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1 Introduction.

The use of a form of exponential fitting for the semiconductor continuity equations is sug-
gested by the success of the Scharfetter-Gummel discretisation[1] in one dimension and variations
on that discretisation in two dimensions. Numerous derivations of Scharfetter-Gummel type discreti-
sations are given in the literature, for instance by Selberherr{2], Markowich{3], Bank et al.[4], Brezzi
et al[5], and others. This paper extends a one dimensional exponential fitting technique, discussed
by Hemker[6], to the two dimensional problem.

In section 2 we introduce the version of the semiconductor continuity equation, that we use in
this paper. We introduce several bilinear forms, related with the coefficients in this equation. In sec-
tion 3 we prepare the way for the error estimates. The next section discusses the discretisation. In
section 5 we collect some technical results and in section 6 we derive two error estimates. These
error estimates are based on the techniques used by Douglas and Roberts[7]. The proofs in section
6 use all properties of our special discrete system, in particular the use of a quadrature rule for the
approximation of certain integrals in the discrete system. To show the method in action, in the next
section we use it to find a discretisation for a simple one dimensional equation, where we can com-
pare our result with a known exact solution. In the last section we discuss our findings.

2 The equation.
We consider the following problem, find u € H?() such that:

—div (%(gmd u+u§)) +vyu=f on & and )
u = —g on 0Q.
Where @ is a bounded rectangular domain in R*. We impose the following restrictions on the
coefficients:
a€EW'*(@Q) and 3 AER:a >4 >0 on Q, ¥))
—i—ew"‘”(ﬂ) on 2, 3)
B = (B1,8)" with 8,8, € W-=(®), @
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yeEW!®(@Q) and vy > 0 on Q. ®)

Where W12 (Q) , H3(Q) = W'%(Q) are the usual Sobolev spaces[8], and

H(div;Q):= { € L2(@)? | divT € L*() },
with scalar product

(0, Dugive) = !; ordp + ‘s{ divodivTdy,
is a Hilbert space (see also Girault and Raviart, [9] formula 2.15 in section 2.2). We assume, that
the equation has a solution, that f € L*(Q) , g € L%(3Q) and, that

ajﬂ gt dBR) < C|7||auwey V 7€ H(div;Q).

If the Einstein relations[2] hold, then the stationary semiconductor continuity equations take
the form (1). Here B corresponds with the gradient of the electric potential, the term yu
corresponds to a linear approximation to the recombination term and 1/« corresponds to the elec-
tron or hole mobility. The exact correspondence depends on the choice of scaling[10].

We use the following bilinear forms to formulate the weak mixed form of this equation,

(s,6) = gstd,u Vv st € L2Q),

a(o,7) = gao-T dp V e,7 € Hdiv;Q),

b(o,f) = é Botdp V s€H@vR),t € LXQ),
c(s,t) = gyst dp V st € L2(Q) ,

<gh> = é/s;gh dup V gh €L12(39).

Given these definitions, we see immediately, that any solution u € H2(Q) of (1) generates a
solution (o,u) € H(div;Q) X L*(Q) of

a(e,7) — (divT,u) + b(t,u) = < gTHe > V 7€ HdivQ), (6a)
(dive,r) + cut) = (fit) ¥V teL*Q). (6b)
Where 0 = —-‘}?(gradu + uﬁ).

To simplify the notation, we denote the Cartesian product of a normed linear space E with
itself by E in bold faced type, E:= EXE. We define

2
L) e =G lmlD* ¥ (r1,pm2)" €E.
i=1

3 Preparations.

In this section, we introduce a partition of our domain and we define the adjoint problem of
(1), which we use in the derivation of one of our error estimates. Next, we introduce several special
projections, that are needed in the definition of our approximation spaces and in the derivation of
the error estimates. Finally we give a general error estimate for mappings, that leave all polynomials
of degree lower than m +1 invariant.



3.1. The partitioning of the domain.

Before we treat our discretisation, we define our approximation space. We introduce a set of
rectangular, open subdomains @, of ©, where k € K, K an index set. We assume, that the subdivi-
sion is regular and has the following two properties,

U ﬁk =Qand V ki€eKk#l: QN = 2 .
kEK

On {, we use orthonormal coordinates, with the unit vectors ; and @, parallel to the edges of Q.
We define 7;:= 7€, for 7€ L*(Q) and x,:= X"¢, for ¥ € R2. If we define %} to be the lower left
corner of & and X + k, the upper right corner of £, then

% = (TER|0 < @-R)E < hd, for i=12). 0)

We use the notation x; for the characteristic function of €. (The characteristic function of a set is
the function that is equal to one in all points of the set and zero elsewhere). The edges of Q, are
the sets:

T = {XREQ |G = @+jh)e } for i=12,j=0,1. ®)
Xki,; 18 the characteristic function of side Iy ; ;.

3.2. The adjoint problem.
We use the following definition for the adjoint problem of (1) (cf. Douglas and Roberts [7] ),

w € H(Q) , ®
1 B _
—div (-&-grad w) + ;-gradw +yw=f,
w =20 on 9Q.

The adjoint problem is called regular, if there is a unique solution w for every f € L%(Q) and this
solution satisfies ||w || i) < C||f]|| @) for every f € L3(Q).

Remark: Both in the above equation and in the rest of this report, the upper case C, without a sub-
script, denotes a generic constant. It may have a different value at each appearance.

