of Newton-Cotes, Lobatto IIIA, strongly A-stable
Lagrange, Radau IIA, and Gauss-Legendre type. The Gauss-Legendre method is not stiffly accurate, and therefore not
suitable for diagonal iteration of type (3.1'), but it is included to demonstrate its unstable performance. For k>2, we
resort to numerical search methods for finding suitable matrices D. Here, we refrained from looking for D matrices for
the Gauss-Legendre method because of the rather poor two-processor results. In Subsection 4.4 a summary of the main
properties of the various methods is given. ’

It may be of interest to note that in our numerical search for strongly A-stable correctors we encountered strong
numerical evidence for the following conjecture:

Conjecture. A necessary condition for a stiffly accurate Lagrange method to be strongly A-stable is

k+1
5 .0

M

Cj >
=1

In order to save space, the correctors are presented by means of the matrix A and the vectors a and c, and the
iterated versions by only giving the matrix D, because, together with the corrector, D completely defines the iterated
method. Furthermore, the stage and step point orders of the methods are denoted by r and p, respectively. Finally, the
range for oy, (and the corresponding interval where the maxima are assumed), with r<m<10 as well as the value of
mcrj; are given (cf. Section 3.3.2).

4.1.  Two-processor methods

4.1.1. Lagrange methods. Let us first consider two-dimensional Lagrange methods (k=2) satisfying the condition (1.4).
The stage-order conditions (2.2) can be solved for r=3 and yield the stiffly accurate Lagrange method

1 c(3-2¢c) -3 1 3c-4c2+¢3 c
4.1 A= = mm— = =I=
1 6(1-¢) ( c1 2-30)’ RKCRYS) (-C'1+4-30)’ ‘ (1) p=r=>

where c is a free parameter (recall that p=4 if c=1/2). An elementary calculation shows that the stability function of
(4.1a) is given by

6 + 2(2-¢)z + (1-¢)z2
6 - 2(c+1)z + cz2

@42 R@)=

This function is A-acceptable for ¢21/2 and strongly A-acceptable for c>1/2.
Next, we determine the matrix D in (3.1). It is convenient to write

D= 1 1/81 0
“6(1-c¢) 0 1/5; ’

so that



1-c¢(3-2c)d 38
STV e S
-c1§;  1-(2-30)8,

The eigenvalues of I - D-1A satisfy the equation
p2-Sp+P=0, S:=2- €(3-20)81 - (2-3¢)32, P :=[1 - c(3-2¢)31][1 - (2-3c)d2] + ¢28:5,.
By setting S=P=0 we achieve that p(I - D-1A)=0. The parameters 8; and &) then satisfy the equations

c(3-20)81 + (2-3¢)82 = 2, [1 - ¢(3-2¢)8112 - ¢28182 = 0,

leading to
81=l&’ 82= I-Q,Q:= iva 3
c(3-2¢) 2 -3c 6(1-c¢)
so that the matrix D is given by
@1b) D=—t T 20 °
' T80 | o 2:3¢
1-Q

The iterated Lagrange method with zero convergence factor at infinity is completely determined by the corrector (4.1a)
and the matrix (4.1b).
For c=1/2 we derive from (4.1a) the Newton-Cotes corrector (with p=4 and r=3)

1 (8 -1 1 (5) (1/2)
(4.33) A=§ 16 4)° a=sr 4] c= 1 )

We observe that this corrector coincides with the three-stage Lobatto IIIA method. The stability function R of (4.3a)
reduces to the (2,2) Padé approximation to the exponential function. Recall that R is A-acceptable but not strongly A-
acceptable. From (4.1b) we obtain the matrix

1

0
3+V3
@3b) D= )

2(3-V3)

with opme [0.21, 0.36] assumed on [3.9i, 5.1i], and mgj=ce.

A natural question now is, whether it is possible to choose c such that the stability is improved. Unfortunately,
(4.1a) shows that it is not possible to achieve L-stability (which would require c=1), but strong A-stability is obtained
for ¢>1/2. For example, by choosing c=3/4 we have R(eo)=1/3. The corresponding Lagrange method is defined by

] (216-81) i (81) (3/4)
@da)  A=mz\2s6.48) 2=ms \s0) €=

for which p=r=3. The iterated version is defined by

3
@4v) D= | 40D

6(V2-1)

with ome [0.21, 0.33] assumed on [3.2i, 4.1i] and mgy=2.

4.1.2. Gauss and Radau methods. As reference methods for our numerical experiments, we take the conventional two-
stage Gauss-Legendre and Radau ITA methods. The Gauss-Legendre corrector, and its iterated version is defined by
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1
@52 A=75

(4.5b) D=%((l) g) .

The Radau ITA-based method is given by:

3 320 0, bp=0, b=se, c==
k] a= k] = ’ =—e’ =75
(3+2«I? 3 ) 0 2

1 5-1) B _ T_..T _(1/3) _ _
(4.6a) A=ﬁ 93 ) a=0, bg=0, b!' =ex'A, ¢c= i p=3,r1=2,
@.6b) D= 1 20-5vV6 0
' 300 o0 124376

with 6,€[0.27,0.35] assumed on [2.6i, 3.7i], and myj=1.

4.2.  Three-processor methods
4.2.1. Newton-Cotes method. For k=3 and equidistant abscissas the corrector is given by

19 51 9 ] 1
@7) A=35[328 0| a=z2|8 |, bo=eTa, bT=eTA, c=3) 2
27279 9 3

with p=r=4, and with A-acceptable stability function (see Watts & Shampine [17]). By a numerical search we found the
matrix :

.12282623 0 0
(4.7b) D= 0 0.22656820 0
0 0 0.32504435

with p(I-D‘lA)z0.0l, Ome [0.49,0.77] assumed on [7.1i, 8.4i], and mpj=co.

4.2.2. Lobatto ITIA method. For k=3 and Lobatto abscissas the corrector is given by

2545 25-13V5 -1+V5 11+V5 . 545
1 1
(4.8a) A=735 25+13V5 25+V5 -1V5 |, a=135 1145 |, bo=exTa, bT =¢TA, =10 5+V5 |,
50 50 10 10 10

with p=6 and r=4, and with A-acceptable stability function (see Dekker and Verwer [5]). The iterated version is generated
by

48015157 0 0
(48) D= 0  0.10941809 0
0 0  0.16037253

with p(I-D-1A)=0.0043, 6, [0.52,0.88] assumed on [8.9i, 10i], and m¢j=ce.

4.2.2. Lagrange method. By keeping c; and c3 free, we can construct strongly A-stable methods with stage order four. It
can be shown that the stability function is A-acceptable for cj+co=1 and strongly A-acceptable for cij+co>1. A
numerical search produced the block point vector e=(7/12, 5/6,1)" for which parameter values of acceptable magnitude
and a damping factor [R(e0)|=0.143 are obtained. The corresponding corrector reads

98392 -81634 31213 2589 7

1 ) S S —eT T_.T L
—o5e5| 112000 -61600 28000 |, a=5ooes 122400 |, bo=exTa, bT=ekTA, c=75[10

110592 -48384 36288 22464 12

(4.93) A=

with p=r=4. The iterated method is generated by



.21051645 0 0
D= 0 0.28849216 0
0 0 0.33912361

(4.9b)

with p(I-D-1A)=0.011, 6,& [0.49, 0.69] assumed on [5.1i,6.2i] and Meri=3.

