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1. INTRODUCTION

In the past decade considerable progress has been made in the analysis of sojourn time processes in
networks of queues; cf. the survey paper [8]. However, results are still very scarce when the possibility
exists of customers overtaking each other. One of the simplest forms of overtaking occurs in the sin-
gle server queue with the processor sharing discipline. Under this discipline, when j customers are
present all receive service simultaneously at a service rate 1/j. Hence the sojourn time of a tagged
customer is not only determined by the number of customers (and their remaining work) found upon
his arrival, but also by later arrivals. Such later arrivals may in fact overtake the tagged customer; the
resulting dependencies severely complicate the analysis of the sojourn times.

In 1970 Coffman et al. [10] have obtained the Laplace-Stieltjes transform (LST) of the sojourn time
distribution in the M/M/1 queue with processor sharing (M/M/1 PS). More than ten years later
Yashkov [29], Schassberger [23] and Ott [21] independently derived the LST of the sojourn time distri-
bution in the M/G/1 PS queue. The analysis in their studies is quite intricate. In this paper we
present a different approach to the sojourn time problem in the M/G/1 PS queue. The main advan-
tage of our approach is its intrinsic simplicity. We start from an M/M/1 FCFS (First-Come-First-
Served) queue with feedback. When a customer has completed his i-th service, he departs from the
system with probability 1—p (i) and he is fed back to the end of the queue with probability p(i). The
joint distribution of the numbers of customers being in their first,-second, ... loop has a product form.
We exploit this product form to give a straightforward (although rather elaborate) derivation of the
sojourn time distribution of a tagged customer in the M/M/1 feedback queue. The M/G/1 PS queue
is obtained from the M/M/1 feedback queue via a limiting procedure. We let the feedback probabili-
ties approach one and the mean service time at each loop approach zero, such that a customer’s total
required mean service time remains constant. Different choices of the feedback probabilities lead to
different service time distributions in the PS queue. Application of this limiting procedure to the
sojourn time results obtained for the M/M/1 feedback queue leads to results for the corresponding
quantities in the PS queue. Our method gives much insight into some basic sojourn time properties of
the M/G/1 PS queue, like the fact that the mean conditional sojourn time of a customer with service
request x is linear in x. Another advantage of our approach is that it opens possibilities for obtaining
sojourn time approximations for the M/G/1 PS queue. The idea of using a feedback queue to study
sojourn times in a PS queue has also been employed by Schassberger [23], but in his feedback model
the service times at each loop are deterministic and there is no product form.

Although the analysis of a PS queue via a product-form feedback queue occupies a central place in
this study, the feedback queue is also of interest in itself. We present a detailed analysis of the feed-
back queue, and of some of its variants. The paper is organized as follows. The feedback model is
described in Section 2 and analyzed in Section 3. In particular we obtain the joint distribution of the
successive sojourn times (at each loop) of a tagged customer and the queue lengths found at the
beginning of each sojourn. Section 4 is devoted to the sojourn time distribution in the M/G/1 PS
queue. Section 5 considers the M/M/1 feedback queue with some additional permanent customers -
customers who are fed back after each service; its limiting PS counterpart is also taken into considera-
tion. Finally in Section 6 the M/G/1 PS queue with feedback is studied.

Related literature

We refer to the survey paper [30] of Yashkov for literature on queues with processor sharing. Con-
cerning feedback queues, a pioneering study is Takacs [24]. He considers the M/G/1 FCFS queue
with so-called Bernoulli feedback: after each service, a customer leaves with fixed probability 1—p
and returns to the end of the queue with probability p. His main result is a recurrence relation for the
LST and generating function of the joint distribution of a customer’s total sojourn time and the
number of customers present in the system after a certain number of services. The key observation
leading to this result is that for a tagged customer the joint process of successive service completion
epochs and queue length at these epochs is a Markov renewal process. In fact, a similar observation
is the basis for many other feedback studies, including ours. Disney and Kdnig [12] give an overview
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of literature concerning Bernoulli feedback models. For our purposes it suffices to mention here the
following feedback studies. Doshi and Kaufman [13] derive, for the M/G/1 queue with Bernoulli
feedback, the LST of the joint distribution of the sojourn times of a customer in his successive passes
through the system. Lam and Shankar [20] consider basically the same M/M/1 feedback model with
general feedback mechanism as we do. They derive the total sojourn time distribution, which becomes
a special case of our result for the joint distribution of successive sojourn times. Hunter [16] consid-
ers single server queues with state-dependent feedback and finite waiting room. In particular, he stu-
dies an appropriately constructed Markov renewal process which describes the behaviour of the sys-
tem starting at the arrival of a tagged customer; the sojourn time of the tagged customer relates to a
first passage time in this process. For some special cases, like the M/M/1/2 queue with Bernoulli
feedback, this approach leads to the derivation of explicit expressions for the LST of the distribution
of the total sojourn time. Mean sojourn times are obtained for the M/M/1/N queue with Bernoulli
feedback. Hunter also gives a brief survey of the literature on sojourn times in feedback models.

The present paper is a sequel to [6] which studied the case of deterministic feedback (each customer
makes exactly N loops), [4] which considered the case of general feedback, and [5] which analyzed the
mean and the variance of the sojourn time distribution in an M/G/1 PS queue as the limit of a feed-
back queue. To provide a comprehensive overview of our approach and results, we have allowed
some overlap with parts of [4] and [5]. We refer to the thesis [3] for a more detailed discussion of
sojourn times in feedback and processor sharing queues.

2. MODEL DESCRIPTION AND PRELIMINARIES

We consider a single server queueing system with infinite waiting room, see Fig. 2.1. Customers
arrive at the system according to a Poisson process with intensity A>0. After having received a ser-
vice, a customer may either leave the system or be fed back. When a customer has completed his i-th
service, he departs from the system with probability 1—p(i) and is fed back with probability p(i).
Fed back customers return instantaneously, joining the end of the queue. A customer who is visiting
the queue for the i-th time will be called a type-i customer. The service discipline is FCFS.

A

p@)

1-p®)

= A
> 1 1=E)

Fig. 2.1 The M/M/1 queue with general feedback.

It is assumed that the successive service times of a customer are independent, negative exponentially
distributed, random variables with mean B. These service times are also independent of the service
times of other customers.

Introduce

4@ :=1, ¢@):= 10, i=12.. @.1)
j=0 ’
with
p©0):= 1.
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Note that Ag(i) is the arrival rate of type-i customers, i =1,2,.... The total offered load to the queue
per unit of time, denoted by p, is given by

o]
p=AB3q0). @2
i=1
For stability it is required that p<1. We are interested in the following steady-state quantities:
- X;: number of type-i customers in the system at an arbitrary epoch, i =1,2,...;

- X{): number of type-i customers in the system at the j-th service completion of a customer,
i=12,., j=12,.;

- X{?: number of type-i customers in the system at the arrival of a new customer, i =1,2,...;

- S;: time required for the j-th pass through the system (j-th sojourn time), j=1,2,...;

. . . k
- 8®: total sojourn time after k services: S = 3'S;, k=1,2....
j=1

It is important to note that the system described above can be considered as a queueing network
consisting of one queue with several types of customers. Type-i customers are fed back with probabil-
ity p(i) after service, and then change into type-(i +1) customers, i =1,2,.... Because the service
times are assumed to be independent exponentially distributed, the joint distribution of the number of
type-i customers in the system at an arbitrary epoch, i =1,2,..., is of product-form type (Baskett et al.
[1D: for xy,x3,... = 0,1,..., and x; +x,+ - - - <o0,

Pr{X, =x1,X,=x3,..} = (1—p) (3x)! ﬁﬁ‘ﬁ%‘lL . @.3)

i=1 i=l1 :

It is convenient to have at our disposal the generating function of the joint queue length distribution.
We have, for |z;|<1,i=1,2,..,,

= (ABg(D)z)"

Ei = a-nE 33 mi—; @4)
i=1 m=0 x, x, i=1 i
x;+x,+ 0 =m

a-p 3 [ﬁkﬂq(i)zi] =1z
1=3ABq(i)z;

i=1

m=0 (=1

The distribution of the total number of customers in the system coincides with the queue length distri-
bution in an ordinary M/M/1 model:

=X 1—
R el R
E{Z } ]_pz’ IZl l’

ie.



Pr(S X, =j) = A-pp/, j=0,1,.. @5)

i=1

We shall use these results in the next section.

