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For the traveling salesman problem in which the distances satisfy the triangle inequality, Christo-
fides' heuristic produces a tour whose length is guaranteed to be less than 3/2 times the optimum
tour length. We investigate the performance of appropriate modifications of this heuristic for the
problem of finding a shortest Hamiltonian path. There are three variants of this problem, depending
on the number of prespecified endpoints: zero, one, or two. It is not hard to see that, for the first two
problems, the worst-case performance ratio of a Christofides-like heuristic is still 3/2. For the third
case, we show that the ratio is 5/3 and that this bound is tight.
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1. INTRODUCTION
The traveling salesman problem (TSP) is defined as follows. Given a complete undirected
graph G on n vertices and a distance ¢;; for each edge {i,j}, find a Hamiltonian cycle (i.c., a
cycle that traverses each vertex exactly once) of minimum total length. This problem is NF-
hard, and much attention has been paid to the design and analysis of approximation algo-
rithms for its solution. An indication for the quality of an approximation algorithm is its
worst-case performance ratio. For an instance of the TSP, let C” denote the optimal Hamil-
tonian cycle, and let C* denote the Hamiltonian cycle produced by an algorithm 4. For any
edge set E, let c(E) be the sum of the distances of all edges in E, so that ¢(C) denotes the
length of a cycle C. The worst-case performance ratio p of algorithm A is then defined as the
supremum of ¢(C#)/¢(C") over all instances, and 4 is said to be a p-approximation algorithm.

Sahni and Gonzalez [1976] have shown that, in the case of general distances, no polynomial-
time algorithm for the TSP can have a constant worst-case performance ratio, unless 9= <.
We will consider the case in which the distances satisfy the triangle inequality, i.e.,
cij + cjx = ¢y for all i, j,k. We will also assume that ¢;; > 0 for all i=4/. For this case, Christo-
fides [1976] proposed a 3/2-approximation algorithm that requires O (n?) time, and no
polynomial-time algorithm with a better worst-case performance ratio is known.

We will be concerned with a problem closely related to the TSP, namely, the problem of
finding a Hamiltonian path (i.e., a path that contains each vertex exactly once) of minimum
total length. There are three variants of this problem, depending on the number of prespecified
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endpoints of the path. We introduce the following notation: P” denotes an optimal Hamil-
tonian path without fixed endpoints, P; denotes an optimal Hamiltonian path with a single
fixed endpoint s, and P;, denotes an optimal Hamiltonian path with fixed endpoints s and .

We formulate a Christofides-like algorithm for each of these problems. I1 is not hard to see
that, for the first two problems, the heuristic is still a 3/2-approximation algorithm. For the
third case, we show that the ratio is 5/3 and that this bound is tight. This answers a question
posed by Johnson and Papadimitriou [1985].

We recall Christofides’ heuristic for the TSP in Section 2. In Section 3, we present the three
modified heuristics for finding Hamiltonian paths and analyze the two easy cases. Section 4
deals with the case of two fixed endpoints. In Section 5 we analyze a slightly different heuristic
for the third case.

2. HAMILTONIAN CYCLES
Christofides’ heuristic for the determination of a short Hamiltonian cycle proceeds as follows:

(1) Construct a minimum spanning tree 7 of G.

(2) Construct a minimum perfect matching M on the set S of all odd-degree verticesin 7.

(3) Find an Eulerian tour in the Eulerian graph that is the union of 7 and M. A graph is
Eulerian if it contains a tour that traverses each edge exactly once, and such an Eulerian tour
exists if and only if the graph is connected and each of its vertices is of even degree. Note that
the union of T and M satisfies these requirements.

(4) Transform the Eulerian tour into a Hamiltonian cycle by applying shortcuts. A shortcut
is a contraction of two edges {i,j} and {j,k} to a single edge {i,k}. This cycle will be denoted
by C€.

The triangle inequality implies that c(C) < c(T)+c(M). It is obvious that c(T) <c(C"),
and we will argue below that c (M) <c¢ (C*)/2. It now follows that

c(C)<ce(C<3e(Ch)/2.

Hence, Christofides’ heuristic is a 3/2-approximation algorithm. Cornu¢jols and Nemhauser
[1978] show that the precise worst-case ratio is equal to (3|n/2] —1)/(2|n/2]).