4.2.3. Radau method. The 3-stage Radau IIA corrector is defined by [3]

88 -7V6 296 - 169V6 -2 +3V6
360 1800 225
| 296 +169V6 88 +7V6 -2-3V6 _ o Ta vT—oT _
4.10a) A := 1500 150 535 ,a=0, bgp=ex'a, b' =ex'A, c=Ae
16 - V6 16 + V6 1
36 36 9

with p=5, r=3, and L-acceptable stability function. The matrix D is given by

32039049 0 0
(4.10b) D= 0  0.13997017 0
0 0  0.37167618

with p(I-D-1A)=0.0047, 6,,e [0.52, 1.0] assumed on [6.6i, 9.3i] and Mgri=S5.

4.3.  Four-processor methods
4.3.1. Newton-Cotes method. For k=4 and equidistant abscissas the corrector is given by
646 -264 106 -19 251 1
1 992 192 32 -8 1 232 To vTo o T 1l 2
@112 A=3355 | o158 648 378 27 | 27880 | 243 | 0=k & Di=e’A e=F
1024 384 1024 224 224 4

with p=6, r=5, and with A-acceptable stability function. A numerical search did not produce a better matrix D than

0.09220187 0 0 0

0 0.16837302 0 0

(4.11b) D= 0 0 024013828 0
0 0 0 0.30942512

with p(I-D-1A)=~0.1, 6,,€ [0.76, 1.04] assumed on [8.7i, 11.8i] and Meri=o0.

4.3.2. Lobatto ITTA method. For k=4 and Lobatto abscissas the corrector is given by

343-9V21  392-96V21 343-69V21 -21+3V21
2520 2205 2520 1960
392+105V21 8 392-105¥21 3
Ao 2880 45 2880 320
343+69V21 392+496v21 343+9V21 -21-3V21
2520 2205 2520 1960
\ 49 16 49 L }
180 45 180 20

(4.122)




1960 —_
14
13 .
320 =
a= , bp=exla, bl =exTA, c= 2
119-3v21 0 k k
JRAEANSY 721
1960 12

\ = !

with p=8, r=5, and with A-acceptable stability function. A numerical search produced the matrix

0.29809917 0 0 0

0  0.18143990 0 0
(4.12b) D= 0 0  0.06466021 0

0 0 0  0.16221872

with p(I-D'lA)z0.0ZI, 6me[0.87,1.32] assumed on [15.4i, 19i], and mcrj=ce.

4.3.3. Lagrange method. Numerically, we found that the stability function is A-acceptable for ci+co+c3=3/2 and
strongly A-acceptable for cj+cp+c3>3/2. For ¢=(1/6,7/12,11/12, 1T we obtained parameter values of acceptable
magnitude and a damping factor [R(e2)l=0.325. The corresponding corrector with p=r=5 reads

5452832 -872784 926800 -556248
1 17484082 13296591 -6182575 3486252

A =73896000 | 16192946 22005423 7263025 -1229844 |’
16232832 21897216 9676800 598752
(4.13a)
2436 2
6811 7
a=§§'2167)' 10043 |’ b0=ekTa, bT=ekTA, c=-1-1-i' 11
9936 12

The iterated method is generated by

.13380299 0 0 0

0  0.11358038 0 0.
(4.13b) D= 0 0  0.22689850 0

0 0 0  0.25010131

with p(I-D'lA)=0.045, Ome [0.59,0.93] assumed on [8.2i, 11.8i], and mcrj=6.
4.3.4. Radau method. The four-stage Radau IIA corrector reads

.11299947932316 -.04030922072352 .02580237742034 -.0099046765073
23438399574740 .20689257393536 -.04785712804854 .01604742280652
21668178462325 .40612326386737 .18903651817006 -.02418210489983 |’

22046221117677 .38819346884317 .32884431998006 1/16
(4.14a)
a=0, bp=0, bT=¢exTA, c=Ae

with p=7, r=4, and with L-acceptable stability function. The iterated method is generated by

0.32049937 0 0 0
414 D 0 0.08915379 0 0
(4.14b) - 0 0 0.18173957 0

0 0 0 0.23336280



with p(I-D-1A)=0.024, 6, [0.74,1.31] assumed on [10.0i, 17.2i], and mgi=7.

4.4. Survey of methods
In Table 4.1, we have summarized a few characteristics of the methods derived in the preceding subsections.

Table 4.1. Main characteristics of diagonally iterated IRK methods.

Method p r k p@DIA) oprange (<m<10)  megi
Newton-Cotes (4.3) 4 3 2 0 [0.21, 0.36] oo
Lagrange (4.4) 3 3 2 0 [0.21, 0.33] 2
Radau IIA (4.6) 3 2 2 0 [0.27,0.35] 1
Gauss (4.5) 4 2 2 0 oo oo
o onCotes(47) ..... " 43 .......... P [049 5 77] .............. -
Lobatto IIIA. (4.8) 6 4 3 0.0043 [0.52,0.88] oo
Lagrange (4.9) 4 4 3 0.01 [0.49,0.69] 3
Radau I1A (4.10) 5 3 3 0.0047 [0.52,1.0] 5
Newt onCotes(411)654 .......... 5 Rl [076 104] .............. -
LobattoIlTIA (4.12) 8 5 4 0.021 [0.87,1.32] )
Lagrange (4.13) 5 5 4 0.045 [0.59,0.93] 6
Radau IIA (4.14) 7 4 4 0.024 [0.74,1.31] 7

In this table, the value of the step point order p corresponds to values of m equal to or greater than p, and the
value of the stage order r corresponds to that of the corrector. From a computational point of view, the Lagrange and
Radau ITA methods are the most attractive ones, because mcy; is relatively small. Thus, if these methods are
implemented with some local error strategy for automatically estimating the number of iterations m and the stepsize h
needed to meet local error tolerance, then the value of the ‘computational efficiency' quantity mL/h for integrating an
interval of length L will not be unnecessarily large because of the development of instabilities. This observation is
confirmed by the numerical experiments in Section 5.4.

5. Numerical Experiments

In this section, the diagonal iteration method developed above will be tested by integrating a number of stiff test
problems. Section 5.1 presents these test problems. Section 5.2 compares the effective orders of Gauss-Legendre,
Newton-Cotes, Lobatto IITA, Radau ITA and Lagrange correctors, and in Section 5.3, the performance of the diagonal
iteration process with respect to the number of iterations is tested for a few two-processor correctors. Finally, in Section
5.4, we compare the efficiency of the iterated methods with a few DIRK methods from the literature.

We recall that we only used the zero-order approximations to the Jacobian matrix and to the initial inner and
outer iterates. In the tables of results, the accuracy of the results is given by means of the number of correct digits A of
the numerical solution at the endpoint T (i.e., we write the maximum norm of the error at t=T in the form 10-2). The
computational costs are proportional to mL/h, where h is the fixed step length, L:=T-t is the length of the integration
interval, and m is the fixed number of outer iterations per step. In actual applications of these methods, some strategy is
needed to select h and m. However, since our test problems are such that the exact solution is equally smooth in the
whole integration interval, it is reasonable to use fixed h and m.

5.1. Test problems

We briefly discuss a few test problems partly taken from the literature and partly constructed in order to test some
special aspect of the methods. All problems are defined on the interval [tg,T].