The weak mixed form of the adjoint problem is:

(r,w) € H(div; Q) X L2(Q) , (10)
a(r,0)—(dive,w) = 0 V o € H(div;Q) and (10a)
(div 1,0)=b(r,0)+c(w,2) = (f;t) V t € LXQ) . (10b)

Any solution w € H*(Q) of (9) will generate a solution ( —-—;—grad w,w) of this problem. If (9) is
regular, then this solution satisfies ||w || i@ + ||7|| @ < C||f|| @ -

3.3. Some projections.

We introduce several local projections, we use these to define four mappings, P, P, , II, and
II,. First, we define P[] to be the orthogonal projection from L*(;) to the space of constant
functions on ©, and we define P[T; ;] to be the orthogonal projection from Lz(l“k',-, ;) to the space
of constant functions on T ; ;.

We use P[€;] to create two global mappings, P,: L*(R) — L%(Q),

Pif = 3 xPIUNN) V fELXQ), (11a)
k EK
and P,:L*(2)—L2(Q),
PB = 3 x [POIBZ R + PIRIETE] v Feli@. (11b)
kek



Next, we introduce two mappings, based on P[T;;]. These mappings have as their domain the
space 2,

S:= {7 € H(div;Q) | 7|49, Tag, €202, V kEK).
This space is similar to the one introduced by Roberts and Thomas in formula (1.10) of their

report[11].
To simplify the definition of these mappings, we introduce local coordinates on each cell Q,

> (x1 — x1)/ B
8= g - Xi,2)/ b2 12)
The mappings are defined as follows:
2
M= 3 %S [0-&)PThiolr) + &PTuial)]@ a3
Kek i=1
- 2
= 3 x 3 (110 Plasolr) + meiPTeir )@ (14)
KeK =1

where i = 1,2 denotes the horizontal or vertical direction respectively, and where

_ | expli it PI2IB) — 1
e = exp(hy,; PI2](B)) — 1 if PI2)(B) # 0,

§k.i if PI](B) = 0.

So, for I, we get the i component on £, by linear interpolation between the projections of this
component on the two sides orthogonal to . For II,7 however, we obtain the same component by
using an exponential function to interpolate between the projections of this component on the two
sides orthogonal to €.

We introduce the following finite dimensional function spaces,
Vi = (), Wy = P(LA®) and X, = T(3).

¥V, X W, is the Raviart-Thomas-Nedelec space of index 0 for rectangles. This space was described by
Douglas and Roberts, [7] Raviart and Thomas[12] and, for & C R”, by Nedelec[13]. In this paper
we use the usual space, V;, X W, as the trial function space and X, X W), as the test function space.
In effect, we use exponential test functions instead of the usual linear test functions. Thus, we obtain
a kind of Petrov-Galerkin discretisation for mixed finite elements.

3.4. Error estimates for projections.

Later we need the classical projection estimates from Ciarlet and Raviart[14]. We take
1<p <ow0<!<mt+tland GEAW" LP(Q,), WP (). We assume, that G leaves polyno-
mials of degree less than m + 1 invariant. We must distinguish two cases, if p = oo, then the esti-
mates given below always hold, but, if 1 < p < oo then these estimates only hold for |h| small

enough.

m+1
ax,k
V u e WOTP@Q) 1 |lu — Gul|lwegy < C(l,m,p,k)”u||wwp(9k)————;mx , (15)
where Ay max = max(|hg1|, Ak |)s Aemin = min(| A |, |Ax2|). For a finite index set K and
u € W2TLP(Q), this implies:
e
4 = Gullwe@ < Clmp)|lullw @ (16)
where A, = I{nai Rk max> Amin = ’{mtll( i min- This corresponds to theorem 5 of Ciarlet and
c e S



Raviart[14].

4 The discretisation.

We replace the coefficients « ,? and y by two dimensional step functions. To write our
modified problem in weak form, we need to define three new bilinear forms,

a(o,7) = !{o-'rP,,tx du V o,71EZ,

k

B(o,t):‘—' fto-P,,ﬁdp VoeZre L}Q),
Q
c(o,t):= [ stPyydp V st LXQ) .
Q

Then we replace a by a,, an approximation that takes into account the quadrature, where

Q,) 2
ajom = 3 PRI B & [P[rk,i.ol(om) + P[Fk,f,ll(o,-m] Vo,reX; (7
eK i=1

a, determines an approximation to @ by replacing the integral of o; 7; over £, by the average of the
projections of this expression on the two sides orthogonal to .

We approximate the solution (o,u) of (6) by (a),u;,) € V), X W}, where

a(04,7) — (UpdivT) + b(r,u) = < Tl > V 1E€X,, (18a)
(div o4,1) + C(up,t) = (i) ¥V tEW,. (18b)

If we use a in stead of a,, then our discrete problem does not always yield an M-matrix. Con-
sider, for instance, the corre_sPonding discretisation on a uniform mesh with mesh-width 4 in one
dimension with a = 1, ? = 0 and vy constant. If ayh?/6 > 1, then the off-diagonal elements of the
discretisation matrix for u, after elimination of o, through static condensation have the same sign as
the elements on the diagonal.

The idea of using linear trial functions and exponential test functions was used by Hemker for
singularly perturbed two point boundary problems[6]. For the one dimensional case, the introduc-
tion of exponential test functions follows from the requirement, that the Green’s function of the
problem can be approximated by the test functions.

