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1. Introduction

In studying the performance of a system one is often not only interested in steady state measures like
the fraction of time the system will be available (cf. Kawai [7]), because such measures don’t always
provide enough information for practical purposes. A proper question in this context would be
whether the system will be down seven and a half minute every hour or one hour every working day.
For a gas production platform, for instance, the information that on average it is available 360 days a
year is not sufficient in sales contracts. Whereas short interruptions in production may be covered by
the inventory (buffer), a loss of production for several days may cause serious problems (van Rijn &
Schornagel [10]). That is why one is often interested in transient measures like the cumulative opera-
tional time distribution over finite intervals (cf. de Souza e Silva & Gail [11]), or even in the charac-
teristics of the alternating “time to system failure” and ”time to system repair”.

In this paper we consider a two-unit standby system with Markovian degrading units and one
repair facility. If not both in failed condition, the units are in operation one at a time. Two types of
repair can be applied (either preventive or corrective), with durations which have probability distribu-
tions of general type. This model has been introduced by Kawai [7]. Kawai shows that under certain
regularity conditions the maintenance policy which maximizes the system availability is a Control
Limit Rule (CLR), i.e. a preventive repair on the working unit is carried out if and only if the repair
facility is free and the condition of the working unit is less than or equal to a prespecified critical
level. Moreover using probabilistic arguments Kawai [7] derives an explicit expression for the
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availability of the system under a given CLR. Van der Duyn Schouten & Ronner [1] apply the
embedding technique from Markov decision theory to obtain another more rigorous derivation of the
availability under a CLR. They furthermore propose an iterative computational scheme to numerically
compute the availability in case of Erlangian distributed repair times.

For the model we present the Laplace transforms of both the time to system failure and the time to
system repair from which all moments can be obtained. From the first moments we obtain the availa-
bility result of Kawai [7]. We indicate how further knowledge about the distributions of the length of
the alternating up and down periods can be used to obtain approximations for the interval availability
distribution applying an approach developed by van der Heijden [5] and van der Heijden & Schor-
nagel [6]. Employing similar ideas as van der Duyn Schouten & Ronner [1] we propose a more gen-
eral iterative scheme to compute the required expressions in case of generalized Erlangian distributed
repair times.

The remainder of this paper is organized as follows. In section 2 we give a detailed model descrip-
tion. In section 3 we derive the probability distribution and the Laplace transform of the “time to sys-
tem failure” and we show how to compute the moments of this variable. Section 4 is devoted to the
analysis of the “time to system repair”. In section 5 we show that the results of sections 3 and 4 are
in accordance with the long term availability result of Kawai [7]. Moreover we indicate how our
results can be used to obtain approximations for the interval availability distribution. Finally in sec-
tion 6 we show how all quantities mentioned in this paper can be calculated in case of generalized
Erlangian distributions and we present some numerical examples.

To close this section we introduce some standard notation. Let f,(¢) be the probability density
function of an arbitrary nonnegative stochastic variable 7. We define

F(x) = [f)dr and  ¢,(5) = [e 1 — F,0)dt, s =0, a.n
0 0

the cumulative distribution function and the Laplace transform of 7 respectively. The moments of 7
can be obtained from:

E[™ = (1" (+1)¢0), n =01,... (1.2)
Here ¢ (s) denotes the nth derivative of ¢,(s) ; 0 (s) equals ¢.(s).

2. Model description

We consider a two-unit standby system consisting of two identical Markovian degrading units (cf.
Gertsbakh [2], ch. 3) and one repair facility. At most one of the units is working at a time. The other
unit is either in repair or in standby position. The units may be in any of the states
(i | i€S = {0,1,..,n,n +1}} (0 : perfect state; 1..n : degraded states; n +1 : failed state). Under
the absence of repair the condition of the working unit deteriorates according to a continuous time
Markov process with absorbing state n + 1 and infinitesimal generator Q@ = (gy), i,j €S. We assume
that g; = 0 for j<<i, i,j €S, which means that a unit cannot improve without being repaired. A unit
in standby state neither fails nor degrades (cold standby).

In applications a Markovian degrading unit may be used for instance to represent a sub-system
consisting of n + 1 components which are subject to breakdown. During operation of the unit, one or
more components could fail. The ability of the unit to recover (with a specified “coverage”) to a
fault-free configuration consisting of the remaining non-failed components can be incorporated easily
(cf. Meyer [8]).

There are two types of repair. As long as a working unit has not entered state n + 1 the option of a
preventive (type 1) repair exists provided the repair facility is free. When the working unit enters state
n+1 a corrective (type 2) repair is required. The type 1 and type 2 repair times form two mutually
independent sequences of iid. random variables with distribution functions G, and G, with finite
means p, and g, and G,(0) = 0, k = 1,2 respectively. Preventive repair times are independent of the
actual state in which repair is carried out. The repair times are also independent of the sojourn times
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of the working unit in the different states. Repair on a unit is continued until it is completed (no
preemption). A repaired unit is like new (state 0).