Our first problem is the stability test problem of Prothero and Robinson [15]

Gl Leoely-gm)+g0. v =g, t0=0, T=1,

where the exact solution equals g(t) and € is a small parameter. Prothero and Robinson used this problem to show the
order reduction of RK methods when € is small. In our experiments we set

(5.1b)  g(t) =cos(t), e=10-3.

The second test problem is the nonlinearization of problem (5.1):

13
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529 Lol -g0P) +0, Y =gt0), =0, T=1,
with exact solution y(t)=g(t) for all values of the parameter €. As in the preceding problem we set
(52b)  g(®=cos(t), e=10-3.

The third test problem is that of Kaps [11]:

d d
63 F=-erely+ et Feyi-n+y, 0=y =1 ©=0,T=1,

with the smooth exact solution y1=exp(-2t) and yp=exp(-t) for all values of the parameter €. This problem belongs to
the class of problems for which stiffly accurate RK methods do not suffer order reduction whatever small € is (cf. Hairer
etal. [7]).

The test set of Enright et al. [6] contains the following system of ODEs describing a chemical reaction:

013 +1000y3 0 0
G4 L. 0 2500y3 0 Y,
013 0 1000y; + 25002

with y(0)=(1,1,0)T. Since we use fixed step sizes in our experiments, we avoided the initial phase by choosing the
starting point at to=1 and we used the corresponding initial values

0.990731920827
(5.4b) y(l)z( 1.009264413846
-.366532612659 103

At t=T=51 we found the approximate solution

0.591045966680
y(51)=( 1.408952165382 )
-.186793736719 103

In order to show the performance of the methods on PDEs we included the convection-diffusion problem

2
(5.5) 3—‘: =u 373' X cos(t) %:—- x2 sin(t), 0<x<1, tp=0, T=1,

with Dirichlet boundary conditions and with exact solution u(x,t =x200s(t). Standard finite difference discretization of the
spatial derivatives on a uniform grid with mesh size 1/40 leads to a system of 39 ODEs whose exact solution is given
by (j/40)%cos(t), j=1,...,39.

5.2. Effective orders of the correctors

First of all, we want to show that in many stiff problems the property of superconvergence does not pay because
of the phenomenon of order reduction, and that strong stability properties may improve the accuracy considerably.

The Tables A.1a and A.1b in the Appendix to this paper present A values for the various test problems obtained
for L/h=1, 2, 4, 8, 16. From these results we can derive for each test problem the effective orders by computing
(A(h)-A(2h))/0.3. For h we chose the smallest value for which results are available. The resulting effective orders are
listed in Table 5.1. For each problem, the result of the most accurate corrector is indicated in bold.

The results for the first three problems clearly demonstrate that the various methods often do not show their step
point order, so that the property of superconvergence is of limited value in the case of stiff problems.



Table 5.1.  Effective orders shown by the correctors for Problems (5.1) - (5.5).

Corrector p r k (5.1) 5.2) (5.3) (5.3) 54) (5.5
e=103 &=108
Newton-C. (4.3a) 4 3 2 33 3.0 3.7 4.0 4.0 4.0
Lagrange (4.4a) 3 3 2 33 33 3.0 3.0 3.0 3.0
Gauss (4.5a) 4 2 2 3.0 2.7 3.7 2.0 4.0 3.0
Radau ITA (4.6a) 3 2 2 2.0 2.0 3.0 3.0 3.0 3.0
Newton-C. (4.7a) 4 4 3 4.0 4.0 4.0 4.0 4.0 4.0
LobattoITA(4.8a) 6 4 3 4.0 4.0 6.7 6.0 5.7 4.7
Lagrange (4.9a) 4 4 3 4.3 4.0 4.0 3.7 4.0 3.7
Radau ITA (4.10a) 5 3 3 33 3.0 33 5.0 5.0 4.0
Newton-C. (4.11a) 6 5 4 4.3 4.3 43 6.3 6.0 6.0
Lobatto IITA (4.12a) 8 5 4 4.0 4.0 4.7 8.0 8.0 6.0
Lagrange (4.13a) 5 5 4 53 5.0 53 4.7 5.0 5.0
Radau ITA (4.14a) 7 4 4 4.0 4.0 4.7 7.0 6.7 5.0

5.3. Performance of the iteration process for two-processor correctors.

In this subsection, we consider the performance of the iteration method for solving the two-processor corrector
equations. Since the rate of convergence of a particular iteration method turned out to be comparable for the Newton-
Cotes corrector and the Lagrange corrector, we only present results for the most accurate one. In the case of the Gauss
and Radau corrector, the iteration methods behaved quite differently so that we include results for both correctors.
Furthermore, in the Tables 5.2 and 5.3 we only present results for the problems (5.2) and (5.4) for which most methods
respectively show their stage order and their step point order. Additional results for the other test problems may be found
in the Tables A.2 until A.5 of the Appendix. In the tables of results, divergence of the inner iteration is indicated by *,
and values in bold indicate that the accuracy of the corrector is reached (and that A does not change anymore). We list for
several values of L/h the accuracies corresponding to the correctors of Lagrange type (first column), of Gauss-Legendre
(second column), and of Radau IIA (third column). These results confirm that, in general, the Gauss corrector is not
suited to be iterated by diagonal iteration methods.

Table 5.2. Values of A for Problem (5.2) obtained by iterating the Lagrange corrector
(4.4a), Gauss corrector (4.5a) and Radau IIA corrector (4.6a).

m L/h=1 L/h=2 L/h=4 L/h=8 L/h=16

1 3503 38 41-22 53 40 * 48 36 * 50 27 * 53
2 50 10 42 58 -11 47 65 * 52 67 * 59 67 * 6.7
3 1.9 24 6.7 29 7.7 39 58 84 19 64
4 2.5 3.1 3.8 8.7 4.6

Table 5.3. Values of A for Problem (5.4) obtained by iterating the Lagrange corrector
(4.4a), Gauss corrector (4.5a) and Radau IIA corrector (4.6a).

m L/h=1 L/h=2 L/h=4 L/h=8 L/h=16

1 2112 17 23 1521 26 * 24 28 * 27 31 * 30
2 3426 29 39 29 35 45 * 41 52 * 47 58 * 53
3 43 38 36 54 48 45 64 5754 74 6663 83 69 7.2
4 4547 34 57 59 43 69 7.1 52 81 8361 9395 7.0
5 5.0 6.1 7.3 8.2 85 9.4 9.7

5.4. Efficiency of diagonally iterated IRK correctors
In this final subsection, we compare the efficiency of the diagonally iterated IRK correctors with three fourth-
order DIRK methods from the literature, viz. the three-stage method generated by the Butcher array
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2a+8 | 3a+9
1
Ta-n | a+n  -a+®) A+
2 i
(5.6) . &=5V3 cos(7p),
S T B
6&2 3¢2 6€2

(cf. Crouzeix [4] and Alexander [1]), and the four-stage, parallel DIRK methods of Iserles and Ngrsett [10]:

1 1
2 2
] 0 1
1 3 3 1
2 2 "2 2
0 3 2 0 1
.7 ,
1 1 1 L
3 6 3 6
1 1
2 2
2 2
3 0 3
1 5 5 1
2 2 2 2
1| s o8 5 2
3 "33 3
(58) :
3 3
-1z -1 3

The method (5.6) is A-stable and requires three sequential stages per step. The methods (5.7) and (5.8) are A-stabele and
L-stable, respectively, and require only two sequential stages per step (when run on a two-processor computer).