In the following sections, we prove, that the solution of our discretisation (18) is an ah)
approximation to the solution of our original problem.

5 Several technical results.
This section contains some technical results, collected for later reference.

5.1. The properties of I, and ﬁ,,.
We start of with three lemmas for the two mappings IT, and ﬁ,, from X into itself.

Lemma 1.
1,1, = 11, (19a)
I, 11, = 11, , (19b)
(div o,Pyt) = divIlot) V 6 €2, 1€ L2(Q), (19¢)
<Myttt > = < Myritsg > V r€3. (19d)
Proof.

Both mappings are based on the same projections P[T; , ;1 so (19a) and (19b) are trivial.
To prove (19¢) we use a special case of Green’s theorem:



2
Q[div odp = 3 H}(zkk) [P[rk, 1l(o;) — P[rk.i,O](oi)] .

i=1
If we combine this with the definition of II,, the proof of (19¢) is complete. (19d) follows immedi-
ately from the definitions. [J

In lemma 2, we give estimates for the norm of the image of ¢ € = under II, and fI,,.

Lemma 2.
If 6 €= and we define a;; = P[T,ol(s;) and b,; = P[[;,](0;), then the following inequalities
hold for || Hha ” ]_z(gk) and ” HhU ” LZ(Q“),

u( ) 2 #E)
o2k + o) < Iollbey < =53 @ + o). (20a)

-~ 2
1ol @) < 28R (ak; + b)) < 12||Io||f2g, - (20b)
i=1

Proof.
Formula (20a) follows immediately from

H"o'ﬂk = E [(l_gk,i)ak.i + gk,,‘bk',’]?i .

i=1

N

By definition,
2

Holg = 3 [(1—"Ik.i)ak,i + ﬂk,iak,i]?;,
i=1

SO

i=1

- - 2
JHS'HS dp = 2 L{(ai.i(l"ﬂk.i)z + bi.ini’,i + 2ak.ibk,i(l_nk,i)"lk,i)} <

2
2u(R) S (ai; + bi)) -

i=1
This is the first inequality of (20b). The second inequality follows (20a). U

Lemma 3 gives an estimate for || (l:I,, =)0 || 12@)-

Lemma 3.
If 6 € 2 and we define Qi = P[I‘k_,-'o](a,') and bk,i = P[l"k_,-'l](a,), then
| (T~ I || vey < @1
n[2V2 , 2V6maxthe | PIAAD | . ez | PI2EDD | (1 Teo oy -
Proof.
||(Hh—ﬁh)nh0||%}(szk) =
2 2
Qf 2 [(ﬂk,i“ik,i) (@i — bk.i)] dp <
2 2 2 2
2 i — k1) > (@i — bii)
i= i=1
2 2 N2 :
g{ 2 nki—gk.i) dp 2 (af; + b%’,i) .
i=1 i=1
This implies,



.‘"(QI\ )

H(Hh*ﬁh)nh“!lff(szk) < [2 (at,; + b} x)J

8]| ho ]| c, -
Furthermore,

2
> i —&0) dp =

i1
é By i(exp(PIR1(B)x) — 1) — x(exp(P[](B)Ak) — 1)) d
J by i(exp(P[ (B ;) — 1) e

To obtain the desired result, we need the following general inequality,

2
x(exp(bh)—1) — h(exp(bx)—1) | _ 2
[ h(exp(bh)— 1) J < @by,

where x,h,b ER, and 0 < x < h. We derive this inequality,

X h
| x(exp(bh)—1) — h(exp(bx)—1)| = | [ [ bexp(bz) — bexp(bw) dz dw| =
w=0:=0
x h z x h z
| [ [ [ bPexpvyadvdzaw| < [ [ | [ blexp(bv)dv | dz dw <
w=0z=0 v=w w=0z=0 v=w

h h z h h
[ [ | [ brexpv)dv | dzdw < [ [ blrexp®v) dv dz dw <
w=0z=0 = =

V=W w=0z
h2b(exp(bh)—1) .

Hence

||(Hh_ﬁh)nh°”:lz:‘(ﬂk) < 2u(f) [2 (hy, i P2 N(B)) J [2 (at; + b))

2
2 [2 (i PIUIBY | || o || £, -
Py

This completes our proof. [J

5.2. The properties of a.

We mention some obvious properties of a. If 6,7 € L2(Q), then the restrictions for , as given
in (2), imply, that

a(e,m) < |la|| =@ llollve I 7llve
At kg < a7 V reX@).
We see, that a is both L*(2)-bounded and L*(Q)-elliptic. In the next two sections we discuss the

corresponding properties for a and a,.