When a unit enters repair the other one takes the working position in state 0, and vice versa. At
repair completion the repaired unit takes the cold standby position if the other unit is still functioning
and not demanding preventive maintenance. Otherwise the repaired unit takes the working position
immediately. A system down time starts when the working unit enters state n + 1 while the other unit
is still under repair and ends as soon as this repair is finished. We do not consider setup times.

The system is observed continuously in time. In this paper we consider a maintenance policy of
control limit type. The Control Limit Rule (CLR(m)) is defined as follows. Maintain a unit as soon as
the repair facility is free and the unit is in any of the states m,m + 1,...,n + 1. The state m is called the
control limit. Under some regularity conditions the optimal maintenance policy which maximizes the
system long run availability is of CLR-type (Kawai [7]).

3. Time to system failure
Our analysis is mainly built upon the observation that the process describing the system’s behaviour
regenerates itself at the beginning of every system up period.

At first we note that after a system down time a system up time always starts with one unit enter-
ing operation and the other unit entering the repair facility for a corrective (type 2) repair. We call
this system-state A and denote the time to system failure starting from this state A4 by 7gg,. Analo-
gously we define 7grp as the time to system failure starting in state B, where B is the system-state in
which one unit enters operation and the other unit enters the repair facility for a preventive (type 1)
repair. Note that states 4 and B are regeneration points for the system. They may be entered for
several times during one system up period.

3.1. Probability distribution of 7.,
The computation of the probability distribution of 75¢, will be reduced to the computation of the
probability of occurrence of five mutually exclusive events.

We introduce some additional notation:

- {X(®), t = 0} : a continuous time Markov chain on § = {0,...,n +1} with infinitesimal
matrix Q; X(0) := 0,

- O :=inft =0 | m < X(t) < n},

- Ty i=inflt =0 X@) =n+l1},

- Ry := type k repair time; P(R;, < 1) = G.(1), k = 1,2.

Assume that after a system down time the system starts operating again at time 0. Now for ¢ fixed we
make the following important observation. Under CLR(m), the event {r5¢4 > f} occurs if and only
if one of the following five mutually exclusive events occurs:

E\(¢): at time ¢ the unit working at time 0 is still working and no maintenance is desired (X (f) < m).
E5(¢): at time ¢ the unit working at time 0 is still working. Maintenance is desired (m < X () < n),
but not allowed because the type 2 repair that started at time 0 hasn’t been finished yet.

E;(t): the unit working at time 0 enters {m,...,n} before the type 2 repair that started at time O has
been finished. Repair is finished before ¢ and before the working unit fails. The system enters
state B (which is a regeneration point!) at repair completion. The system doesn’t fail during the
residual time to .

E4(1): repair is finished before the unit working at time 0 enters {m,...,n +1}. The working unit
enters {m,...,n} before time ¢. At that moment the system enters state B. The system doesn’t
fail during the residual time to 1.

E5(¢): repair is finished before the unit working at time 0 enters {m,...,n + 1}. Before time ¢ the work-
ing unit fails and the system enters state A (which is also a regeneration point!). The system
doesn’t fail during the residual time to ¢.
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These events have the same probability of occurrence as:

E @): { min{ 6, Ty41 } > 1), @B.1.1
Ey(t): {om <t <myi1; Ry>t), (3.12)
Est): {0y, <R, <mh41; Ry<t; 758 >t—Ry}, (3.1.3)
Eqt): {Ry <o, <t; 7 >1t—0p ), (.1.4)
Es(t): {R; < Tpy1 <Op; T <P Tegpg > 1 Th4 ) (3.1.5)

Note that a similar reasoning holds for the event { 7grp >t } by replacing in (3.1.1)-(3.1.5) all
indices ”2” by ”1”.

Forj€S, and k = 1,2, let

Hi):= P(X(1) =j | X(0) = 0), (3.1.6)
G1):=1— Gu(t) = P(Ry > 1), (3.1.7)
SG) = {X@+1) =j ), (3.18)

that is, S(j) is the event that the entrance into state n + 1 takes place by a jump from state j.

The following lemma which has been proved by van der Duyn Schouten & Ronner [1] provides an
expression for the probability that the Markov process {X(r), t = 0} has entered state n + 1 before
time ?.

LemMa 3.1.
t
Frisiy@:=P(741 <158()) = Gjn+1 ij(x) dx. 0
0

The next lemma provides an expression for the probability that the Markov process {X(¢), 1 = 0}
has entered one of the states {m,...,n} before time .