3. THE M/M/1 QUEUE WITH FEEDBACK

In this section we present, in the form of Laplace-Stieltjes transforms and generating functions, an
expression for the joint steady-state distribution of the successive sojourn times Sj, j=1,..,k, and the
number of type-i customers, X{), i =1,2,..., present at the j-th service completion of a customer who
is fed back at least k —1 times, k =1,2,... .

Let us follow a tagged customer from the moment he arrives as a type-1 customer until he com-
pletes his k-th service. The PASTA property implies the equality of the joint queue length distribu-
tion at the epoch of a new arrival and at an arbitrary epoch. Hence, for Re w;=0, |z <1,
i=12,..,j=0,..,k,

E{e—(u,_s, +...+0.sk)(ﬁ zf{:’ e ﬁzﬁ:))} = (3.1)

i=l1 i=1

00 0 _ ) 0 )
S 3 Pr(Xi=x,Xp=x3,.) E{e @S TSI X T2 1XO=x0, X0 =xs,..).
i=1

x,=0 x,=0 i=1

The conditional expectation in the RHS of (3.1) can be evaluated by using the fact that
X{*DX¢*D ), which determines the distribution of S;.,, is conditionally independent of
{XP.XD,..), j=0,...i=1; Sy, - - - ,8;} given {XP,XP,..); S; 11}, i =1,....k —1, ie., the joint pro-
cess of successive service completion epochs and queue length vector at these service completion
epochs is a Markov renewal process (cf. Cinlar [9, Ch. 10]). The calculations, which are lengthy but
quite straightforward, are omitted here; they can be found in Appendix 2.1 of Van den Berg [3].
There it is shown that

E{e—(mlsl +...+6’ksg)(ﬁ z?;‘ . ﬁ Zf]:)) 'XSO) =xl,x£0) =X2,...} = (3.2)
i=1

i=l1

ﬁ 4,G,0,2) TT Gi0fiGw,2)),

j=1 i=1
with w:=(w1, . e ,wk), z IZ((Zl’o,Zzo,...), e s(zl,k’ZZ,ka---))a and

Ar(L,0,2) := [1+B{w +A1—z )N 7T, (33)
A(2,0,2) 1= [1+B{wx -1 +A—=Azy 4 1 4 (1,0,2)[p Dz +1—p (DI},

Ay 0,2) 1= [1+B{wg i 41 FA—Az g i 140G — 1,0,2)[ A —2,0,2)] - - -
(42, 0,2)[4x(1,0,2)[p ( —D)z;p +1—p (i —1)]
PG=2)zi 1 j 1 +1—p( —Dlp(i —3)zi g2 +1—p(i—3)] - - - ]



P(l)zz,k —i+2 +1 _P(l)]}]_l ’ i =3,-"ak,

filiy@,2) := Ag(k, 0,2)[Ax(k —1,0,2) - - - [A(2,0,2)[Ax(1,0,2) (.4)
Pk +i—1zg4ip+1—pk +i—Dlpk +i —zg 4i—1p—1 +
1-pk+i=2lpk +i—=3)zk4i—2p-2+1—pk +i—=3)]- -]
pzit1n+1-p@) i=12,..

REMARK 3.1

The calculations leading to (3.2)-(3.4) reveal that the factor (z; o fx (i, ®,z))" in the RHS of (3.2) is due
to the contribution to {(X{’,X¥,...), j=0,...,k; Si,...,S;} induced by the x; type-i customers
present in the system upon the first arrival of the tagged customer, i =1,2,... (their own services and
those of customers newly arriving during these services); the factor H’,‘_lAk(j, w,z) is due to the con-
tribution induced by the tagged customer himself. These contributions’ are independent, cf. (3.2).

Substituting (2.3) and (3.2) into (3.1) and evaluating the summations we obtain our main result:

THEOREM 3.1
k .
- - ) (1 —p) HAk(Iy w,z)
Efe~@S+-+as) ] z,?ff(';’ - TI2%)) = = =1 , (3.5
i=1 i=1 1-A8 3} q()z;, o fi (i, w,2)
i=1
Re Uj>0a |zi,j|<1’ i=12,., .I:O”k’
Introducing
MG,0) =TT, =Lk
,w = . ’ 1=1,.,K,
k j=l Ak(], w, l)
Mk((),w) = 1,
we prove

COROLLARY 3.1
The Laplace-Stieltjes transform of the joint distribution of the first k successive sojourn times of a custo-
mer, who is fed back at least k —1 times, is given by

E{e—(ﬁ’lsl+---+"’ksx)} — p 1-p — , (3.6)
Mi(k,w) — ABXg(k =1+ DM (I —1,0) — (p—AB 3 9()))
1=2 i=1
with
M;(,0) = (1+Bog —i +1)Mi(i —1,0)+AB [Mk(i"l,w)—q(f—l)“ (€X))

i—1
S 4 —j)1—p G —) My — l,w)], i=1,..k
j=2



PROOF

First substitute z; ;=1 into (3.3)-3.5), i =1,2,...,, j =0,...,k, and subsequently rewrite those expressions
in a form that is more suitable for obtaining sojourn time moments: Formula (3.3) leads to (3.7), and
(3.4) leads for i =1,2,... to

fiol) = — —L

k
q(z) Moho A&+ —D+ Bglk +i=DA—p(k +i ~D)M( ~Lw)]- 38)

1=2

Substitution of (3.8) into (3.5) proves the corollary.

COROLLARY 3.2 _
The joint distribution of the number X¥) of type-i customers, i =1,2,..,, is the same for all j =0,1,..,; its
generating function is given by (2.4).

PrOOF

The PASTA property proves that the generating function for j =0 is given by (2.4). A simple calcula-
tion shows that the same expression holds for j =1; it now readily follows that the statement holds
for all j=0,1,....

REMARK 3.2

Corollary 3.2 is, in a more general context, known as the ‘arrival theorem’ for product-form networks,
see e.g. Walrand [28, Section 4.4]. This theorem implies that an arriving type-i customer (who has
just completed his (i — 1)-th service) ‘sees’ the system as at an arbitrary epoch.

The fact that the joint queue length distribution at the arrival of a customer and after each of his
passes is the same (cf. Corollary 3.2), implies that the sojourn times S;, j=1,...,k have the same mar-
gmal distribution. S; can easily be obtained from (3.6) and (3.7) by takmg k =1. It is found that the
sojourn times are negative exponentially distributed with mean 8/(1—p):

— S, _——L -
E{e ™7} = 1Z o+ B’ J=1.k (3.9)

Note that this coincides with the sojourn time transform in an ordinary M/M/1 queue with mean ser-

vice time B and arrival rate )\ﬁq(i), cf. (2.5).
i=1

In order to investigate the dependence between the i-th and j-th sojourn times we have computed
the Laplace-Stieltjes transform of the joint distribution of S; and S;, 1<<i <j<k. It is found from
(3.6) and (3.7) that

—(@S,+wS), _ 1—p ..
E R , I<i<j<k, 3.10
(e } l—p+Bw,~+Bwj+Bzw,~ijj_,~ / (3-10)

where C;_; is determined by
C, =1, @3.11)

n—1
C = (A+MBC, -1 —MB X qn —D(1—p(n—D)C;—y, n=2,...k—1.
1=2
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The last equation can be rewritten into

n n—1 .
C,,—ABZq(n —I+1)C1_] = C,,_] "‘)\B 2 q(n —I)C]_l.
=2 1=2

Using C; =1 and extending (3.11) to n =k,k +1,... itis easily seen that
C, =1, (3.12)

—1
Co = 14M8'S g —D)C), n=2,3,....
=1

For future use we determine the generating function of {C;,C,...}. Let
o0 .
0(2) := 2q()A—p@®)', |z| <1, (3.13)
i=1

C):= Sc, |z| <L (3.14)
i=1
Taking generating functions in (3.12) yields:

z

C(2) =

, |z|<l (3.15)
(1—z)(1=A

REMARK 3.3
It was pomted out by Prof. J.W. Cohen that the two-dimensional Laplace-Stieltjes transform given by
(3.10) is of a type for which the correspondmg joint probability density function, f (-5 ), is known.
From the formula given in entry 8 of Table B in Voelker and Doetsch [26, p. 208] it is found that, for
1<i<j<k,

m
—2 | (1—p+1/C_y"(1/m, x,p=0. (3.16)

1 —(x+y)/(BC,-, E
ﬁ, (x,y) frd __—L e ( }’)/ J )

ﬁij_,- m=0

From (3.10) the correlation coefficient, corr(S;,S;), can easily be obtained:

corr(S;,8)) = 1-Cj_i(1—p), I<i<j<k. 3.17)

Note that E{e”“S*“®)} and corr(S,,S;) only depend on i and j through the difference j —i. This
property might also have been denved from Corollary 3.2. Observing that in (3.12)
2 q(n IY1—p(n—1)) <1 (remember that g(n —I)}(1—p(n —1I)) is the probability that a customer
receives exactly n —1 services) it follows by induction that the row {C,, n=1,2,...} is monotonically
mcreasmg Hence, from (3.17), corr(S;,S;) decreases if j —i grows. In particular it can be proven,
using (3.15), that th =1/(1-p), yleldmg lim corr(S;,S;)=0. For j—i=1, corr(S;,S;)=p. So,

—l —00
the successive so_]ourn times of a tagged customer are always correlated positively.