We restrict our considerations to the above three DIRK methods and to the Newton-Cotes, Lobatto IIIA,
Lagrange and Radau ITA correctors where each method uses a fixed number of m iterations per step. Recalling that
iterating an IRK corrector by means of m diagonal iterations in each step yields a method that is in fact a DIRK method
with m sequential stages, we conclude that all methods have in common that they belong to the class of DIRK
methods. However, in the case of the 'genuine’ DIRK methods (5.6), (5.7) and (5.8), the number of sequential stages per
step is known in advance, whereas in the case of the DIRK methods based on iteration the number of sequential stages
m that yields acceptable accuracies, is not known in advance and, in actual computation, it should be determined on the
basis of some local error strategy. On the other hand, as we shall see, the accuracy of the iterated methods is less
sensitive to the phenomenon of order reduction.

In the Tables 5.4 and 5.5, m always denotes the number of sequential stages per step. Hence, all results in one
column of these tables correspond to DIRK methods that use m sequential stages per step, so that all results
corresponding to the same value of mL/h required roughly the same computational effort. In the tables, the highest
value of A corresponding to the same mL/h value, that is, the ‘most efficient' integration results, are indicated in bold.
As in the preceding subsection, we only present results for the problems (5.2) and (5.4). Results for the additional test
problems may be found in the Appendix.

In the case of the nonlinear Prothero-Robinson problem, Table 5.4a shows that the number of iterations needed
by the iterated methods to ‘reach’ the accuracy of the corrector solution increases with k, that is, the higher-order
methods need more iterations to solve the corrector; moreover, they have a 'slow start': after 2 iterations the accuracy is
still rather modest, whereas the lower-order methods have already converged, showing full corrector-precision. This can
be explained by observing that we used a zero-order predictor for YO for all k, so that the 'distance' between predictor
and corrector solution increases with k. Thus, for this problem, the lower-order methods are more efficient than the
higher-order ones, unless very high accuracies are requested. Furthermore, when we compare the various types of iterated
methods (Newton-Cotes, Lobatto, Lagrange or Radau), then the Lobatto IIIA methods perform less good whereas the
strongly A-stable Lagrange methods are slightly superior to the others. In the case of the 'genuine’ DIRK methods (5.6),
(5.7) and (5.8), the Iserles-Ngrsett methods are more accurate than the Crouzeix-Alexander method, which is presumably
due to the L-stability property of the Iserles-Ngrsett method.



It is of particular interest to see how the iterated methods compare with the 'genuine’ DIRK methods. For
example, Table 5.4a shows that the Newton-Cotes, Lobatto IITA, Lagrange and Radau ITA based methods respectively
produce 5, 0, 21 and 4 'most efficient' results, whereas the 'genuine’ DIRK methods none. A further indication of the
superiority of the iterated methods is given by Table 5.4b where we list results for the iterated methods with m=4 and
for the parallel DIRK methods (5.7) and (5.8). All these methods have step point order p=4, but the accuracies obtained
for the same computational-costs value of mL/h differ largely, which is caused by the order reduction exhibited by the
'genuine’ DIRK methods.

For the more innocent chemical reaction problem (5.4) the order reduction is not shown. Table 5.5a shows that
the high-order iterated methods again require more iterations to obtain the corrector precision than the lower-order
methods, however, here for low values of m, all iterated methods are roughly equally efficient. Furthermore, the scores
of ‘most efficient’ results for the Newton-Cotes, Lobatto IIIA, Lagrange and Radau IIA based methods are respectively 8,
5,6 and 7, and among the DIRK methods only (5.7) scores twice. The analogue of Table 5.4b is given by Table 5.5b.
It reveals that the iterated methods are at least competitive with the parallel DIRK methods, but usually much more
efficient.

6. Concluding remarks

In this paper we have derived a diagonally implicit iteration scheme to solve a fully implicit Runge-Kutta
method. The structure of this iteration process is such that a parallel computer can be fully exploited. Starting with an
implicit RK method with k implicit stages (the corrector), each iteration requires the solution of k systems of equations
of dimension equal to the number of ODEs. Since these systems can be solved completely independently, the effective
computational work per iteration equals the solution of one such system, provided that k processors are available.

The free parameters in the iteration scheme are chosen in such a way that the corresponding stability functions
converge as quickly as possible to the stability function of the corrector, which is chosen to be (at least) A-acceptable.
Although we have numerical evidence that this is not a bad choice, we do not claim that it is the best possible. In a
forthcoming paper it is intended to give theoretical support for this choice.

A second aspect considered in this paper, is the choice of the particular corrector method. The well-known
implicit RK methods of high classical order, such as the Gauss-Legendre, Radau and Lobatto methods, seem to be
suitable candidates. However, since it is the stage order which usually determines the order behaviour in integrating stiff
differential equations, these methods are not necessarily optimal correctors. Because the stage order is significantly
smaller than the classical order for these methods, we will encounter the phenomenon of order reduction. Therefore, we
also considered Newton-Cotes and Lagrange correctors, which have - for the same number of implicit relations per
iteration - a stage order which is one higher than for Gauss-Legendre and Radau methods and is equal to the stage order
of Lobatto methods.

Apart from these order considerations, it turned out that the stability behaviour of the iterated scheme largely
depends on the choice of the corrector. For example, it is shown that the Gauss-Legendre corrector is not suitable in this
context, since it is not stiffly accurate. Consequently, only for very 'innocent' stiff problems, where we have no order
reduction, the Gauss-Legendre corrector is useful, but as a method for general stiff problems it is dissuaded.

The other four types of correctors are all stiffly accurate, which has the effect that certain classes of stiff problems
can be integrated without order reduction. For such problems the classical order should be a decisive factor, viz. in these
cases the Lobatto IIIA corrector is superior and also the Newton-Cotes corrector is a good choice. However, these
correctors are only A-stable and it is shown that the stability function of the iterated method is not A-acceptable unless
the corrector is really solved. This means that the iteration process based on these correctors easily encounters stability
problems. Hence, a corrector possessing better stability characteristics, such as the Radau IIA method (L-stable) and the
Lagrange method (strongly A-stable), will be much more robust. We showed that after a few iterations the stability
function of the iterated methods based on these correctors is A-acceptable.

Since the Lagrange corrector has a slightly larger stage order than the Radau ITA corrector, we think that it is a
good choice for integrating general stiff equations; it combines adequate stability characteristics with a relatively high
stage order. Our numerical experiments confirm this advice.

Furthermore, we have compared our methods with sequential and parallel DIRK methods from the literature. This
comparison is rather obvious since the effective computational work per iteration equals the work per stage in a DIRK
method. It turned out that the diagonally iterated RK methods are much more efficient than the 'conventinal' DIRKS.
The reason is that only low order 'conventional' DIRKs with good stability properties are available in the literature and,
more importantly, these DIRKs have a stage order equal to 1. This property gives these methods a very poor
performance in case of general stiff problems.

Finally, we remark that the construction of diagonally iterated methods of arbitrarily high order is
straightforward, and we observed in our experiments that, especially the high order methods, showed remarkebly high
accuracies.
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Table 5.4a. Problem (5.2): Results for diagonally iterated correctors and for the methods (5.6), (5.7) and (5.8).