5.3. The properties of a.
Lemma 4 shows, that @ is L?(Q)-bounded and LZ(Q)-elljptic.

Lemma 4.
faeW'*@),a >4 >0 on Q a(s,7):= fP,,(a) ordy VY o1 €L4Q), then
Q

lall sc@rern < llallw=@ . (22a)



amm = A||7||ke V TELX@). (22b)

Proof.
It is easy to see, that
ady
P[Q (« < ||lalli=gy ,
this implies (22a). Inequality (22b) follows from
ady
P[Q)(a) = — = A
(@) 1(E2)

5.4. The properties of a,.

We discuss the interaction between II, IT and a,. We show, that a, is L?(Q)-bounded on V.
We also show, that a, is L?(Q)-elliptic on V}, and X,. We first notice, that the definitions of II,, II,
and a, imply:

a,(0,T1y7) = a,(0,T0) = 3 (0,1 = G,(0.1L,1) = 30,0 = 3o Mn) . 23)

Lemma 5.
If 0,7 € 2, then

4,(I0,1140) > 4 |, 2 (24a)
a,(,0,T,0) > i:—”ﬁ,,oni:(m, (24b)
a,(TI,0,Im) < 3|l all =@ |0 |l v@ [ 17l L@ (240
i—a(ﬁ,ﬂ,ﬁ,ﬁ) < a0 < G,(n I . 24d)

Proof.
We define some auxiliary variables, a;; = P[Ty;0l(0), bx; = P[Lxi1l(0), ki = P[T;;0l(r) and
di; = P[T4;11(7). According to (23) and (17), we have

H( k) &

a,(I1,0,IT40) = aq(H,,o H,,o) = > P)(e

kEK
Now, equation (24a) follows from (20a) and (24b) follows from (20b).
We use lemma 2 and Cauchy-Schwartz twice to obtain

#( k) &

2(kl+bkl)-

a,(Tlo,II7) = 3 P[&](a)

kK EK

2 B
> Pl {2 (at; + bi,i)] {2 (2, + di)
= i=1 i=1

3all =@ > w0 llzey 1Thtllvey < 3lall@ 1Tollve 1HaTllve -
kekK

2 (apich;i + bidii) <

1
<

(

This proves (24c). Next, we verify (24d),

aym,Im) = X P[ﬂkl(a)u(ﬂoz [—— + i’;— + ‘k-':k-' + dk»6% <
k€K
Z Pl e ‘)2 (s + di).

k ek i=1



and

- - 2
E(HhT,HhT) = 2 P[Qk](a)#(ﬂk)Z [C%,i(l - nk.i)z + dﬁ,mi.i + zck,idk,i(l - ﬂk.i)’ﬂk.i] =

Kek i=1
2
2 3 PIUNOMR) T (cki + di))
Kex i=1

Together with
.“( k) &

a,(IIn,1I1) = 3 P[)(®)
kEK

2 ( Ck,i + dl2< 1)
this implies (24d). O

5.5. The difference between a and a,.
For our error estimates, we need an upper bound for the difference between the value of
a(oy,7) and that of a,(o},7) for o, € ¥V, 7 € H'(R). Because
la(on,7) — alop,n)| < 2hualallw=@llonlli@ 7]

an estimate for |a(o;,7) — a,(0;,7)| suffices. Such an estimate is derived in lemma 7. In lemma 6,
we prove a general inequality, needed in the proof of the second lemma.

Lemma 6.
Let f € C(10,h,]) and g € C'([0,h,]X[0,k,]) then
h, h, hy
f [ fx) [gxy) — 8(0,2) dz| dy dx | < (25)
x=0y=0 =0
h, hy h,
[ [f()«)[dxf / |0g(w,p)/dw | dw dy ,
y=0w=
Proof.
h, h,
| [ [ S |gxy) — —f g(0,2) dz| dy dx | =
x=0y=0 =
h, h, 1 h,
| [ f& [ |gey) - h—/ g(0,2) dz| dy dx | =
x=0 y=0 2:=0
h, h, h, h,  x
[ f [g(xyy) - g(O,y)] dydx | = | fof(x) J fo dg(w,y)/dw dw dy dx | <
x=0 y=0 X = y=0:=
h, h, h, h, h,
j S [ f [3gwy)/ow| dwdydx < [ |fx)] | [ 19gw,p)/0w | dw dy dx
y=0w=0 x=0 r=0w=0

This implies (25). O

We are now ready to derive the desired estimate.
Lemma 7.
Let o, €V} and 7 = (1,,7,)7 € H(Q), then

la(on,m) — aglon,m)| < 6]la|l L=@) hmax llonll@l7]o@ - (26)

Proof.
To simplify our notation, we introduce a;; = P[T;0)(04), br; = P[Ty;11(04), Thso = P[Ts;0l(r)



and 7 ;1 = P[Ty;11(r;). We prove the lemma for 7 with 1,7, €C 1(S_Z), and extend by density.
We consider the difference between the two forms on one subdomain & with P[2;](e) = 1.

2
| [ ox dn = @) 3 [P[rk_.».(ﬂ(o,,_,«n) + P[rk.,«.u(o,,..-n)]l =
K i=1

2 2
p [(l—gk,i>ak,,- - gk,.-bk,i] m dp — (@) S [P[rk_,-.o](ak..-f,) + P[rk,i.u(bk.,-f,-)]l =
el ’ i=1

=1

2
> [(I—Ek,i)ak.m — &b — YaapTrio — ‘/2bk.i7k.i,1] du| =

=1

N

2
> [(1—£k.i)ak,,-(n-—fk,,-.o> b b =) + (I—E—Wag o + (e—l/z>bk.,-fk,.».1] dp|

 i=1

2
> [IJ (1=&.) ai(ri— 70 dp| + |g{ €k bri(Ti—Thi1) d#l} :
i=1 x ,
As a result of the application of lemma 6 to each term in this sum, we find