As to the length of the matching, let 1, ..., 2m be the odd-degree vertices in T, and suppose
that they occur in C” in this order. Consider the following two edge-disjoint subsets of C": E},
containing all the edges between 1 and 2, 3and 4, ..., and 2m —1 and 2m, and E,, contain-
ing all the edges between 2 and 3, ..., 2m —2 and 2m —1, and 2m and 1. Taking shortcuts
yields two perfect matchings M, = {{1,2},{3,4},...,{2m —1,2m}} and
M, ={{2,3),...,{2m —2,2m —1},{2m, 1}}. Due to the triangle inequality, we have
c(M)+c(My) < c(E))+c(Ez) =c(C"). Hence, c (M) < c(C")/2.



3. HAMILTONIAN PATHS

For the determination of a Hamiltonian path, Christofides’ heuristic has to be adapted to
ensure that the union of the tree T and the matching M contains exactly two vertices of odd
degree. In addition, any prespecified endpoint has to be among those odd-degree vertices. We
present the following modification of Christofides’ heuristic:

(1) Construct a minimum spanning tree 7 of the graph G.

(2) First, determine the set S of vertices that are of wrong degree in T, i.e., the collection of
fixed endpoints of even degree and other vertices of odd degree. Next, construct a minimum
matching M on S that leaves 2 —k vertices exposed, where k is the number of fixed endpoints.
We note that such a matching can be found by constructing a minimum perfect matching on S
augmented with 2— k dummy vertices in an obvious fashion.

(3) Consider the graph that is the union of 7 and M. This graph is connected and has either
two or zero odd-degree vertices. The latter case occurs only if there is a single fixed endpoint
that belongs to S and is left exposed by M; in this case, delete an arbitrary edge incident to this
vertex. Find an Eulerian path in the resulting graph. This path traverses each edge exactly once
and has the two odd-degree vertices as its endpoints.

(4) Transform the Eulerian path into a Hamiltonian path by applying shortcuts. This path
will be denoted by P, PE, or P, depending on the number of prespecified endpoints.

We analyze the performance of this heuristic by establishing an upper bound on the length
of the minimum matching in terms of the length of the optimal Hamiltonian path. For k =0
or k = 1, the analysis is very similar to the one given in Section 2.

THEOREM 1. ¢ (P€)/c(P") < 3/2

PROOF. The theorem follows from the observations that ¢(7) < c(P "), which is obvious, and
that ¢(M) < c(P")/2, which we will prove. Let 1, ..., 2m be the odd-degree vertices in 7, and
suppose that they occur in P in this order. Again, consider two edge-disjoint subsets £ and
E, of P*: E, contains all the edges between 1and 2,3 and 4, ..., 2m —3 and 2m —2,and £,
contains all the edges between 2 and 3, 4 and 5, ..., 2m —2 and 2m — 1. Taking shortcuts
yields two matchings M; and M,, each containing m —1 edges and leaving two vertices
exposed, and having total length ¢(M ) +¢(M3) < c(P"). Hence, c(M) < c(P")/2. O

THEOREM 2. ¢ (PS)/c(P;) <3/2.

ProOOF. We have to prove that c(M) < c(P;)/2. Suppose the endpoints of P, are s and i. We
distinguish two special vertices in P;: j is the first vertex of odd degree after s, and k is the last
vertex of odd degree. Consider two cases.

(1) The fixed endpoint s has odd degree in 7. This means that s €S, the set of vertices of
wrong degree. The set of edges in P; between j and k can be partitioned into two disjoint sub-
sets, either of which gives a matching of the desired form after shortcutting. Hence, we have
again that ¢ (M) < c(P;)/2, so that ¢ (PE)/c(P}) <3/2.

(2) The fixed endpoint s has even degree in 7. This means that s €S. The set of edges in P,
between s and k can be partitioned into two disjoint subsets, which, after shortcutting, give
matchings M and M, respectively. Let {s,/} be the edge contained in M.



First, suppose c(M;)<<c(M;). M, is a matching of the desired form, so that again
c(M)<c(M;)<c(P;)/2.