Method kLhm=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=% m=10 .. m=co
Crouzeix-Alex. (5.6) 1 1 - - 1.0 -

Iserles-Ngrsett (5.7) 2 - 1.5 -

Iserles-Ngrsett (5.8) - 2.1 -

Newton-C. (4.3) 34 4.7 4.7
Lagrange (4.4) 35 5.0 5.0
Radau IIA (4.6) 38 4.2 42
Newton-C. (4.7) 3 32 37 56 61 6.0 6.0
Lobatto ITTA (4.8) 30 27 47 60 6.0 6.1 6.1
Lagrange (4.9) 32 39 55 67 6.5 6.5
Radau IIA (4.10) 34 31 50 49 49
Newton-C. (4.11) 4 31 36 49 47 52 60 172 170 69 6.9
Lobatto ITIIA (4.12) 27 22 23 39 46 54 68 69 170 7.0
Lagrange (4.13) 30 28 31 39 50 64 71 13 74 7.4
Radau IIA (4.14) 29 28 3.0 47 56 68 63 6.3
Crouzeix-Alex. (5.6) 1 2 - - 2.5 -

Iserles-Ngrsett (5.7) 2 - 24 -

Iserles-Ngrsett (5.8) - 2.7 -

Newton-C. (4.3) 40 53 53
Lagrange (4.4) 4.1 58 5.8
Radau ITA (4.6) 53 4.7 4.7
Newton-C. (4.7) 3 34 35 64 81 72 173 7.3
Lobatto ITIA (4.8) 30 22 53 6.0 73 7.3
Lagrange (4.9) 35 38 59 75 176 7.6
Radau IIA (4.10) 38 28 59 57 59 59
Newton-C. (4.11) 4 33 33 52 52 53 59 67 78 83 8.1 8.1
Lobatto IITA (4.12) 23 1.1 14 40 45 55 69 173 84 83 8.3
Lagrange (4.13) 29 23 27 49 52 65 83 89 8.9
Radau IIA (4.14) 28 22 26 50 60 7.0 75 173 7.3
Crouzeix-Alex. (5.6) 1 4 - - 2.8 -

Iserles-Ngrsett (5.7) 2 - 3.0 -

Iserles-Ngrsett (5.8) - 3.2 -

Newton-C. (4.3) 2 39 58 59 5.9
Lagrange (4.4) 40 6.5 6.7 6.7
Radau IIA (4.6) 48 52 52
Newton-C. (4.7) 3 31 30 6.6 177 84 85 8.5
Lobatto IIIA (4.8) 23 07 55 62 177 81 85 8.5
Lagrange (4.9) 32 35 62 77 99 8.8 8.8
Radau IIA (4.10) 36 20 56 62 68 69 6.9
Newton-C. (4.11) 4 29 25 50 55 55 60 68 77 87 98 9.4
Lobatto IIIA (4.12) 1.1 * * 50 43 56 64 72 83 9.0 9.5
Lagrange (4.13) 23 08 15 51 56 68 79 88 9.7 108 10.4
Radau IIA (4.14) 21 06 12 52 63 79 84 85 8.5

Table 5.4b. Problem (5.2): Efficiency test of fourth-order methods.

Method p m k mL/h=4 mL/h=8 mL/h=16
Iserles-Ngrsett (5.7) 4 2 2 2.4 3.0 3.6
Iserles-Ngrsett (5.8) 4 2 2 2.7 3.2 3.8
Newton-C. (4.3) 4 4 2 4.7 5.3 5.9
Newton-C. (4.7) 4 4 3 6.1 8.1 7.7
Lobatto IIIA (4.8) 4 4 3 6.0 6.0 6.2
Lagrange (4.9) 4 4 3 6.7 7.5 7.7
Radau ITA (4.10) 4 4 3 49 5.7 6.2
Newton-C. (4.11) 4 4 4 4.7 52 55
Lobatto ITIA (4.12) 4 4 4 39 4.0 5.0
Lagrange (4.13) 4 4 4 39 49 5.1
Radau ITA (4.14) 4 4 4 4.7 5.0 52




Table 5.5a. Problem (5.4): Results for diagonally iterated correctors and for the methods (5.6), (5.7) and (5.8).

Method kLhm=l m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10 .. m=o
Crouzeix-Alex. (5.6) 1 1 - - 34 -
Iserles-Ngrsett (5.7) 2 - 34 -
Iserles-Ngrsett (5.8) - 33 -
Newton-C. (4.3) 2 21 34 43 45 4.5
Lagrange (4.4a 21 35 31 3.1
Radau ITIA (4.6) 1.7 29 36 34 34
Newton-C. (4.7) 3 1.8 35 51 47 4.7
Lobatto ITIA (4.8) 16 3.1 43 56 63 64 6.4
Lagrange (4.9) 1.8 35 43 42 42
Radau IIA (4.10) 20 32 43 59 53 53
Newton-C. (4.11) 4 1.7 36 52 6.5 6.7 6.7
Lobatto ITIA (4.12) 14 27 46 60 7.1 83 8.6 8.6
Lagrange (4.13) 1.6 3.1 58 66 70 69 6.9
Radau IIA (4.14) 15 32 48 74 178 179 7.9
Crouzeix-Alex. (5.6) 1 2 - - 4.4 -
Iserles-Ngrsett (5.7) 2 - 4.5 -
Iserles-Ngrsett (5.8) - 44 -
Newton-C. (4.3) 2 23 39 54 57 5.7
Lagrange (4.4) 23 45 4.0 4.0
Radau ITIA (4.6) 21 35 45 43 43
Newton-C. (4.7) 3 20 42 62 59 5.9
Lobatto IIIA (4.8) 19 38 51 6.8 8.1 83 8.3
Lagrange (4.9) 21 41 55 54 54
Radau IIA (4.10) 22 38 51 69 6.8 6.8
Newton-C. (4.11) 4 20 45 67 79 8.5 8.5
Lobatto IITA (4.12) 1.7 33 54 72 85 100 109 11.0 11.0
Lagrange (4.13) 1.9 37 63 75 83 82 8.2
Radau ITA (4.14) 1.8 37 56 80 88 101 9.8 9.8
Crouzeix-Alex. (5.6) 1 4 - - 5.5 -
Iserles-Ngrsett (5.7) 2 - 5.7 -
Iserles-Ngrsett (5.8) - 5.6 -
Newton-C. (4.3) 2 26 45 64 69 6.9
Lagrange (4.4) 26 47 49 49
Radau IIA (4.6) 24 4.1 54 52 5.2
Newton-C. (4.7) 3 23 50 72 171 7.1
Lobatto IIIA (4.8) 22 44 60 79 9.7 101 10.1
Lagrange (4.9) 24 48 68 6.6 6.6
Radau ITA (4.10) 25 45 60 79 83 8.3
Newton-C. (4.11) 4 23 54 71 89 106 103 10.3
Lobatto IIIA (4.12) 20 40 6.1 84 101 119 123 12.3
Lagrange (4.13) 22 42 72 87 99 97 9.7
Radau IIA (4.14) 21 43 66 9.1 102 122 11.8 11.8

Table 5.5b. Problem (5.4): Efficiency test of fourth-order methods.