2
%2 [|ak.i|hk.ihf |97;/0x; | dp + lbk.i|hk,in[ | 97; / 8x; | d!‘] <
i=1 k k

12 .
'2‘2 hy i g{(lak,il + |bil) |97;/0x,| dp <
i=1 '«

1 2
'Z_hk,max 2 H lak.i | + |bk.i | H () “ a'ri/axi “ @) <
i=1

2
Brmax S |1@h: + &)™ || @ 119770 || gy <

i=1

2 2
Piemax || (S @k + BEN* lv@ (2 @7,/3x))" || r@y <
= i=1

4
6hymax || 0 [l 2@ |l @ -
The application of the Cauchy-Schwartz inequality to this last term and insertion of a yields the fol-
lowing result,
|@(0,7) — g(0h,7)| < 6hmaxllall @ llonll @ I 7]l He@) -

Because C'(Q) is dense in H'(Q), the formula also holds for 7,7, € HY(Q).

|

6 The error estimates.

We use the standard estimates for ||6—1II,0|| @ and ||u—Pyul|3g), as described in sec-
tion 3.4, to reduce the problem to deriving bounds for || Pyu—u,|| 1’ and | II,0— 04 || L) We
discuss two possible derivations of an (h) error bound. The first derivation needs the assumption,
that h . is ”small enough”, the second derivation places a condition on an approximation of the
discrete version of the adjoint problem.

6.1. The first estimate.

The following two lemmas show special properties of our discretisation. We need these proper-
ties to derive the error bound.

Lemma 8.

- 10 -



Lett €2 ,t € L), then

b(Iy7,t—Pyt) — (div Iyn,t—Pyt) = 0 . @7
Proof. . .
This is true, because P,,(ﬁ)-II,‘T — div I1,7 is constant on ©,. O
Lemma 9.
If (o,u) is a solution of (6) and (o;,u,) is a solution of (18), then
(div (6—0,), Pyt) + c(u—u,,Pyt) =0 V t € L2(Q) . (28)
Proof.

We take (18b),
(div 04, Ppt) + c(uy, Prt) = (f,Pyt),
¢ is derived by orthogonal L*(£,) projection, so this implies
(div 0y, Ppt) + c(uy, Prt) = (f,Pye) .
If we subtract this from (6b), (div 6,P4t) + c(u,Pyt) = (f,P,t), then we find (28). O
We are now ready to give an estimate for || II,6—0, || ).

Theorem 1.
If (o,u) is the solution of (6), (6;,uy) is the solution of (18) and (o,u) € H'(R) X H3(Q), then
3 Ch >O,D > 0: ||Hh0"‘0h“]_}(9) <C,,+D|lPu-—u,,||Lz(g), (29)

where C, is Ah p,x) and D is independent of A ,, .

Proof.

According to (24a), A ||II,6—0, || 12;(9) < a,(Il,06—0y, II,6—0;). From the definition of a,, 11,
and II,, it follows, that

a,(Iy0—04,I,0—0;) = 3,004, I, (0—04)) = @ (004, IT4(0—04)) .
This is the starting point for the derivation of our error bound. Equations (6a) and (18a) imply, that
a,(0=0,,Ty(0—0y)) = @—a)o,[Li(0—0p) + a(o,[,(0~04) — (o4 TT40—0y)) =
@ —a)o, [Ty(0—0y)) + (div Tylo—o0y).) — b(IT4(0—0,)u) +
< g o—0p) > + bL(o—0y)u) — (div (6~ 0p)u) — < g Il0—0,) > =
(a;—a)(o, ﬁh(ﬂ —o0p)) + (div ﬁh(o_ op) ) — (b— 5)(ﬁh(°— Op)u) — Z(ﬁh(o_ o), u) +
B(TT(0—op),up) — (div TTy(0—0y),uy) .
Where we give b —B, Eq —a etc. their obvious meaning. If we use lemma 8, we find:
A|o=04llf < @—a)oli0~0y) ~ (b—b)IL©e—0y)u) +
(div T,(0—0y), Pyu— W@ ~ b(IL,(0—0,), Pyu—uy) -

If we use (19b) and (19¢) to prepare the way, then the application of lemma 9 to this expression
results in:

A|o=04 |0 < @—a)o,lLi0—0y) — (b—b)I4(e—0p)u) —
c(u—uy, Phu—u,) — E(fIh(o—o,,),Pu—u,,).
This can be written as:
A||To—0||t@ <

@,—a)(0,1L,(6—0,)) — a(o,(L,—T)(0—0y) + @—a)o,Iy(e—0y) — (b—b)II4(0—0y),u) —
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(c—O)u— Py, Py — ;) — c(Pyu—up, Pyu—uy) — b(ALy(6—0y), Ppu—um) .
Using the estimates from lemma 7, lemma 4 and lemma 3, we obtain:
Ao — o] @ <
6hma || @]l =@ | 0l @ | TTi(e—on) |l + |l all =@ Il o]l @5k max llﬁllmmllnho—% @ +
2 max || &l w=@ [l 0l c@ 1T 00 | @ + 4hmax [ Bll w@ 1T(0 — o) [l Nl ll vy +
1B )l=@ | o — onllv | Pru = || @y +
Yl we@ Qhmax|lu—Prull @ + || P —unll @) || Patt—tn | L@ »
where we used, that:
|w—=PiW) || =@ < Hmaxl|W|lw=@ V W EWL=(Q) .
We use lemma 2 to replace ﬁ,, by II,,
Ao = o |lb@ <

llolla'@ [ll“llw"‘(ﬂ) (30h max + Shuae || Bll=@) + 48 g || B |l w=coy Il | L’(ﬂ)] [|TIh(6—0n) |l @ +