The Laplace-Stieltjes transform of the distribution of a customer’s total time spent in the system
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until the end of his k-th pass S®:=S,+..+8S,;, can be obtained from (3.6) by substituting

wj=wy, j =1,...k. Replacing the term M;(k,w) in the denominator of (3.6) by the RHS of (3.7)
_ (with i =k) and substituting w; =wy, j =1,...,k, it is found that for Re wy=0, k =1,2,...,
g wj J

—w,S®
e“’n

} = 1-p , (3.18)

(1+Bop)Me_1 — MBS gk —j ~ )M, — (0—A8'S (i)
j=1 i=1

E{

where, for n<k, M,, := M;(n,w) is given by
My :=1, 3.19)

M, := (1+Bwy+ABM,_; — AB|q(n —1)+ nz—lq(n —D(A—-pn—D)M;_,|, n=1,2,....
1=2

qO):=1)

For future use we also introduce the generating function of the M,’s. From (3.19) it follows that

¥4

o 14+ By AT (1-2(2)
ME) = 2M" = T 0T By AT ACE) (3:20)
From (3.9) it follows immediately that E{S®} is linear in &:
E(S®) = SE(S]) = kT% o (3.21)
i=1

The variance of the sojourn time, var(S®), is determined by:

2 -—
var(S®)) = ﬁvar(s,-)+2§ ﬁ cov(S;,S;) = B k2—2(1—p)k lek_-, (322
J —p 2 J

i=1 i=1j=i+1 1 j=1

with Cy, . ..,C,—; given by (3.11).
The Laplace-Stieltjes transform of the distribution of the total sojourn time S of an arbitrary custo-
mer is given by

E{e™*%) = Sqt1—pk)E{e %), (3.23)
k=1
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4. THE M/G/1 PROCESSOR SHARING QUEUE

In the previous section we have regarded the feedback model as an M/M/1 queue in which after each
service it is decided whether or not the customer is fed back. In this section we consider the same
model from another point of view, viz., as a round robin (time sharing) model in which a customer’s
service demand requires a stochastic number of exponentially distributed service quanta with mean
length B. Obviously, the service requirements are completely determined by the feedback probabilities
p(1), p(2), - -+, as defined in Section 2. From this point of view it is intuitively clear that if the
mean service time B shrinks to zero while the feedback probabilities go to one such that a customer’s
total required service time remains unchanged, the behaviour of the feedback queue approaches that
of the M/G/1 processor sharing (PS) queue. Different choices of the feedback probabilities lead to
different service time distributions in the PS queue.

The queue length process in a round robin type of queue is usually less amenable to mathematical
analysis than the queue length process in its limiting case, a PS queue. It is well known (Kleinrock
[18]) that the stationary distribution of the queue length, X*5, in the M/G/1 PS queue is independent
of the distribution of the required service time apart from its first moment:

PrX’=j} = (1—-p)/, j=0,1,2,..., @1

with p the offered load per unit of time. The determination of the sojourn time distribution in a PS
queue has turned out to be a much harder problem. Only recently the sojourn time distribution in
the M/G/1 PS queue has been derived, cf. Yashkov [29], Ott [21], Schassberger [23], and the survey
of Yashkov [30]. The essence of Yashkov’s approach [29] is a decomposition of the sojourn time of a
(tagged) customer as the sum of ‘time delays’, which are induced by the customers present in the sys-
tem at the arrival of the tagged customer and by the tagged customer himself. These time delays
include the influence of customers who arrive during the sojourn time of the tagged customer. It is
shown that the time delays can be interpreted as lifetimes of some terminating branching process.
The dynamics of the time delays is described by a set of integro-differential equations, derived by
using ideas from branching theory. Ott [21] independently follows a similar approach, slightly gen-
eralizing Yashkov’s result by obtaining the transform of the joint distribution of a customer’s sojourn
time and the number of other customers present at his departure. Schassberger [23] derives the
sojourn time LST by analyzing a discrete-time queue with deterministic service quanta under a slight
variation of the standard round robin discipline: a newly arriving customer immediately receives a
quantum of service and only then joins the end of the queue. Using his sojourn time results for this
round robin model and letting the quantum size shrink to zero he finds results for the corresponding
sojourn times in the M/G/1 PS queue. He also gives the theoretical background of the weak conver-
gence of the sojourn time distribution for the discrete-time round robin model to the distribution of
the sojourn time in the PS model.

In this section we present a novel approach, which uses a similar idea as [23]: via a limiting pro-
cedure we obtain sojourn time results for the M/G/1 PS queue from known sojourn time results
(obtained in Section 3) for the M/M/1 queue with general feedback. The limiting procedure
described above was first proposed by Van den Berg et al. [6]. In that paper it is shown how the dis-
tribution of the sojourn time in the M/D/1 PS queue follows immediately, by taking appropriate lim-
its, from the sojourn time distribution in the M/M/1 queue with so-called deterministic feedback, in
which each customer receives exactly N services. In Van den Berg and Boxma [5] this method has
been used for the analysis of the sojourn time mean and variance in the processor sharing queue with
general service times. In these papers the authors concluded on intuitive grounds that performance
measures such as the sojourn time in the feedback model converge to the corresponding performance
measures in the processor sharing queue. Only very recently a formal proof of this convergence has
been given by Resing et al. [22]. They present a probabilistic coupling between the M/G/1 PS queue
and the approximating sequence of M/M/1 feedback queues, which shows that the sojourn time of
the n-th customer in the feedback model converges almost surely to the corresponding quantity in the
PS model. From this result they conclude the distributional convergence of the steady-state sojourn
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times. The proof partially follows the same line of thought as Schassberger [23].

The organization of the rest of this section is as follows. In Subsection 4.1 we describe the limiting
procedure that gives rise to processor sharing. Next we derive the mean sojourn time (Subsection 4.2)
and the sojourn time variance (Subsection 4.3). In Subsection 4.4 it is shown how the LST of the dis-
tribution of the sojourn time in the M/G/1 PS queue can be obtained.

4.1 The limiting procedure

To go from feedback to processor sharing we apply a limiting procedure, in which —0 while the
feedback probabilities approach one in such a way that the mean total required service time, B,
remains a positive constant. We restrict the discussion to those service times, 775, in the PS queue
which are composed of negative exponentially distributed stages:

E 75} = 4.2
(exp(—ewr™) IZEa,lI? 1+quo

with ay, ... ,a,>0, X" aj—l Ty, ...,y positive integers (cf. Kleinrock [17, p. 145]); note that
this class of dlstnbuuot{s contains the Erlang, hyperexponential and Coxian distributions, and that
arbitrary probability distributions of nonnegative random variables can be arbltranly closely approxi-
mated by distributions from this class (cf. Tijms [25, p. 398]). This choice of service time distribution
for the PS queue enables us to choose the feedback probabilities (hence Q(z)) such that 75 and the
total required service time 7% in the feedback queue have exactly the same distribution - not just in
the limit B—0, but for a wide range of values of B. Observe that, cf. (3.13),

E{exp(— wof"’)}~2<1(1)(1"P(t))(l o Y =0 +B ), Rew=0. 4.3)
Now choose
1-p;
0¢) = 5o 1T S22, @4)
j=1 i=1 Pij?
with
plj = I—B/Blj > 0’ i=19-"’rj,j=1’-"sm (4.5)
Then
m B/ By
E{exp(—wr™)} = 4 = (4.6)
(™) = 2 I} I+Ba—(1—B/By)
S =E{exp(—wo75)).
leag e (R

As an example, consider the case of Bernoulli feedback: Q(z) = (1—p)z/(1—pz). In this case,

1 _ 1
1+@/A—p)eo 1+ pag

E{exp(—wo™)} = E{exp(—wpr™)} = @7

Hence the total required service times in both the feedback queue and the PS queue are negative
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exponentially distributed with mean ﬁ= B/(1—p).