Method p m k mL/h=4 mL/h=8 mL/h=16
Iserles-Ngrsett (5.7) 4 2 2 4.5 5.7 6.9
Iserles-Ngrsett (5.8) 4 2 2 44 5.6 6.7
Newton-C. (4.3) 4 4 2 4.5 5.7 6.9
Newton-C. (4.7) 4 4 3 4.7 5.9 7.1
Lobatto IIIA (4.8) 4 4 3 5.6 6.8 7.9
Lagrange (4.9) 4 4 3 42 54 6.6
Radau IIA (4.10) 4 4 3 5.9 6.9 7.9
Newton-C. (4.11) 4 4 4 6.5 7.9 8.9
Lobatto ITTIA 4.12) 4 4 4 6.0 7.2 8.4
Lagrange (4.13) 4 4 4 6.6 1.5 8.7
Radau ITA (4.14) 4 4 4 7.4 8.0 9.1
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Appendix
This Appendix lists a large number of experiments which give additional support to the theory developed above.

A.1. Effective orders of the correctors
The Tables A.la and A.1b present A-values for the various test problems obtained for L/h=1, 2, 4, 8, 16 by
iterating the corrector to convergence. The effective orders in Table 5.1 are derived from these tables.

Table A.1a. Problems (5.1), (5.2) and (5.3) with € = 10°3.
Valuesof AforL/h=1,2, 4,8, 16.
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Table A.1b. Problems (5.3) with € = 10-8, (5.4) and (5.5).
Valuesof AforL/h=1,2,4,8, 16.
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A.2. Performance of the iteration process for two-processor correctors

Here we give the results for the two-processor correctors applied to the remaining test problems (5.1), (5.3) and
(5.5). Similar to the procedure described in Section 5.3, we give results for the most accurate one of the Lagrange-type
correctors (4.3a) and (4.4a), the Gauss-Legendre corrector and the Radau IIA corrector. The following tables contain the
accuracies obtained for several values of L/h. Again, the 1st, 2nd and 3rd column for each L/h-value corresponds to the
Lagrange, Gauss and Radau corrector, respectively.

Table A.2a.  Values of A for Problem (5.1) obtained by iterating the Lagrange
corrector (4.4a), Gauss corrector (4.5a) and Radau IIA corrector (4.6a).

m L/h=1 L/h=2 L/h=4 L/h=8 L/h=16

1 3503 39 42-18 53 40 * 49 37 * 51 29 * 53
2 5110 42 58-08 47 64 * 53 66 * 59 67 * 6.8
3 1.9 59 25 6.8 3.0 7.7 3.0 83 2.1 6.5
4 3.1 7.8 3.8 8.8 4.7
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Table A.2b. Values of A for Problem (5.3) with e=10-3 obtained by iterating the

Newton-Cotes corrector (4.3a), Gauss corrector (4.5a) and Radau IIA

corrector (4.6a).
m L/h=1 L/h=2 L/h=4 L/h=8 L/h=16
1 1.1-01 16 15 -21 1.7 19 6020 23 * 22 25 * 25
2 2313 30 29-08 30 36-4033 42 * 38 48 * 44
3 3613 24 48 17 34 54 2043 62 2253 7.0 2.7 6.1
4 33 1.2 43 18 32 51 2441 59 3150 42 59
5 3.2 4.3

Table A.2c. Values of A for Problem (5.3) with £=10"8 obtained by iterating the

Newton-Cotes corrector (4.3a), Gauss corrector (4.5a) and Radau ITA

corrector (4.6a).
m L/h=1 L/h=2 L/h=4 L/h=8 L/h=16
1 11-01 16 1.5 -70 1.7 19 * 20 23 * 22 26 * 25
2 2313 30 29 -60 30 36 * 33 42 * 38 48 * 44
3 37 13 24 48 1.7 34 54 19 43 62 1753 70 04 6.2
4 33 1.2 45 1.8 3.3 57 24 4.1 69 3.0 50 8.1 3.6 59
5 3.2

Table A.2d. Values of A for Problem (5.5) obtained by iterating the Newton-Cotes

corrector (4.3a), Gauss corrector (4.5a) and Radau IIA corrector (4.6a).

m L/h=1 L/h=2 L/h=4 L/h=8 L/h=16

1 1504 18 20-2021 24 * 23 27 * 26 28 * 29
2 2911 25 34-09 34 39 * 41 44 * 42 49 * 46
3 3220 42 26 32 50 3241 56 3250 62 21 6.2
4 1.9 53 40 64 3949 173 48 5.7
5 5.4 6.5 48 1.7

Also for these problems we observe that the iterated methods based on the Gauss-Legendre corrector, which is not
stiffly accurate, are less robust than the Lagrange and Radau based methods. Therefore, we omit the Gauss method in the
tests on the efficiency of the various DIRK methods.

A.3. Efficiency of diagonally iterated IRK methods

We conclude with a comparison of the efficiency of the diagonally iterated correctors with high stage order and
the DIRK methods (5.6), (5.7) and (5.8). Therefore we applied these methods to the remaining test problems (5.1), (5.3)
and (5.5) and list the results in the following tables. We use the same test procedure and notation as described in Section
54.

For all these problems the 'genuine' DIRK methods show a second-order behaviour (i.e., their stage order+1) and,
consequently, are markedly less efficient than the diagonally iterated methods which have much higher effective orders
(cf. Table 5.1).



Table A.3a. Problem (5.1): Results for diagonally iterated correctors and for the methods (5.6), (5.7) and (5.8).

Method kLhm=l m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10 ... m=oc
Crouzeix-Alex. (5.6) 1 1 - - 1.0 -
Iserles-Ngrsett (5.7) 2 - 1.5 -
Iserles-Ngrsett (5.8) - 2.1 -
Newton-C. (4.3) 2 35 47 4.7
Lagrange (4.4) 35 51 5.1
Radau IIA (4.6) 39 42 42
Newton-C. (4.7) 3 32 38 58 6.1 6.1
Lobatto IITA (4.8) 30 28 5.0 6.1 6.1
Lagrange (4.9) 33 40 56 6.5 6.5
Radau IIA (4.10) 34 3.1 52 5.0 5.0
Newton-C. (4.11) 4 32 37 50 47 53 60 71 71 7.0 7.0
Lobatto ITIIA (4.12) 27 22 24 40 47 57 170 70 7.1 7.1
Lagrange (4.13) 30 29 31 39 50 61 178 1.5 7.5
Radau IIA (4.14) 30 29 3.1 46 56 6.3 6.3
Crouzeix-Alex. (5.6) 1 2 - - 24 -
Iserles-Ngrsett (5.7) 2 - 24 -
Iserles-Ngrsett (5.8) - 2.7 -
Newton-C. (4.3) 2 41 53 54 54
Lagrange (4.4) 42 58 59 5.9
Radau IIA (4.6) 53 4.7 4.7
Newton-C. (4.7) 3 35 36 70 173 7.3
Lobatto IIIA (4.8) 30 22 67 66 1.3 7.3
Lagrange (4.9) 36 38 59 79 717 1.6 7.6
Radau IIA (4.10) 39 28 57 58 6.0 6.0
Newton-C. (4.11) 4 34 33 54 52 53 60 68 77 85 82 8.2
Lobatto IIIA (4.12) 24 13 1.5 46 45 56 67 173 8.4 8.4
Lagrange (4.13) 30 23 28 50 52 63 75 89 9.0 89 8.9
Radau ITA (4.14) 29 23 27 50 59 70 1715 14 7.4
Crouzeix-Alex. (5.6) 1 4 - - 2.7 -
Iserles-Ngrsett (5.7) 2 - 29 -
Iserles-Ngrsett (5.8) - 32 -
Newton-C. (4.3) 2 39 57 6.0 6.0
Lagrange (4.4) 40 64 6.8 6.8
Radau IIA (4.6) 49 53 5.3
Newton-C. (4.7) 3 31 31 83 83 85 85 8.5
Lobatto IITA (4.8) 24 10 6.7 69 84 8.6 8.6
Lagrange (4.9) 33 36 6.1 82 98 8.8 8.8
Radau IIA (4.10) 37 21 56 64 6.9 6.9
Newton-C. (4.11) 4 30 26 54 56 56 6.1 68 77 8.7 10.0 9.5
Lobatto IIIA (4.12) 13 -10 -05 44 42 60 6.1 73 80 89 9.6
Lagrange (4.13) 23 1.0 1.7 52 56 66 78 88 9.8 109 10.5
Radau IIA (4.14) 22 09 1.5 52 62 7.1 87 87 8.6 8.6