1Bl | Tho — o4 |l || Phts—un || 12y +
Nyl we@ Chmax ||u—Putt|| i@ + | Pat—un |l @) || Patt—tn|| o) -
If we define

Cri=lollwe + lullva) [lallw-eG0 + sIBle) + 8lBlv-o|

€y 1= max [1 Bl @ s 1Yl @ > 11 @ [l = Paul L’(ﬂ)] ’
then the above expression can be written as:
Ao — o4l f2@ < hmaxCr [ TIi(e—0p) || 2@ +
Co(|Thho — ox )l + hmax + || Patt — un || @) | Prv— i || ) -
If we use the following notation,
x:= || Pyu—uy |l vy >y = 1o —onll g »
then we find
Ay? < Crhpyy + Cop + hpx + X)x <
Co(Crhmax + x)y + Colhmax + x)x < Co(Crhgax + x)p + Colhmax + X))t pax + X)),
This implies, that
R 2 — Y(Crhmax + X) = (hmax + x)F < 0.
We know, that 4 , C; , x , y €]0,00[, so y must lie between 0 and the positive root of this polyno-
mial,
o 2 2\ !
0<y< —ﬂ((clhmﬂ + x) + (Crhgax + X)° + dhpa + X)) < E—Aj((2+C,)hmax + 3x).
From this, (29) follows immediately. [

Next, we prepare for the second part of our error estimate.

Lemma 10.
If (o,u) is the solution of (6), (o;,u,) is a solution of (18) and (7,9) is the solution of the adjoint
problem for an arbitrary right hand side p € L%(Q), then

-12-



(div fI,,T,Phu—u,,) - I;(I:I,,T,Phu—u,,) + c(u—u,, Prq) =
a(o,f[,,'r—'r) + a(o—1I,0,7) + (a,—a)(o—0;,7) — (a,—a)o,7) + (b—-I;)(fI,,'r,u) .

Proof.
According to lemma 8 and lemma 9,

(div ﬁ,,'r,P,,u—u,,) - B(ﬁhT,P,,u——u,,) + c(u—uy, Prq) =
(div Tym,u—w,) — b(ym,u—uy) — (div (I,0—0,), Pyq) .
We apply (10a) to write this in another form and we use equation (6a) and equation (18a)
(div I:I,,T,u—u,,) - l;(l:I,,*r,u—u,,) — a(r,Il0—0a;) =
a@Iyr) — < glyrig > — G,(0,10,7) +
< gLty > — a(lo—o0p,1) + (b—b)ILymu) =
a(0,Il,7—1) + a(e—TIl40,m) + (@—2,)(0,7) + (b—Db)ILym,u) =
a(o,fI,,'r—'r) + a(o—1Il,0,7) + (Zq—a)(o——o,,,'r) — (ag—a)(o,7) + (b—g)(ﬁh'r,u) . O

Theorem 2.
If the adjoint problem (10) is regular, (o,u) is the solution of (6), (o,u) € H'(Q) X H2(R), (o,,u,) is a
solution of (18) and 4 y,, is small enough for the application of the results from section 3.4, then

| Pt —un || vy <
hacC Il allwe@Clollie + llonlla) +

(||B)||w"‘(9) T Y I @) || Pru—uy || L’(ﬂ)] :

Proof.
If we have an estimate for (P,u —uy,p) for all p € L?(), then we can use

_@n

e = ’
el e pei®r= ol e

to find JlP,,u - Up || - We use the regularity of the adjoint problem (10) to find
(,w) € H(R)X L*(RQ), such that
@, Pru—u,) = (div 1,Pyu—uw,) — b(r,Pu—u,) + c(w,Pyu—uy) .
If we rearrange the terms and apply lemma 10, we obtain
@, Pru—uy,) = (div ﬁ,,T,P,,u—u,,) - E(ﬂhT,P,,u—u,,) + c(Pyw,u—u,) +
(b —b)YAL,m, Pyu—uy) — b(r—TL,7, Pyu—uy) + c(w—Pyw, Pyt —uy) =
a(U,f[;,T—T) + a(e—1,0,7) — (a,—a)(0;,7) —
(b —b)Iymu) + (b—b)ALyr, Pyu—uy) — b(r— 1,7, Pyu—uy) + c(w— Pyw, Pyu—uy) .

We can use the regularity of the adjoint problem (10), lemma 7 and the projection error estimates
(15) and (16), to obtain

S . Pou—w)
pelihpe |p L@

| Por = || Ly <
Chis [l w-@ 1 olliey + allw @ llon e +

||F|IW"“(9) Jull 2@ + ||ﬁ||w‘v‘(sz) W Pru—up |l iy + I1¥]] Lr@ || Patt—uy || Lz(ﬂ)] .0
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If A gy is small enough, theorem 1 and theorem 2 together give an (h) error estimate. The use of
the results from section 3.4 on the solution of the adjoint problem may limit the range of allowable
h max. A more important limit on A,y is implied by the form of the estimate for || Pu—u || L@ -
The main problem is, that larger values of ||Z?>|| w'= @) decrease the range of &, for which the esti-
mate is valid. This problem can be avoided if we make an extra assumption. We discuss this in the
next section.