When B—0, performance measures in the feedback queue clearly approach corresponding perfor-
mance measures in the PS queue. Resing et al. [22] give a formal proof of the convergence of the
sojourn time. Note that the queue length distribution in both models is the same for the whole range
of possible B values, cf. (4.1) and (2.5). Below we shall focus mainly on sojourn times. In particular
we are interested in the sojourn time of a customer conditioned on his required service time. This is
an important performance measure for time sharing systems like PS queues, cf. Kleinrock [18]. We
define for the PS queue

SPS(x): conditional sojourn time of a customer with service demand x;

SPS:  sojourn time of an arbitrary customer.
Obviously,
<]
Pr{sP<s} = [Pr{S™(x)<s}dPr{r’<x}, s=0. 4.8)
x=0

The conditional sojourn time S”5(x) can be derived from the total sojourn time after k services, S®),
in the feedback queue in the following way. Choose Q(z) for the feedback queue as in (4.4), (4.5),
and consider a newly arriving customer, say C, who requires exactly k services. Then take 8=x/k
and let k—oo. It is easily seen that the total required service time of C approaches the constant x.
Indeed, the LST of C’s total required service time equals (14 Bw) ™% = (+xwy/k) ™% > 7™,
Hence, for k—>oo, C can be viewed as a customer with service request x in the M/G/1 PS queue with
service time distribution characterized by (4.2).

The limiting procedure described above will be applied to obtain results for the mean, the variance
and the LST of the sojourn time in the PS queue from E{S™(x)}= hmE (S®y,

var(SPS(x))= hmvar(S(")) and E{e ""’Sm(x)} hmE{e ~s”

k-
presented for the mean and the variance of the so;ourn time are more general and more detailed than
the results for the LST.

} respectively. The results to be

4.2 The mean sojourn time
In the M/G/1 PS queue, the mean sojourn time of a customer with service demand x is linear in x
(cf. Kleinrock [18]):

E{Sps(x)} = T—p_ 4.9

This well known result, which is sometimes proved rather heuristically, can be easily obtained from
the feedback results of the previous section. The mean total sojourn time E{S®)} of a customer who
requires k services is linear in k, see (3.21). Apply the limiting procedure described in Subsection 4.1,
taking B=x/k and letting k—co0. Formula (4.9) now immediately follows from (3.21).

4.3 The variance of the sojourn time

The sojourn time variance for a customer with service request x in the M/G/1 PS queue, var (S?5(x)),
can be obtained by applying the limiting procedure to (3.22). First, as an example, we derive
var (SP5(x)) for the M/M/1 PS queue. Next the analysis is extended to the PS queue with service time
LST given by (4.2).
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The M/M/1 PS queue

As observed in (4.7), the choice Q(z) = (1—p)z/(1—pz) leads, in the feedback queue as well as in
the limiting PS queue, to a negative exponentially distributed total service time with mean
B/(1—p) = B. To obtain an explicit expression for var(S®), see (3.22), we derive C,, n=1,2,...,
from (3.15). Substituting Q(z) = (1—p)z/(1—pz) into (3.15) yields

1—pz
(1-z)(1-@AB+p)z)

Rewriting the right-hand side of (4.10) as

Ciz) =z (4.10)

1 1
WUt B gapy

it follows that
C,=U, +Ux3~', n=12,., 4.11)
with U, =1/(1—p), Uy=—p/(1—p), x,=AB+p. Substituting (4.11) into (3.22) yields
x5 +k(1—x,)—1
(1—x2)

._E__ 2P ( k _ 1"‘(AB+PY‘
G G ™ e

var(S®) = (Tf—p)z[k - 2(1—-p)U, 4.12)

Let x be the service time of a tagged customer (cf. Subsection 4.2). Substitute B=x/k and
p=1- x/kB into (4.12). Letting k—co leads to var (SP5(x)):

var(§750) = Jim var(s®) = 22 Bp’; - o2 f,)4 —emx-0rk) @13

a result previously obtained by Ott [21]. Note that the sojourn time variance depends linearly on x for
X—>00:

- ~2
var (S5 (x)) ~ (lzfﬁfx - (12 f_p;))4 s X—>00, 4.149)

(see also Kleinrock [18, p. 170]), whereas it depends quadratically on x for x—0:

PS [4 2 _ A 3
var(S™°(x)) ~ (l—p)zx 3(1_p)x ,  x—0. 4.15)

The M/G/1 PS queue
We now derive an expression for var (SP5(x)) for the M/G/1 PS queue. We consider service time dis-
tributions with LST as in (4.2), by choosing Q(z) as in (4.4), (4.5):

' (1—py)z Bz/B,
RS o/ Ll ——; 4.16)
06 = 2 ﬂl 1=py2 ,21 .ql —(1—B/By): (
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Analogously to the M/M/1 case analysed above, (3.15) and (4.16) lead to:

C,=U +Upx3 ' + -+ + Ux}™!, n=12,., @4.17)
where 1/x,, ...,1/x; are the roots of
) = 0. (4.18)

Uy, ..., U, are determined by

Ulz ULZ

s T o = C(z). (4.19)

Note that in (4.17)-(4.19) we have used the following assumption:

ASSUMPTION 4.1
The roots 1/x,, . ..,1/x; of (4.18) are all distinct.

REMARK 4.1 *
Assumption 4.1 can be easily proved to hold for the Erlang and hyperexponential cases. We have
found no example for which the roots are not distinct. '

REMARK 4.2
1/x3,...,1/x, are the roots of a polynomial of degree L —1<>™ |1 see (4.16), (4.18); (4.19)
leads to a set of L linear equations from which Uy, . .., Up can be obtained.

We now prove some properties of x; and U; that will be used in the sequel.

LeMMA 4.1
@ x| <1, i=2..,L;
(ii) x; can be written as

xX; = 1 —ﬁa,-, (4.20)

with a; independent of B, and Re a; > 0, i=2,..,.L;
(iii) U; is independent of B, i =1,...,.L, and U; =1/(1—p).

PROOF
Noting that (see (3.15)),

i=1

and Aﬁﬁ q(@) = p <1, it follows immediately that |x;| <1, i=2,..,L. To prove (ii), substitute
o
(4.16) i;no (4.18) and replace z by 1/(1—Bz). Then (4.18) reduces to
1+ A2, I‘[ = 0. @21)
z Zj=1 =1 1—- B,]

Since 1/x; is a root of (4.18), (1—x;)/ B=a; is a root of (4.21). The fact that B does not occur in the

left-hand side of (4.21) implies that 1—x; depends linearly on B. The statement concerning
Re a; > 0 now follows from (i).
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It follows from (4.19) that

UL = fim (1-2x)C(z) = lim (1— ——)C(——) 4.22)

! Xi z-1/x, ' za 1 —BE 1 '—BE ’ )
Observing that AC(~ 1 is independent of B, it is found that
—pzZ
. X; 1
U, = lim x;,(1— —)C( =)
Z-a 1 _ﬁZ 1 —BZ
is independent of B.
Formula (3.15) implies that limC, =1/(1—p); together with (4.17) and (i) this yields U; =1/(1—p).
n—o0

Substituting (4.17) into (3.22) gives (cf. (4.12))

xf+k(1=x)—1
(1-xy

yar(S®) = (T%)Z[k - 201-p) 3, (4.23)
j=2

Now, let x be the service time of a tagged customer, and take B=x/k. For k—o0, var(S*5(x)) fol-
lows from (4.23) and (i) of Lemma 4.1; integrating E {(SP5(x))*}=var(S"S(x))+x2/(1—p)* over x
and subtracting (E{S"S})?=8"/(1—p)* yields the unconditional sojourn time variance. We collect
these results in

THEOREM 4.1
In the M/G/1 PS queue with service time LST given by (4.2),
PS(y — 2 & —xa,
var(SP5(x)) = -— S(1/a Uil —xa;—e ], 4.29)
j=2
PS 2 & 2 r —a7" Ei!‘rpsf[-—&z
var(S°°) = = 2(/a)° Ujl—Baj—E{e ™ }] + e (4.25)

with a, . . . ,ay the roots of (4.21) and U,, . .. , UL determined by (4.19), cf. Remark 4.2; a; and U;
are independent of x, j =2,...,L.