Table A.3b. Problem (5.1): Efficiency test of fourth-order methods.

Method p m k mL/h=4 mL/h=8 mL/h=16
Iserles-Ngrsett (5.7) 4 2 2 2.4 29 3.6
Iserles-Ngrsett (5.8) 4 2 2 2.7 3.2 38
Newton-C. (4.3) 4 4 2 4.7 54 6.0
Newton-C. (4.7) 4 4 3 6.1 7.3 8.3
Lobatto IIIA (4.8) 4 4 3 6.1 6.6 6.9
Lagrange (4.9) 4 4 3 6.5 7.9 8.2
Radau IIA (4.10) 4 4 3 50 5.8 6.4
Newton-C. (4.11) 4 4 4 4.7 52 5.6
Lobatto ITIIA (4.12) 4 4 4 4.0 4.6 44
Lagrange (4.13) 4 4 4 39 5.0 5.2
Radau I1A (4.14) 4 4 4 4.6 5.0 5.2
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Table A.4a. Problem (5.3), e=10-3: Results for diagonally iterated correctors and for (5.6), (5.7) and (5.8).

Method kLhm=l m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10 m=oo
Crouzeix-Alex.(56) 1 1 - - 0.8 -
Iserles-Ngrsett (5.7) 2 - 1.1 -
Iserles-Ngrsett (5.8) - 1.2 -
Newton-C. (4.3) 2 11 23 36 33 33
Lagrange (4.4) 1.1 21 26 2.7 2.7
Radau IIA (4.6) 1.6 3.0 24 24
Newton-C. (4.7) 3 09 28 34 45 4.2 4.2
Lobatto ITIA (4.8) 08 19 27 38 49 47 4.7
Lagrange (4.9) 09 32 36 41 39 38 38 3.8
Radau ITA (4.10) 1.0 21 27 36 4.0 4.0
Newton-C. (4.11) 4 09 25 33 43 48 58 55 54 54
Lobatto ITIA (4.12) 06 14 21 30 42 52 56 5.6
Lagrange (4.13) 08 18 28 37 48 62 59 58 58
Radau IIA (4.14) 08 18 29 41 48 51 5.0 50
Crouzeix-Alex. (5.6) 1 2 - - 2.0 -
Iserles-Ngrsett (5.7) 2 - 2.9 -
Iserles-Ngrsett (5.8) - 22 -
Newton-C. (4.3) 2 1.5 29 48 43 43
Lagrange (4.4) 1.6 28 35 35 36 3.6
Radau IIA (4.6) 1.7 30 34 32 32
Newton-C. (4.7) 3 14 33 45 59 54 54
Lobatto IIIA (4.8) 1.2 19 36 49 6.0 6.0
Lagrange (4.9) 14 34 49 51 5.0 5.0
Radau IIA (4.10) 1.5 24 37 48 52 52 53 5.3
Newton-C. (4.11) 4 13 29 43 56 51 57 6.8 68 6.7 6.7
Lobatto IIIA (4.12) 1.1 09 1.1 34 42 52 74 66 6.8 6.8
Lagrange (4.13) 12 19 24 46 54 66 74 172 7.2
Radau I1A (4.14) 12 19 23 55 57 68 64 6.4
Crouzeix-Alex. (5.6) 1 4 - - 39 -
Iserles-Ngrsett (5.7) 2 - 3.1 -
Iserles-Ngrsett (5.8) - 3.1 -
Newton-C. (4.3) 2 19 36 54 5.1 5.1
Lagrange (4.4) 20 35 43 44 44
Radau IIA (4.6) 20 33 43 41 4.1
Newton-C. (4.7) 3 17 28 56 70 6.6 6.6
Lobatto IIIA (4.8) 16 07 46 57 175 13 7.3
Lagrange (4.9) 1.8 35 58 62 6.1 6.1
Radau I1A (4.10) 19 19 46 59 63 6.3
Newton-C. (4.11) 4 1.7 24 54 59 56 60 6.7 77 82 80 8.0
Lobatto IIIA (4.12) 1.0 -1.2 -09 52 40 55 61 70 7.8 83 8.2
Lagrange (4.13) 1.6 0.7 14 53 59 69 81 88 8.8
Radau I1A (4.14) 16 06 11 56 62 74 77 18 7.8

Table A.4b. Problem (5.3), e=10-3: Efficiency test of fourth-order methods.

Method p m k mL/h=4 mL/h=8 mL/h=16
Iserles-Ngrsett (5.7) 4 2 2 2.9 3.1 3.7
Iserles-Ngrsett (5.8) 4 2 2 2.2 3.1 3.9
Newton-C. (4.3) 4 4 2 3.3 4.3 5.1
Newton-C. (4.7) 4 4 3 4.5 5.9 7.0
LobattoITA (48) 4 4 3 3.8 4.9 5.7
Lagrange (4.9) 4 4 3 4.1 5.1 6.2
Radau ITA (4.10) 4 4 3 3.6 4.8 59
Newton-C. (4.11) 4 4 4 4.3 5.6 5.9
Lobatto ITTIA (4.12) 4 4 4 3.0 34 52
Lagrange (4.13) 4 4 4 3.7 4.6 53
Radau ITA (4.14) 4 4 4 4.1 55 5.6




Table A.5a. Problem (5.3), e=10-3: Results for diagonally iterated correctors and for (5.6), (5 .7) and (5.8).