Next, suppose ¢ (M) < c(M). M, is a matching on all odd-degree vertices in 7. Hence, all
vertices in the union of T and M, are of even degree, so that there exists an Eulerian cycle.
Removing an edge containing s yields an Eulerian path with endpoint s, which can be shortcut
to obtain a Hamiltonian path with endpoint s. Hence, c(PS)Y<c(My) + c(T)<3c(P;)/2.
d

Note that, in the above proof, the two subcases of (2) are not disjoint. If M; and M, are both
optimal, then either can be chosen. This implies that the worst-case bound of 3/2 can be
attained. It is not hard, however, to take precautions so as to ensure that ¢ (PS) < 3c¢(P;)/2.

Consider the case that s has even degree in 7. Determine the longest edge in 7 containing s,
say {s,k}. Remove this edge from T, remove s from S and add a new vertex x to S, with
¢y = ¢ + ¢y for all /€S, Determine a minimum matching M on S that leaves one vertex
exposed. If M leaves x exposed, then M remains the same; otherwise, if {x,m} is the edge in M
containing x, replace it by the edges {s,m} and {s,k}. Now M, (the matching containing
{s,i}) will be chosen if M is at least ¢y shorter than M.

We leave it to the reader to show that the bounds of Theorems 1 and 2 are tight.

4. THE CASE OF TWO FIXED ENDPOINTS

We have now come to the analysis of the Christofides-like algorithm for the case of two fixed
endpoints. The main problem here is establishing an upper bound on the length of the
minimum matching in terms of the length of the optimal Hamiltonian path with prespecified
endpoints s and . It is no longer true that the optimal path P, can be partitioned into two
edge-disjoint subsets such that either yields a matching on the wrong-degree vertices in 7, as
was the case for P” and P;. Consider the example given in Figure 1.
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FIGURE 1. Counterexample to p(PS) = 3/2.

In this example, 0<< e << 1, and every edge that is not drawn in the figure has a length equal
to the length of the shortest path between its endpoints. The optimal Hamiltonian path is
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Py = {{s,1},{1,2},{2,3},{3.4},{4,5},{5,6},{6,¢}}, of length 3 + 6¢e. A minimum spanning
tree is T = {{s, 1},{1,2},{1,3},{1,6},{4,6},{5,6},{6,¢}}, of length 3 + 4. The set of vertices
of wrong degree in T is {2,3,45}. An optimal perfect matching on these vertices is
M = {{2,3},{4,5}}, of length 2 + 2¢. An Eulerian path in the graph that is the union of T and
M is {{s, 1},{1,3},{3,2},{2,1},{1,6},{6,4},{4,5},{5,6},{6,¢}}. Using shortcuts, the Hamil-
tonian path P§ = {{s, 1},{1,3},{3,2},{2,5},{5,4},{4,6},{6,¢}} of length 5+ 6¢ can be
obtained. By choosing ¢ sufficiently small, we can get arbitrarily close to the bound 5/3.
The following theorem states that this bound is tight.

THEOREM 3. c(P$)/ c(Py) <5/3.

PROOF. As P, is a tree, ¢(T) < c(Pj;). The lemma below asserts that the multi-set containing
all edges belonging to T and P;, can be split in three edge-disjoint subsets, each yielding a per-
fect  matching  after  shortcutting. Hence, c(M)<2c(Py)/3, so  that
c(PS) <c(T)+ c(M)<5c(Py)/3. O

LEMMA 1. The multi-set Q, containing the edges belonging to the minimum spanning tree T plus the
optimal Hamiltonian path with two fixed endpoints s and t, can be paititioned into three disjoint
subsets E |, E, and E 5, each yielding a perfect matching on the set of odd-degree vertices in T after
shortcutting.

PrOOF. Every vertex of wrong degreein T has odd degree in Q, so S contains all vertices of odd
degree in Q. Let the number of vertices in S be equal to 2m. Renumber the vertices according
to their order of occurrence in P,. After renumbering, P, consists of the edges
{s,1},{1,2},...,{n —2,t}, where n is the number of vertices.

The first subset, E 1, contains the edges between the (2k — 1)th and the (2k)th vertex in S, for
k=1,...,m(soif s and 2 are the first two vertices in S, then E; contains the edges {s, 1} and
{1,2}). The first perfect matching on the vertices in S is obtained by applying shortcuts to £.