Formula (4.24) shows that var(S”5(x)) depends on the required service time x in a very simple way.
It is convenient to use this formula for the analysis of the behaviour of the sojourn time variance
when x varies. In [2] asymptotic results for x—c0 and x—0 have thus been derived. In particular, it
has been shown there that (4.15) holds for the class of service time distributions given by (4.2).

4.4 The distribution of the sojourn time

Application of the limiting procedure to (3.18) yields the LST of the distribution of the sojourn time
in the M/G/1 PS queue. The analysis can be performed along the same lines as the analysis of the
sojourn time variance. It appears that the M,’s in (3.18) have similar properties as the C,’s in the
previous subsection. However, there are some difficulties which did not arise in the analysis of the
variance. These problems are due to the presence of the individual feedback probabilities contained
in the g(n)’s in the denominator of (3.18). In general the g(n)’s are given by very complicated
expressions and can not be explicitly determined for the whole class of service time distributions given
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by (4.2) (cf. (4.4), (4.5) and (4.6)). Therefore, we shall restrict ourselves below to a subclass of these
service times, viz. mixtures of Erlang distributions: (cf. (4.2))

vl

E{e —ar” } = zaj (4.26)

H‘ijo

with ay, . .. ,a,=0, D" %=1, r1, ... 1y, positive integers. The corresponding feedback probabil-
ities are determined by (cf. (4.4), (4.5))

zn o ((d—pj)z

() = Ea, [ 1=,z ] , 4.27)
with p; = I—B/Bj > 0.
From (4.27) we find

qOA—p M) = 2 y(1—p;)" [, e (4.28)
from which the g(n)’s can be obtained via:

g = Sqa-p@), n=12,.. @29

I=n

Note that the (sub)class of distribution functions determined by (4.26) is still large enough to approxi-
mate the distribution of any non-negative random variable arbitrarily closely (cf. Tijms [25, p. 398]).

We start the analysis with a lemma that states some properties of the M,’s given by (3.19) (see also
(3.20)). Then, as an example, we consider the M/M/1 PS queue and show how these properties can
be exploited to derive from (3.18) the LST of the sojourn time distribution. Next, the general case is
treated.

To obtain closed expressions for the M,’s determined by (3.19) we introduce the following assump-
tion: (cf. Assumption 4.1)

ASSUMPTION 4.2
The zeros 1/y,, . . . ,1/y, of the denominator of M(z) given by (3.20) are all distinct.

Under this assumption it is easily seen that we can write, cf. (4.17),

M,=A} + -+ + Ayl n=12,.., (4.30)
with 4,, ... ,4; determined by
A A
Loy 2 ). : 4.31)
1—yz 1-y.z
REMARK 4.3

1/yy,...,1/y, are the roots of a polynomial of degree L<2"’ + 1, see (3.20), (4.27); (4.31)
leads to a set of L linear equations from which 4,, . ..,4; can b ol)ta.med (cf. Remark 4.2).

Analogously to the proof of (i) and (iii) of Lemma 4.1 it can be shown that
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LEMMA 4.2
(i) y; can be written as
yi = 1—Bd, 4.32)
with d; independent of B, i=1,...,.L;
(i) A; is independent of B, i=1,..,L.

Note that, in fact, d;=(1—y;)/B, i =1,...,L are the roots of

Ftw+A— Se——T =0 (4.33)

L 1 .z

j=1 J
The properties stated in Lemma 4.2 will be used below. Before treating the general case we first give
an example.

The M/M/1 PS queue )
For exponential service times (Q (z)=(1—p)z/(1—pz), with p =1—B/p),

1+ Buy —AB—=—(1—(1—p)z/ (1—pz))

M@ = 2 (5 Bug +NB) T NBz(1—p)z/ (1—p2) ° 4.39)
It is easily seen that the zeros 1/y, and 1/y; of the denominator of (4.34) are given by
1 A ~ ry
y=1+8 [w0+}\—1/B+ V(wo+A—1/BP +4wy /B, (4.35)
Yy = 1+%B [w0+}\—1/i3— V(wo+A—1/B +4wy/B|.
We can write (cf. (4.30))
M, = Apyi+tAy;, n=12,., (4.36)
with
—(1+ Buy) —(1+Bw
4, = 220HB) Azzw, 4.37)
Y271 Y17)2

Now substitute (4.36) into (3.18) and evaluate the summations in the denominator (take g(i)=p' ~").
Taking in the resulting expressions y;=1—Bd;, i =1,2, p=1—B/B, B=x/k and using that d; is
independent of B it is easily seen that

2 -
lim(1+Bw)My -1 = SApe ™,
ke h=1

A k—2 . _ 2 a 1 —xd, —xlﬁ
mA8 3 q(k —j —DM; = ADAB—=—le ™ —e™*'F],

koo =y h=1 h

k=2 A -
LmAB S () = AB(1—e~*'B).

k-
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Hence, cf. (4.4),

E{e™*% ¥} = imE{e ™"} = — — — . @39
ke EA],C XIB AZA],B _XJ‘ —e""p]
h=1 h=1 l—ﬁdh

It is easily shown that this result coincides with the result obtained in Coffman et al. [10] (formula
(30) on page 128). Note that formula (30) of that paper represents the LST of the distribution of the
total delay of a customer with a specific service demand. To match it with our result it has to be mul-
tiplied by the LST of the required service time (given by exp (— wpx)).

The M/G/1 PS queue

Now we shall treat the general case, i.c., the case that the service times are determined by (4.26).
Consider in the corresponding feedback queue the total sojourn time after k services given by (3.18).
As in the M/M/1 case, we evaluate the terms (14 Bwy)M;_;, ABD*™ q(k —j—1M; and
}\BE" 2q(i) in the denominator and take the limit k—oo independently for each term. The first
term is smple from (4.30) and (4.32) it is easily seen that

lim(1+ Bwo)M; _; = hm(1+—wo)EA,.(1——d,,)" 1 = fA,,e"“’* ) (4.39)

k—o0

The second one needs more effort. Using (4.28)-(4.30) and (4.32) it is found after extensive calcula-
tions that

k=2
M2 qk—j—)M; =
j=1

k=2 m —i—2—(.—1—i
AﬂzszauE[’,‘_fl_f(l—pn) Ty T <

j=1 n=1 i=0

L m ~lg—2
A4, e, 2 > [l; _]1_%](1—1;") —1= 'k At Vb ')}’i —

h=1 na=1 i=0j=1

L om ol (—x/(kB D
A2 2ion 2 = ((r,.—)z-i)! X

k=1 n=1 i=0

k=r,=1+i . ‘ ] A 1| 1=xdy/k J
=k—j—=2) - tk—j—2—(r,—2— /(kBy)" —_— .

P e e R G L) [l—x/(kﬁ,,)]

The last equality is obtained by substituting p, =1—8/8,, B=x/k and noting that [’r‘"—_jlzf] =0 if
k—j—2<r,—1-—i.
Using that, actually by definition,

k—r,—1+i

lim 2 —(k Yk —j=3) (k= j 2= —2-i)X (4.40)

k-0
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A o1—i| 1—xdy/k Ioox S \r—1—i_—s(@d—1/B
(x/(kB))" : [—A] = [(=——=)" e @ W ds |
l—x/(kB") s=0 B" p’l

we obtain

r—l —x/ﬁ x

r—l i ——s(d,, 1/B)
- ds . 441
i=0 (r”_l—l)' f( B, Bn ( )

imA8 S g —j My = A3 4, B, S
k—oo ;- A=1 n=1

The evaluation of the third term is analogous to that of the second term:

k2 LA . At ) R | R T B B ) I
}\324(1)—7\32 Ean 2 rn'_l—j (1 Pn) Pn -

i=1 i=ln=1 j=0

m L — g ) N = A . a
T e R e ) (D B (BT DS

n=1 j=0 = 1=t i=r,—j

Hence, cf. (4.40),

r.—1 1

Jlimag 2 g = A3, 3 ) [( S y1mig s B (4.42)

i=1 nl;O(r"lJ

In the derivation of (4.41) and (4.42) one recognizes the convergence of the binomial distribution to
the Poisson distribution, cf. Feller [14, Ch. 6]. The integrals in (4.41) and (4.42) can be evaluated by
noting that

x -
/S" s/cds, — n|cn+l(1 e X/C) e—x/c 21

n—j.j+1
I ) (n_j)'x c .