Method

kLhm=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10 ... m=o

Crouzeix-Alex. (5.6) 1 1 -
Iserles-Ngrsett (5.7) 2 -

Iserles-Ngrsett (5.8)

Newton-C. (4.3)
Lagrange (4.4)
Radau IIA (4.6)
Newton-C. (4.7)

Lobatto IIIA (4.8)

Lagrange (4.9)
Radau 1A (4.10)

2

1
1
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0
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Radau ITA (4.14)

2 0.6
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Crouzeix-Alex. (5.6) 1 2 -

Iserles-Ngrsett (5.7) 2
Iserles-Ngrsett (5.8)

Newton-C. (4.3)
Lagrange (4.4)
Radau IIA (4.6)
Newton-C. (4.7)

Lobatto IIIA (4.8)

Lagrange (4.9)
Radau ITA (4.10)

Newton-C. (4.11) 4
Lobatto ITIIA (4.12)

Lagrange (4.13)
Radau IIA (4.14)

2

3
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Crouzeix-Alex. (5.6) 1 4 -

Iserles-Ngrsett (5.7) 2
Iserles-Ngrsett (5.8)

Newton-C. (4.3)
Lagrange (4.4)
Radau IIA (4.6)
Newton-C. (4.7)

Lobatto IIIA (4.8)

Lagrange (4.9)
Radau ITA (4.10)

Newton-C. (4.11) 4
Lobatto ITIA (4.12)

Lagrange (4.13)
Radau IIA (4.14)

2

3

y-d»—lv—l»—ln—l»—li—lv-dNNr—t.
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- 0.8
1.1

1.2

23 3.7
21 26
30 24
29 34
1.9 2.7
3.2 36
21 27
25 33
1.5 3.0
1.8 4.2
1.8 33
- 2.0
29

22

29 48
28 35
30 34
4.7 45
26 3.6
34 49
28 3.7
35 43
23 39
25 4.9
25 42
- 3.8
3.1

3.1

36 54
35 43
33 43
44 5.6
33 46
39 6.2
35 46
44 54
29 38
32 57
32 51

N oo N0
O = J W =

33
2.7
24
42
54
3.9
4.4 44
5.9 59
6.7 98 7.8 7.8
6.1 6.0 6.0
6.3 6.6 6.6
4.5
3.6
32
54
7.2 7.2
5.0
5.8
7.7 1.7
8.7 104 103 10.2 10.2
7.4 7.4
83 8.7 8.7
5.7
44
4.1
6.7
9.0 9.0
6.2
73
9.5 9.6 9.6
10.7 12.6 12.6
8.8 8.8
104 10.8 10.8

Table A.5b. Problem (5.3), e=10-8: Efficiency test of fourth-order methods.

Method p m k mL/h=4 mL/h=8 mL/h=16
Iserles-Ngrsett (5.7) 4 2 2 29 3.1 3.7
Iserles-Ngrsett (5.8) 4 2 2 2.2 3.1 3.8
Newton-C. (4.3) 4 4 2 33 4.5 5.7
Newton-C. (4.7) 4 4 3 4.9 5.9 7.0
Lobatto ITIA (4.8) 4 4 3 3.8 49 6.1
Lagrange (4.9) 4 4 3 4.1 5.1 6.2
Radau IIA (4.10) 4 4 3 3.6 4.8 59
Newton-C. (4.11) 4 4 4 43 5.6 6.8
Lobatto ITIIA (4.11) 4 4 3 3.9 53 6.7
Lagrange (4.13) 4 4 4 42 5.5 6.7
Radau IIA (4.14) 4 4 4 42 5.7 7.0

25
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Table A.6a. Problem (5.5): Results for diagonally iterated correctors and for the methods (5.6), (5.7) and (5.8).

Method kLhm=l m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10 m=oo
Crouzeix-Alex. (5.6) 1 1 - - * -
Iserles-Ngrsett (5.7) 2 - * -
Iserles-Ngrsett (5.8) - * -
Newton-C. (4.3) 2 1.5 29 3.2 3.2
Lagrange (4.4) 1.6 32 3.1 3.1
Radau I1A (4.6) 1.8 25 2.5
Newton-C. (4.7) 3 14 24 3.1 45 49 4.6 4.6
Lobatto ITIA (4.8) 1.2 14 23 34 37 50 4.7 48 4.8
Lagrange (4.9) 14 26 3.1 44 45 4.5
Radau IIA (4.10) 15 17 25 34 35 36 3.6
Newton-C. (4.11) 4 13 22 31 35 38 43 54 55 56 57 5.7
Lobatto ITIA (4.12) 1.0 1.0 16 19 28 33 38 47 52 59 6.0
Lagrange (4.13) 12 15 20 26 37 44 49 59 63 6.4 6.4
Radau I1A (4.14) 1.2 15 21 26 37 46 51 54 52 5.2
Crouzeix-Alex. (5.6) 1 2 - - * -
Iserles-Ngrsett (5.7) 2 - 24 -
Iserles-Ngrsett (5.8) - 2.7 -
Newton-C. (4.3) 2 20 34 42 42
Lagrange (4.4) 21 39 4.0 4.0
Radau IIA (4.6) 21 34 32 3.2
Newton-C. (4.7) 3 1.9 27 37 49 58 59 5.9
Lobatto ITIIA (4.8) 1.8 14 28 42 46 53 6.1 61 62 6.2
Lagrange (4.9) 19 29 37 49 55 5.6 5.6
Radau I1A (4.10) 20 19 29 42 45 47 48 4.8
Newton-C. (4.11) 4 1.8 25 37 44 44 49 56 65 73 7.2 7.4
Lobatto ITIA (4.12) 14 * 1.1 28 34 40 46 53 6.0 6.6 7.7
Lagrange (4.13) 1.7 15 24 36 42 55 63 70 7.8 7.8
Radau IIA (4.14) 1.7 15 23 37 41 49 57 64 6.7 6.6 6.5
Crouzeix-Alex. (5.6) 1 4 - - 2.8 -
Iserles-Ngrsett (5.7) 2 - 3.0 -
Iserles-Ngrsett (5.8) - 33 -
Newton-C. (4.3) 2 24 39 50 53 54 5.4
Lagrange (4.4) 24 40 50 49 48 4.8
Radau I1A (4.6) 23 41 41 40 4.0
Newton-C. (4.7) 3 22 28 43 53 64 70 7.2 7.2
Lobatto IIIA (4.8) 19 * 34 46 54 59 70 74 7.6 176 7.7
Lagrange (4.9) 22 32 44 53 63 6.7 67 68 6.8
Radau IIA (4.10) 23 18 35 46 56 58 6.0 6.1 6.1
Newton-C. (4.11) 4 21 24 43 51 51 55 6.1 68 1.7 8.5 9.2
Lobatto IIIA (4.12) * * * 30 40 46 53 60 6.7 13 9.5
Lagrange (4.13) 1.8 * 1.7 42 48 56 66 74 82 9.0 9.3
Radau I1A (4.14) 1.6 * 1.5 42 47 55 63 7.1 8.0 8.0

Table A.6b. Problem (5.5): Efficiency test of fourth-order methods.
Method p m k mL/h=4 mL/h=8 mL/h=16
Iserles-Ngrsett (5.7) 4 2 2 2.4 3.0 3.6
Iserles-Ngrsett (5.8) 4 2 2 2.7 33 39
Newton-C. (4.3) 4 4 2 3.2 42 53
Newton-C. (4.7) 4 4 3 4.5 4.9 53
Lobatto IIIA (4.8) 4 4 3 34 42 4.6
Lagrange (4.9) 4 4 3 44 4.9 53
Radau IIA (4.10) 4 4 3 34 42 4.6
Newton-C. (4.11) 4 4 4 3.5 4.4 5.1
Lobatto IITIA (4.12) 4 4 4 1.9 2.8 3.0
Lagrange (4.13) 4 4 4 2.6 3.6 4.2
Radau ITIA (4.14) 4 4 4 2.6 3.7 42