6.2. A different approach.
To improve our estimate of || Pyu — || 1%@), We consider the adjoint of the discrete prob-
lem. This means, that we look for (74,v,) € X, X W, , such that
ay(t,0) — (divo,y,) =0 V o€V, (30a)
(div 74,t) — b(ry,t) + cvp,t) = (fit) ¥V tEW, . (30b)
We call this system regular, if there is at least one solution for each f € P,(L*(®)), and that all
solutions for a particular f satisfy
max(|| I ||z » |7 llv@) + vl ce < CllPS Il ve » (30c)

with C independent of the mesh size. This is a somewhat less stringent regularity condition than
that given for the continuous adjoint problem (10). Note, that 7, € X}, so 7; is an exponential
function on @, for i=1,2.

An example of a general condition under which this system is regular is the following:

«>A4>0,y>Co >0 and ACy — ||Bll}<@y = C1 > 0. (31
To show this, we need the following relations,
Py(a)
[ h4 vy = Pu@B)mavs + Pa(y)vpvy dp = (32)
2
Py(@) 22,8 P, (B
T, — v P — ——— vy, dp = 32a)
é 4 h Po(@) h w(Y) P, (@) WVh dp (
Ph(ﬁ)""h 2 Ph(ﬁ)2 Th'Th
P y, — ———| + |P - 32b
é 2 (Y) | Vh 2P,(7) w(0) Py |4 (32b)

We know, that (div ﬁ,,o,P,,t) = (div IT,0,P,t), so, if we sum of (30a) and (30b) with 0 = II,7, and
t = v, we find

8, ILms) — b(mavs) + OB = (fivn) - (33)
According to (23), @,(r4,I4m,) = @,(L,74,II474), and by (24d) we have

%a(ﬁ,,o,ﬁ,,a) < a,(IL,0,1L,0) .

Hence

/ Pp(a)
h 4
This expression is identical to (32), so (32a) is smaller than (f,v,), combined with (31) this implies
G,
Il =@
In the same way, we find, that (32b) is smaller than (f,v,), together with (31) and (35a), this implies
Gy
(el =@ 171l @

ot — PaBymave + PaCyvivs dp < [ Palovn dp . (34)
Q

vall v < IIfll e - (352)

VA Nrallce < IfIlve - (35b)
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It now remains to check the bound on ||II,7,||. We consider the contribution of one subdomain
Q. If |7y || 2@y < |7 ll12@,) then (23) and (24d) imply,

a,(xh, rp) — bOGTho V) + OUVn V) =

P
J h4(a) Th'Tp — Ph(ﬁ).'r,,v,, + Ph(Y)Vth d“ >
Py(@) ®,(B)h)? ,
g{ 4 Ty Tp — Ph(‘y) + Ph(Y) [Ph(ﬁ).ﬁrh — vh] dp. >
P@ B 2
- 7-7—+Py[]> .T_v]d>
fl{ 4 Py(y) | v ) [PB)y — v | dp
— C
! 2 1 ,
Th |l LXQ, = ——— |11, 7 tay -
e 1™l = Jon 1Tl e,

If ” H’Th ” Lz(ﬂk) > ” Th ” LZ(Qk), thcn (23) and (24d) 1mp1y
3,0umh II73) = bOGTAVE) + TR VE) >

Py(a)
Sz[ h4 7y 7, — Ph(ﬁ)"rhvh + Py(Yvvy dp =
Py(@) Py(B)74)? 2
fz[ 4 L7y yry, — TP + Py(y) [Ph(ﬁ)"rh + Vh] dp =
Py@) PR 2 C
- HT-HT—+P(7)[P(E’)-T+V]4 = [T 1T ey -

!{k 4 XN L h w(B)Th w| dp e ([ TTa74 || 2@,
We combine these two cases to find, that

C, 2
Tl e kZKH imall ey < NN ve llvall v -
[
We combine this with (35a) to obtain,
¢y

U]l =@ 1Yl L=@)

w lmllve < Ifllve - (35¢)

Theorem 3.
If we assume, that (30) is regular, then

([ Pru—uy || 2@ < (36)

C[hmaxllallw'“(ﬂ)llolln‘(ﬂ) + B || @] L=@) ||"HH'(9)5||7>?”L°‘(9) +

o [Bllw=@ 141 v + hons 171|170 1] ]

Proof.
We use regularity of (30) and (30b),

(Ppu — up, Ppf) = (div 7, Pyu — u,) — E(T,,,P,,u — ) + c(Pyu — uy,vy) .
Hence, according to lemma 8 and the definition of ¢,
(Pru — wy, Ppf) = (div mpu — u,) — B(*r,,,u —w,) + c(u — u,v,).
We use (6a) and (18a) to find
(Pou = wp, Pof) = (div mpu — w) — (b—b)(rp,u) — blrp,u) + b(Tyuy) + cu — up,vy) =
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(E—b)('r,,,u) + a(o,m) — ay(04,m) + (c—c)wvs) + c(u — u,vy) .
According to (23) and lemma 9, this implies
(Pyu — w, Prf) = (b—b)(rp,u) + (a—ay)(o,m) + a,(Ilo0 — 0,,7Tn) + (€—c)u,vy) + (div L0 — 04),v4) -
Now, (30a) implies,
(P — upPrf) = B =b)mpu) + (@a—a)o,74) + €= )wvy) =
(b —b)rpu) + (@a—a)o,m) + a(o, 7 —Im) + @—a)(0,Im) + (c—c)uwy) -