Using the resulting expressions and (4.39) we obtain from (3.18):

THEOREM 4.2
In the M/G/1 PS queue with service time LST given by (4.26), for Re wy=0,

E(e™*S"®)} = imE{e ™%} = 4.43)

k—o0

(1-p) ﬁA,.e"“‘* —Aza,.ﬂ.. /A, 2 i(xlﬁ")'

h=1 j=0i=0

-1

O —e x/& T i_J (x(1—Bndn)/ Bn) )N

L m —xd
AEAII zanﬁn ) 2 (] —'Bnth(e ' i

h=1 n=1 —Pndp  j=0 i=0

withd,, . . . ,dy the roots of (4.33) and A, . . . , Ay, determined by (4.31), cf. Remark 4.3; dj, and Ay are
independent of x, h =1,...,L.

For hyperexponentially (H,,) distributed service times (r; =1, j =1,...,m, cf. (4.26)) (4.43) reduces to a



20

much simpler expression. It is easily verified that for m =1, r; =1, the M/M/1 case, (4.43) reduces
to (4.38).

The deterministic distribution is not contained in the class of service time distributions determined
by (4.26), so the above analysis does not apply to the M/D/1 PS queue. Deterministic service times
can be approximated by an Erlang-n distribution (for large n) but this leads to the problem of finding
the roots of an (n +1)-th degree polynomial and the solution of a set of n +1 linear equations (cf.
(4.30), (4.31)). However, another approach is possible [6]: explicit formulas for the sojourn time in
the M/D/1 PS queue can be easily obtained from the sojourn time in the M/M/1 queue with deter-
ministic feedback in which each customer receives exactly N services. Taking N =[B/f] and B=x/k
it is clear that the total sojourn time after k services in the feedback queue approaches, for k— oo, the
sojourn time of a (special) customer with service demand x in the M/D/1 PS queue with service time

B.

REMARK 4.4

Our sojourn time results in Theorems 4.1 and 4.2 are given in terms of the roots of a polynomial and
the solution of a set of linear equations. The corresponding formulas collected in Yashkov [30] are
given in terms of multiple integrals. In general both types of formulas can only be evaluated numeri-
cally. For obtaining numerical results it seems in our case to be more convenient to use the feedback
results (3.18) and (3.22) with B=x/k and k sufficiently large. Preliminary tests suggest that this pro-
cedure works quite well even for reasonably small k. Thus the feedback queue might in a natural way
lead to sojourn time approximations for the M/G/1 PS queue. This is a promising topic for further
research.

REMARK 4.5

From Corollary 3.2 and application of the limiting procedure, see Subsection 4.1, it follows that for
the M/G/1 PS queue the random state of the system (the number of customers present and their resi-
dual service requests) just after the departure of a tagged customer who has received an amount x=0
of service is described by the stationary distribution of the state of the system at an arbitrary epoch,
independent of x. This result slightly extends Theorem 2.3 of Ott [21]. Ott’s theorem concerns only
the distribution of the number of customers at a departure epoch of a tagged customer with initial
service demand x.

5. THE M/M/1 FEEDBACK QUEUE WITH ADDITIONAL PERMANENT CUSTOMERS
In this section we consider the same M/M/1 queue with general feedback as in section 3 but with
K=>1 additional permanent customers. This model is pictured in Fig. 5.1.

A
p@)

e B 1-pG)

Fig. 5.1 The M/M/1 feedback queue with K additional permanent customers.
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A model of a single server queue with an additional class of permanent customers exposes a structure
that appears in many representations of computer and communication networks. The prime interest
of such models is to determine and understand the influence of one class of customers on another
one. This is useful for perceiving the operation of more complex queueing systems. See [7] for a study
of an M/G/1 queue with additional customers whose service time distributions may differ from those
of the Poisson customers; the latter model generalizes certain vacation queues.

In the present study it is assumed that the service times of the Poisson customers and the per-
manent customers are independent, negative exponentially distributed random variables, all with
mean B. For the Poisson customers the assumptions about the feedback mechanism, notations, termi-
nology, etc. are the same as for the model without permanent customers, see Section 2. Our main
goal is to study the influence of the presence of the permanent customers on the joint distribution of
the successive sojourn times of a tagged Poisson customer (Subsection 5.1) and to use the results for
the analysis of the sojourn time in the M/G/1 PS queue with additional permanent customers (Sub-
section 5.2). The results for this latter model are obtained by applying the same limiting procedure as
used for the case without permanent customers, see Section 3.

Because the Poisson customers and the permanent customers have the same exponential service
time distribution, the joint stationary distribution of the number of type-i (Poisson) customers, X;,
i=1,2,..., in the system at an arbitrary epoch is of product-form type. From the queue length results
for general product-form networks (see Baskett et al. [1]) it is found that for our model, cf. (2.3),

K!

K+x;+x3+ - ) = ABg(i))"
Pr(X,=x1, X% =%3,..} = (1=pf "' q( )
i=
X1,X25. = 0,1, x; +x2+ -+ - <o0. (5.1)

(Remember that ¢ (i) represents the relative arrival rate of type-i (Poisson) customers, i =1,2,... (cf.
(2.1)), and that p denotes the total offered load to the system per unit of time due to the Poisson cus-

tomers: p=AB3 4 ().

The generating function of the joint queue length distribution is given by: (cf. the derivation of (2.4))

o (M\Bg()z)" _
X; B

B(I1F) = (=05 S 38 o 52)
x;+x,+ -0 =m
m K+1
(l—p)"“ﬁ[m;'(][iwq(i)zi] = |—2—| . lal<Li=12..
m=0 i=1

1- S2784()
i=1

Comparing this result with (2.4) we observe the following phenomenon: the presence of the K per-
manent customers in the M/M/1 feedback queue leads to a joint queue length distribution which is the
(K + 1)-fold convolution of the joint queue length distribution in the same model without permanent custo-
mers. In Subsection 5.1 we shall use (5.2) for the analysis of the sojourn time distribution.

5.1 Sojourn time distribution

In this subsection we present, in the form of Laplace-Stieltjes transforms and generating functions, an
expression for the joint steady state distribution of the successive sojourn times S;, j =1,....k, and the
number of type-i customers, X9 i=1,2,., present at the j-th service completion of a customer who
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is fed back at least k —1 times, k =1,2,... . It will appear that for the derivation of this quantity we
can largely rely on the analysis of the sojourn time in the model without permanent customers given
in Section 3.

Consider a newly arriving (tagged) customer, say C, and suppose that he finds X{? =x; type-i (Pois-
son) customers in the system, i =1,2,..,, together with the K permanent customers. It is easily seen
that the determination of the (conditional) joint sojourn time distribution of C can be performed in
almost exactly the same way as for the original M/M/1 feedback queue without permanent customers
leading to Theorem 3.1, the only difference being that for the present model one has to take into
account that after each of his services C finds K additional permanent customers in the queue (besides
the different types of Poisson customers). Realizing this it can be shown in a straightforward manner
that, for Re (0120, Iz,-,jISI, i=1,2,...,j =0,...,k,

E(e @SS 0 - T 25%) X0 =x1,XP =x,,..} = G3)
i=1

i=1

i=1

k 00
(T 4kGr @.2)*! TT (i, ofiG 0,2))™,
j=1

with w:‘—'(w,, e ,(Ok), Z:=((Z|,0,22’0,...), . e a(zl,kaZZ,k’---))’ and with Ak(',',') and f}c(‘,',’) defined
by (3.3) and (3.4). Note that the (K +1)-st power term in (5.3) is the contribution induced by the
tagged customer and the K permanent customers, cf. Remark 3.1.

Using the PASTA property and deconditioning we obtain from (5.2) and (5.3) our main result:

THEOREM 5.1

The joint distribution of the successive sojourn times and the number of Poisson customers of each type
present in the system at the service completion epochs of a tagged Poisson customer is the (K +1)-fold
convolution of the corresponding joint distribution in the model without permanent customers, cf. (3.5):

k K+1
(1-p) [T4r( w.2)
E{e“(GIS|+n-+”ksk)(ﬁ zi‘f: ... ﬁzﬁ))} = — i=1 , (5.4)
i=1 i=1 1=A8 3 q()z; o fi (i @,2)
i=1

Rewj>0, IZ,'J'S], i=1,2,_"’ j:O’_"’k.

Using Theorem 5.1 most of the sojourn time characteristics can be immediately obtained from the
results given in Section 3. Here we shall restrict ourselves to a summary of the most important
characteristics.