Consider the graph defined by the vertex set {s, 1,...,n —2,7} and the edge set O\ E;.
This graph is connected (it still contains 7), and all of its vertices have even degree (due to the
removal of E ), so it contains an Eulerian cycle. This cycle can be partitioned into the subsets
E, and E . Taking shortcuts yields two perfect matchingson S. [J

5. A FURTHER MODIFICATION OF THE CHRISTOFIDES-LIKE HEURISTIC FOR THE THIRD CASE

The problem of determining a Hamiltonian path with prespecified endpoints s and ¢ can also
be regarded as the problem of determining a2 Hamiltonian cycle that contains a dummy edge d
of length 0 connecting the vertices s and ¢. There are two possibilities to ensure that d is an edge
of the cycle. It can be added to the Eulerian path, or it can be incorporated into the tree,
whereafter a matching on the set of odd-degree vertices is determined.

The first possibility boils down to adding d to the Eulerian path that was determined in the
previous section. In this section, we analyze the second possibility. Begin with a minimum
spanning tree T that contains the dummy edge. T is obtained from T as follows: add d to T and
remove the longest edge e from the unique cycle in 7 U {d}; T= ({d} U T)\ {e} is the tree
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found in Step 1 of the algorithm. Application of Christofides’ heuristic for the determination of
a Hamiltonian cycle, starting with 7, leads to a Hamiltonian cycle containing d. Removal of
this dummy edge yields a Hamiltonian path with endpoints s and r.

A straightforward calculation shows that the length of M, the perfect matching of minimum
length on the vertices of odd degree in T, is no more than the length of the matching M in the
previous section plus c,. This implies that the length of the Eulerian cycle, obtained by apply-
ing the modified heuristic, is no more than the length of the Eulerian path, obtained by the
Christofides-like heuristic for the third case.

THEOREM 4. The modified approximation algorithm has a worst-case ratio (5n —7)/(3n —3), and
this bound is tight.

PROOF. Let / M be a perfect matching of minimum length on the set of vertices of odd degree in
T, and let Ps, denote the Hamiltonian path obtained by the modified heuristic. Let Q be the
multi-set containing the edges belonging to T and Py,, augmented with two copies of the edge
e. In the same fashion as in Lemma 1, the multi-set Q can be partitioned into three disjoint
subsets £, E; and E3, each containing a perfect matching on the set of vertices of odd degree
in 7‘, after taking shortcuts. As c¢(7)=c(T) — ¢, it follows immediately that
c(]VI) <2c¢(Py)/3+c,/3.

Let {k,/} be the longest edge in Pj;. The removal of e splits 7 in two parts. Connecting these
two parts with an edge from P, yields a tree of length no more than ¢(7) + Cu T C =c(T), as
T is a minimum spanmng tree. This implies thgt Ce << ¢y Furthermore, as P, U {d}\{k!}isa
tree, c(T) <c(Py)—cy. Hence, c(P;) < c(T) + c(M) <5c¢(Py)/3—cy+ec./3
<5c¢(P;)/3—2cy /3. The worst-case bound follows from the observation that
Py <(n—1)cy. '

®- ° —o
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FIGURE 2. Worst-case example for Py,.

The example in Figure 2 shows that this bound is tight. All edges drawn in Figure 2 have
length 1, the length of the other edges is equal to the length of the shortest path between the
two  endpoints of the edge. The optimal Hamiltonian path s
P = {{s,1},{1,2},{2,3},{3.4},{4,5),{5,6),{6,7},{7,8),{8,9},{9,1}, of length 10.

A possible tree T = {d, {s, 1},{1,2},{s, 3},{3,4},{4,5},{3,6},{6,7},{7,8},{6,9}}, of length
9 The set of vertices of odd degree in T is {s,2,3,5,6,8,9,¢}. It is easy to check that

= {{5,2},{3,5},{6,8},{9,¢}} is a perfect matching of minimum length on these vertices.
The length of M is equal to 7. A possible Eulerian cycle in the union of T and M is
{{s,2},{2,1},{1,s}, {s 3},{3,5},{5,4},{4,3},{3,6},{6,8},{8,7},{7,6},{6,9}.{9,2},d}).  The
Hamiltonian path P,— {{s,2},{2,1},{1,3},{3,5},{5,4},{4,6},{6,8},{8,7},{7,9},{9,2}}, of
length 16, can be obtained by taking shortcuts and deleting the dummy edged. O
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Note that the worst-case bound can be attained for every number of vertices n = 3p +2, by
replacing the subgraph on the points {1&21,5} by p —2 subgraphs of the same form. For this
augmented graph, a Hamiltonian path Py with the same worst-case ratio can be found in a
similar fashion.
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