Finally, we use lemma 3, lemma 7 and (30c) to obtain our error estimate (36). [

7 The one dimensional case.

Although the theorem is especially interesting for the two dimensional case, we consider here a
one-dimensional example, because for this case, we can easily compare the discrete solution to a
known continuous solution. We consider the equation (cf. eq. (1))

(e +u/y =0 on 2 =101, 37N
with boundary conditions
u(0) =0 and u(l) = U,

and € > 0. Special care needs to be taken when we discretise this equation for e<<<1. The exact
solution is known,

u(x) = Ul — exp(—x/€)/(1 — exp(—1/¢), (38)
ew'(x) + u(x) = U/(1—exp(—1/¢) . (39)
Any solution of (37) generates a solution (o,u) € VX W for
—:-(o,'r) - (u,7) + -:—(u,*r) =—-tHU V 1€V, (40a)
0,)=0 V tew. (40b)

With o = — (e’ + u).

7.1. The discretisation.

We partition @ into N > 1 intervals £ = Jxx—1,x with x; = 0 and xy = 1. We define
hk = X — Xk—1-

The functions 1 and £, introduced in section 3.3, become

X —Xj—
b= S o,
exp((x —xx-1)/€)—1

= Q.
exp(hy,/€)—1 on S

Mk

In the one dimensional case, the definitions in section 3.3 result in

Vh = {’T (S Hl(ﬂ) l‘T - (1—§k)ak =+ £kbk on Qk } s (41)
W,:= {t € W |t is constant on & }, 42)
X,:={1€ HY(Q) | 7 = A—mp)ax + mxby on Q3. 43)

Next, we have

mm=gm@,

/3

and with quadrature, we obtain
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hy
> [U(Xk—l)'f(xk-l) + U(Xk)"'(xk)] ,

(0.7, = X @M« -

k€K

(0', T)k, q =

Our discrete problem has the form:
_:.(oh)'r)q - (uhyT’) + —l‘(u),,'f) = "T(I)U V 7 EXh y

(0/\)=0 V tEW,.

(44a)

(44b)

with (o4,u44) € V}, X W,,. Equation (44b) implies, that o, is constant, we eliminate this equation and

set o, = o.
N

k=1

Explicitly, the discrete equations read,

5, 1—m)g1 + up [(Ll—m)l - 6(1,—711’)1] =0,

o(ILngx + oL, 1= )gurr1 + tpyg {(L")k)k - f(l,nk')k] +

Up g+ 1 [(l,l_m—ﬂ)kﬂ — €1, “nkﬂ')kﬂ] =0,

for k =12,... N—1,

5mn + thn [(Lawly — el | = U
Assume h;, = h for all intervals. We find,

6/2 -+ u}]]M = 0’
" exph/e)—1

-1 exp(h/e) -0

o+ Upy—————— + u,,
Hnk exp(h/€)—1 Hhk -1 exp(h/e)—1 ’
for k =12,... N—1,

> [E(I,T)q,k + [(l,f)k - e(l,qf)k” = —e(DU V 1€V,.

- —1 €
/2 + — = —-=U.
7 YN expth /9 — 1 h
From the equations for two adjacent internal intervals we can eliminate o, we find:
—1 exp(h/e) —1 exp(h /e
Unk 2~ T Uk T Unk = Uy ph /)

exp(h/¢)—1 -1 exp(h/¢)— 1
for k =2,3,... N-2.

K exp(h/e)—1

This is equivalent with the II'in [15] scheme.

cotanh

The solution of the implied recursion relation is,

— UL_M‘)__LCXP(_]{].I /¢) — 3,

“ak = h 1—exp(—1/¢)

- 17 -

K explh/e)—1

:0,

(45)

h
_ZIJ(uh,kwL]—zuh.k T tp-1) + WUppr — upp—1) =0 for k =2,3,... ,N—2.(46)



with

o=

- 2| 1—exp(—1/¢)

1—exp(h/¢€) 2¢ U _ -z—c-tanh h U
1+exp(h/€) h 1—exp(—1/¢) h

To see the effect of the quadrature rule, we compare this with Pju,
e _exph/e—1
P = —U— —kh/€) —
[24]() h I—exp(—1/9) exp(—kh/€) — ¢
where

S U —

1—exp(—1/¢)
We see, that the method is a cell centered version of the classical exponential fitting scheme. In this
case the method is 2" order in h, but clearly the estimate is not uniform in e. The error constant
degenerates for e—>0. However, the matrix for u,, after elimination of g, through static condensa-
tion, is an M-matrix. Exact integration of (1,1—n;); and (1,1y) would have resulted ino = o.

g =

8 Conclusions.

The method has several good properties. For instance, just as for a finite volume method, if
the true solution o is divergence-free, then the same holds for ¢,. Furthermore we have an a priori
error estimate, that depends linearly on ||ﬁ|| L=@- This in contrast to the approach, that uses Slot-
boom variables to obtain a symmetrical form of the equations. There we get a priori error estimates
that depend on exp(y), where ? = grad {. (see, for example Brezzi[5] ). In addition to this, after
elimination of o, through static condensation the two dimensional discretisation results in an M-
matrix for u,. We can extend the method to three dimensions without additional difficulties.
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