— The j-th sojourn time S; of a Poisson customer has a (K +1)-stage Erlang distribution (Ex ;)
with mean (K +1)8/(1—p): (cf. (3.9))

1— K+1
—r , j=luok (5.5)

—w,S
E{e 4 /} = ]—p-{-Bw
J

— The correlation coefficient, corr(S;,S;), of the i-th and the j-th sojourn time of a Poisson customer
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is independent of the number of permanent customers in the system: (cf. (3.17))
corr(S;,S)) = 1-C;_i(1—p), 1si<j<k, (5.6)
with C,, n=1,...,k —1, determined by (3.12).

— The variance of the total sojourn time after k services, var(S®), is given by: (cf. (3.22))

var(S®) = (K+1) i

2 -
—ﬁ—] [k2—2(1—p)k21Ck_j], k=12,... G.7)

j=1

REMARK 5.1

Noting that in the present product-form model a departing (and hence arriving) permanent customer
sees the system in equilibrium with one less customer of his own type (see e.g. Walrand [28, Section
4.4)) the characteristics of the successive cycle times of a particular permanent customer can be
immediately obtained from the above sojourn time results for the Poisson customers. For example,
the cycle times have a K-stage Erlang distribution (Ex) with mean KB/ (1—p), cf. (5.5).

5.2 The M/G/1 PS queue with additional permanent customers

In Section 4 it has been shown how queue length and sojourn time results for the M/G/1 processor
sharing queue can be obtained from queue length and sojourn time results for the M/M/1 queue with
general feedback. We have applied a limiting procedure in which the mean service time f—0 while
the feedback probabilities approach one in such a way that a customer’s total required service time
remains constant, see Subsection 4.1. It is easily seen that application of the same limiting procedure
to the present M/M/1 feedback model with K permanent customers leads to the M/G/1 PS queue
with K permanent customers. Note that the behaviour of the latter model is independent of the ser-
vice time distribution(s) of the permanent customers (the permanent customers are always in service).
From (5.2) it follows immediately that for the M/G/1 PS queue with K permanent customers, the distri-
bution of the queue length X™ at an arbitrary epoch is the (K +1)-fold convolution of the queue length
distribution in the same model without permanent customers: (cf. (4.1))

1— K+1
E(zX} = [—f-’—] . lzl<1, (5.8)
1—pz
ie.
Pr{XS =n} = (1—-p)*! ["} o, n=0,1,., .9

with p the offered load to the system per unit of time due to the Poisson customers. From Theorem
5.1 we obtain the following remarkable sojourn time result:

THEOREM 5.2

For the M/G/1 PS queue with K permanent customers the distribution of the conditional sojourn time
SPS(x) of a Poisson customer with given service demand x is the (K +1)-fold convolution of the distribu-
tion of the conditional sojourn time in the same model without permanent customers. This also holds for
the unconditional sojourn time S'S of an arbitrary Poisson customer.
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Theorem 5.2 implies: (cf. (4.9))

X

I-p

E{SPS(x)} = (K+1) , x=0. (5.10)

REMARK 5.2

For the present PS model it is interesting to study the influence of the presence of the Poisson custo-
mers on the ‘speed’ with which the permanent customers are served. For x=0 let C?S(x) be the time
required to give the permanent customers an amount x of service. From the discussion in Remark 5.1
and application of the limiting procedure it follows that CPS(x) is distributed as the conditional
sojourn time of a tagged Poisson customer with service demand x in the same model but with one less
permanent customer. For example, from (5.10),

E{CPS(x)} = K]fp, x=0. (5.11)
This formula shows that the influence of the Poisson customer stream on E{C"S(x)} is simply a
reduction of the capacity of the server by an amount p, the load offered by the Poisson customers.
Moreover, (5.11) implies that the mean fotal amount of service obtained by the permanent customers
per unit of time (given by Kx/E{C"(x)}) is independent of K.

REMARK 5.3

In Remark 4.4 we concluded that for the M/G/1 PS queue (without permanent customers) the queue
length distribution just after the departure of a tagged customer who has received an amount x of ser-
vice is the same as at an arbitrary epoch, independent of x. From (5.8) it follows that for the M/G/1
PS queue with one permanent customer the queue length distribution at an arbitrary epoch is the
two-fold convolution of the queue length distribution in the PS queue without permanent customers.
Since one would expect that, when the required service time x of a tagged customer becomes very
large, the behaviour of the M/G/1 PS queue approaches that of the corresponding PS queue with one
permanent customer, it seems paradoxical that both statements are true. However, viewing the
M/G/1 PS queue as the limiting case of the M/M/1 queue with general feedback this is immediately
clear (a departure in the PS model corresponds with a certain service compietion in the feedback
model which is more likely to occur when there are fewer customers in the system). A similar ‘para-
dox’ for queue lengths in PS queues is discussed in Foley and Klutke [15).

REMARK 5.4

Cohen [11] has studied generalized processor sharing (GPS), which is the following generalization of
the PS service discipline: When j customers are present in the system, then the service rate for each of
them is f(j)>0. The M/G/1 PS queue with K permanent customers can be viewed as a special case
of generalized processor sharing, with f(j)=1/(j +K), j=1,2,... Formulas (5.9) and (5.10) have
thus already been obtained by Cohen [11]; Theorem 5.2 is a new result.

Another approach to the M/G/1 GPS queue is to start with an M/M/1 feedback queue in which the
feedback probabilities are chosen as in Section 4 to obtain the service request distribution of the
M/G/1 GPS queue, but with state-dependent service rates p(j)=f () when j customers are present
in the feedback queue. For this feedback queue the Markov renewal approach of Section 3 no longer
works. However, the feedback queue still has queue-length product form and taking the limits in the
usual way to arrive at processor sharing leads to (5.9) and (5.10).

The above results for the queue length and the sojourn time in the M/G/1 PS queue with per-
manent customers are interesting both from a theoretical and a practical point of view. One example
where this queueing model may arise is provided by a ‘Stored Program Controlled’ (SPC) telephone
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exchange that is offered two types of jobs: (i) call requests, and (ii) operator tasks (see De Waal [27]).
To guarantee a certain quality of service of the call requests only a limited number (K) of operator
tasks is allowed to be in service at the same time. It is clear that under heavy traffic conditions of the
operator tasks and for appropriate assumptions about the system parameters the above formulas
(5.8)-(5.10) (approximately) reflect the influence of the choice of the control parameter K on the queue
length and the delay of the call requests. From the discussion in Remark 5.2 it follows that under
certain conditions the maximum throughput of the operator tasks is independent of K. So, if the
objective is to minimize the delay of the call requests and to maximize the throughput of the operator
tasks one should take K as small as possible, i.e., K =1.

6. THE M/G/1 PROCESSOR SHARING QUEUE WITH FEEDBACK

In this section we consider an M/G/1 PS queue with feedback. The feedback mechanism has the
same structure as described in Section 2 for the M/M/1 FCFS queue, i.e., the probability that a cus-
tomer is fed back after completing his service may depend on the number of times he has already
been served. We shall study the successive sojourn times of a tagged customer. In particular we are
interested in dependencies between these sojourn times.

The PS queue with feedback has been studied before by Klutke et al. [19]. They consider the spe-
cial case of Bernoulli feedback and analyze the behaviour of the internal input and output processes.
In particular they study the influence of the shape of the service time distribution on the interoutput
time distribution. Their main result is that when service time distributions with the same mean are
convexly ordered, so are interoutput time distributions. The purpose of their study is to gain insight
into the properties of traffic processes in general queueing networks with processor sharing nodes.

In Klutke et al. [19] it is remarked that the study of flow processes is crucial for understanding the
behaviour of more complicated processes in the system. As an example the authors mention the
sojourn time process and say that ‘this is still an open problem’. In this section we shall show that
sojourn times in the M/G/1 PS queue with feedback can be obtained from the sojourn time results
for the M/M/1 FCFS feedback queue derived in Section 3.

6.1 Model description and notations

We consider an M/G/1 PS queue with feedback (PSFB). When a customer has completed his i-th
service, he departs from the system with probability 1—p(i) and is fed back with probability p(i),
i=1,2,... . Fed back customers return instantaneously, and due to the PS service discipline a return-
ing customer is immediately taken into service again. The successive service requests i, T,, . .. of a
gustgmer are independent random variables with distribution functions B,("), B,(-), . . . and means
B1, By, . . . tespectively. New customers arrive accordmg to a Poisson process with mtens1ty A. Obvi-

ously, for stability it is required that the load p = }\2((1 10)) t[ p(z))(ﬁ, +Bj) <1
j=1 i=1
We are interested in the successive sojourn times S;(7T'y), . . . , Sy(Ty) of a (tagged) customer in the
PSFB queue who requires at least N>>1 services of length Ty, . . . , Ty =0 respectively. In particular
we shall derive an expression for the correlation coefficient, corr (S;(T;),S;(T})), of the i-th and the j-th
sojourn time of a tagged customer, i,j =1,...,N.

For the analysis of the successive sojourn times in the PSFB queue we shall consider corresponding
sojourn times in an associated processor sharing queue without feedback. Let B(") denote the distribu-
tion function of the total required service time, i.e.,

B(r) := 2((1“P0))hp(1))(31(1)* -+ *By(r)), =0 6.1

j=1
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It is easily seen that the behaviour of the M/G/1 PS queue with service time distribution B(-) is
exactly the same as the behaviour of the PSFB queue described above. In the sequel the PS queue
with service time distribution B() will be called ‘the assoc1ated PS queue’ (or shortly ‘the PS queue’).
For a tagged customer with initial service demand =T, + - -- +Ty, T}, . .., Ty=0, in the asso-
ciated PS queue we define:

SIS(T;): time durmg wh1¢h the remaining service demand of the tagged customer is in the range

S =T, 75— zT], i=1,.,N.

j=1 j=1
Obviously, the }, oint distribution of S{*(T)),...,SF(T;) does not depend on Tj,,,...,Ty,
i=1,..,N—1; S{5(T,) is distributed as the condmonal sojourn time of a tagged customer w1th ser-
vice demand T;:
E{e ST = Ee7%S" @) 720, Re wy=0. 62)
It is clear that the quantities Sf5(T;), i =1,...,N in the associated PS queue have the same joint dis-
tribution as the successive sojourn times S;(T), . . SN(TN) in the PSFB queue. In particular,
corr(S(T)S[T) = cor(SIS(T),SIS(T)), ij=1,...N. ©63)

So below we shall focus on the sojourn times S75(T;), 7,=0, i =1,...,N, in the PS queue.

6.2 Analysis
Consider the M/G/1 PS queue with service time distribution B() We assume that B() belongs to
the class of distributions given by (4.2). The first moment of B() is denoted by ,B From Remark 4.5

it follows immediately that for 2<<i<N the joint distribution of SP5(T}),...,S§(Ty) does not
depend on T, ..., T;_,. This implies that, cf. (6.2),
E(e ™S = ge™%S"®) T30, i=1,.,N, Rew>0. (6.4)

So, means are simply given by, see (4.9),

PS —_ ]"l .

E{(Si*(T)} = 1= i=1,..,N, (6.5)
with offered load p=AB. It also follows that corr(S” S(T:),SF5(T})), Ty, . . . , Ty =0 depends only on
T, T; and 2,, =iy T,, 1<i<j<N. Hence, for the analysis of corr (S7°(T),S75(Ty)),
Ty,...,Ty=0, i,j=1,..,N we can restrict ourselves to the determination of corr(S% S(T,),S3S(T3))

Tl,Tz,T3 =0, without loss of generality. Below we shall derive an expression for the latter correla-
tion. We shall consider corresponding sojourn times in the M/M/1 FCFS feedback queue and apply
the limiting procedure described in Section 4. The analysis is largely analogous to the derivation of
the sojourn time variance in the M/G/1 PS queue, see Theorem 4.1.

Consider the M/M/1 FCFS feedback queue with mean service time B and feedback probabilities
p(@), i=1,2,... related with B such that the total required service time has distribution function B(-),
see (4.4)-(4.6). We follow a tagged customer during his first k, +k,+k3 successive sojourn times
Sl, . e ’Sk,+k,+k,' Define

S](k])Z=SI+ Tt +Sk.’
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Sa(k2): =Sk, +1+ - - - +Sk 4k,
S3(k3): =Sk, +k,+1F TSk 4k, 4k,

Clearly, when we take k, = [T, /8], k3 —LT3 /B8], B T,/k; and let k;— o0 then S,(k,), S;(k,) and
Ss(k3) correspond to the PS quantities S}>(T), S§5(T,) and S§5(T'5) respectively (cf. Section 4; note
that, for k,—o0, k;B—T;, i=1,2,3). We shall first derive corr(S;(k;),S3(k3)) for general
ki,k,,k3=0. Next, taking k,, k3 and B as indicated above we use

corr(STS(T1),855(T5) = hmcorr(Sl(k 1:83(k3)). (6.6)

,—)oo

From the definition of S;(k;), i =1,2,3, it follows that the covariance of S;(k,) and S;(k;) can be
written as

k, ks
cov(Sy(k1),S3(k3)) = X Dcov(S;, Sk, +x,+j) »  ki1,k2,k3=0. 6.7
i=1j=1

Formula (3.17) expresses the covariance of S; and S,, in C,, _;, cf. (3.12). Writing C,, —; as in (4.17)
it follows that, for k,k,,k3=0,

2,
cov(Sy(k1),S3(k3)) = [IB } 2 2(1 A=p)Cs, +k,+j—i) = (6.8)
i=lj=1
k, -1 ky+1
_ﬁ_ G | k+k1 1 X ' _ﬁ_ L k, X1l T X1 1—x;
Ux = - - Ux,? -1 -1).
1—p = 2,21,21 * 1"pl=22 il x—1 X 1—x )

Replacing in (6.8) x; by 1—Bay, [ =2,...,L, see (4.20), and btaking appropriate limits, i.e. k;=[T,/p8],
k3=[T3/B), B=T,/k, and k;—c0, we find, cf. (6.6):

L _ _ -
cov (STS(T),845(T3)) = ——1%; SU/ape (11— Y 1—e %), T,,T,,T3=0.  (69)
1=2

Retumingvto the PS queue with feedback we have from (6.9) and (4.24):

THEOREM 6.1 . .
For the successive sojourn times Si(Ty),...,Sy(Ty), Ty,...,Ty=0, of a tagged customer in the
M/G/1 PSFB queue with total service request LST given by (4.2),

corr (Si(T;),S,(T)) = (6.10)

—2(1,(1/a)2 Tua(]—e Ty 1 —e T
=2

- , I<i<j<N,

L 2| L
2 z(l/al)zlfl(l_f}al_e—m)]z [E(I/GI)ZIJI(I_T}aI_e_T’a')

1
2
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i—1

with T, j:= 12 T,. a3, - ,ay are the roots of (4.21) and U,, - - - ,Uy, are determined by (4.19), cf.
=i+l

Remark 4.3: a; and U, are independent of Ty, n=1,..,N, |=2,..,L.

It is interesting to consider some asymptotic properties of corr(S (T; ),S i(T;)). First, noting that in
(6.10) Req; > 0,7=2,...,L, see Lemma 4.1, we obtain

corr(S(T).S(T)) - 0, T, T;=>0, T, j>c0, 1<i<j<N, (6.11)

which is intuitively clear. Another asymptotic result applies to the case that T;, T; and T;; becomes

very small. Using 2{‘ 2U," 1—1/(1—p) and (4.24) and the fact that (4.15) holds for general service
time distribution (as observed below (4.25)), it follows from (6.10) that

corr(S(T),S{(T) - 1, T,T;,T,j—>0, 1<i<j<N. (6.12)

This result can be explained as follows. Suppose a tagged customer starts his i-th service at time 7.
For T;, T; and T;; close to zero it may be expected that the successive sojourn times
Si(T3), - - - ,S;(Tj) of the tagged customer are small (cf. (6.5)) and that no new arrivals or departures
occur during the time interval [1,# +S;(T;)+...+S;(T;)]. Hence, due to the PS service discipline
S{(T;)=T;S(T;)/ T;, i.e. S(T;) is completely determined by S;(T;).

We conclude this section with an example.

The M/M/1 PS queue with Bernoulli feedback

Consider the M/M/1 PS queue with Bernoulli feedback, ie. B(f) = 1—e™" B , pP()=p, 0<p<l.
For this case the total required service time is exponentially distributed with mean B=pg/(1—p).
From the calculations for the determination of the sojourn time variance in the M/M/1 PS queue, see
Section 4, we have in (6.10) L =2, U,=—1/(1—p), a;=(1—x,)/B=(1—p)/B. Hence, for the
M/M/1 queue with Bernoulli feedback (6.10) reduces to

~T,(1-p)/B ~T,(1~)/B ~T,(1-p)/B
= o e Y 1—e 1— !
corr (T, 8,(T)) = ( _—Xl—e )

2[e P14 1) (TR 10—y ]

—, (613
2

1<i<j<N.
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