LEmMMA 3.2
!
n
Fo(t):=P(0, <t)= 3 [H(®) + gjne [ Hlx)dx .
j=m 0
PROOF:
P(o,<t)=P(m<sX@)<nV{X®=n+tl;m<X@T,1)<n})
n n
= 2 HO+P(ra<t; USH)
j=m j=m
n n f
= 3 HO+ 3 g Hx) dx
j=m j=m 0
The last equality is based on lemma 3.1. 0O

From (3.1.1)-(3.1.5), using (3.1.6)-(3.1.8) and lemma’s 3.1 and 3.2, P(E,(t))-P(E5(¢)) can be obtained
as follows:

P(Eq(1))

PO XE)<m—1)
m—1

> H@),
j=0



PE,) =P(m<X@t)s<n;Ry,>1)

é Hj(’)az(f),

Jj=m
P(E3()) = P(m < X(Ry) <n;R; <t;75;3 >1t—R;)
t
n
=2 ij(X)P( Tsrg > 1 —x) dG,(x),
j=m 0
P(E4()) = P(o,, <t;R); <o, ;75 >1t—0,)

[ G2x)P(rspp > t —x) dF, (x)
0

f[H}‘(x) + @in+1Hj(x) 1Gy(x)P (T5pp >t —x ) dx,
0

I
$ M=

] t

m—1
P(Ry <x;7g5pg >t—x)dP(7,.1 <x; U S{$)
j=0

P(Es(1) =

ot —, ~

m—1

™M
ot — ~

P(Ry; < x;75pqa >t—x)dF, . gs;(x)
=

~
i

m-—1 !

= 3 G [ )G ()P (754 >t —x ) dx.
j=0 0

In the last equality concerning P(E4(t)) lemma 3.2 is used and in the last equality concerning
P(Es(2)) lemma 3.1 is used. P(rsg4>>1) is obtained by summation of P(E,(?)) to P(E5(t)).

3.2. Laplace transform of 75r,
For notational convenience we introduce for j €S and k = 1,2:

Pu(s) := z e "' H ()G (1) dt, (3.2.1)
Ppj(s) := Z e H (1) dGy (1), (322)
Ru(s) := Ze*“Hj(t)Gk(t) d1, (32.3)
h(s) 1= Z e S'H(t) dt. (32.4)

Using the identity:
o0 0 _
[f@® dG) = — [ f(@©) dG (),
0 0

and Kolmogorov’s forward differential equations:

-1
H@ = — gH@ + S Hg,
i=0

= '-éo Hi()g;,
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we find by partial integration of (3.2.2)-(3.2.3) for k = 1,2:

Pok(s) = 1 — (s +go)Pou(s), (3.2.5)
pi(s) = éo giiPiu(s) — sPu(s), 1 <j <n+l, (326
Rjx(s) = hi(s)—Py(s), 0 <j <n, (3.2.7)
ho(s) = ~ +1 P (32.8)
he) = — ” 12::1 gyhils), 1<j<n (32.9)

So, hj(s), j=0,..,n, can be computed using (3.2.8) and (3.2.9). From (3.2.5)-(3.2.7) we see that if
k(S) is known for j €S, k=1,2, then all R;(s) and pjk(s) are known. Actually one can show that
h (s) can be obtained from P (s) as well. Beanng this in mind one should realize that all quantities
mentloned in the remainder of this section (except for (3.3.1)) can be computed if Py (s) is known for
JES, k=1,2. The computation of Pj(s) for generalized Erlangian distributed repair times is dealt
with in section 6.
Now we shall derive closed form expressions for ¢,(s) and ¢z(s), the Laplace transforms of 7gg4
and 7gxp respectively (cf. (1.1)).
Form € {1,.,n+1}, and k = 1,2 let:

Dps) 1= 1 — j;”:m(s T g DR(S), (32.10)

Apg(s) 1= "'zlh o + 2 (), (3211)

Kok(s) 1= Izolq, GRAE. (32.12)
THEOREM 3.1.

- R b
and

#5(s) = D,,,( 11 (5%1(2).. i:)l)(s—) Zf}")',fiis’;'"éfiw ' (3214
PROOF:
[ e @ ) di = 201 h) (3215)

e~P(Eq(t) dt = ém PGs), (3.2.16)

e S'P(E5@t)) dt

2 j H(x) j e 'P(rgep > t —x) dt dG,(x)

j=mx=0

o~~~ 8 =~—8 ©

o0

os(s) 3 [ e ™Hy(x) dGy(x)

j=mx=0

Il



= ¢p(s) ;n‘. Pj2(s), (3.2.17)

]
o0 n [>o] o0
[ePE)dt = 3 [ e Hj(x) + g1 Hy(x) 1Gy(x) [ e OP@gyp >t —x) dt dx
0 j=mx=0

t=x

n

$8() 3 [ gnr1R2(s) + [ e TH (x)G,(x) dx ]
j=m x=0

n

$8() 3 [ Gn+1R2() + s [ e Hy(x)Gy(x) dx — [ e ™ Hy(x) dG(x) ]
j=m 0 0

05(5) 3 16 +gpms DR2(S) — p1a(s) ] (3.2.18)

Jj=m

e 'P(Es(D) dt

o~ 8

m—1 o 4
S g1 [ e [ Hx)Gy(x)P(rsp4 >t —x) dx dt
j=0 1=0 x=0

m-—1 © ©
= 3 @1 [ e TH(x)Gy(x) [ et OP (g > t—x) dt dx
j=0 x=0 t=x

m—1
= ¢4(5) X gjn+1Rj2(5). (3.2.19)
j=0
According to (1.1) and (3.1.1)-(3.1.5) ¢,(s) is obtained by summation of (3.2.15)-(3.2.19):

m—1

¢4(s) = 2 hi(s) + 2 72(5) + ¢5(5) 2 (6 +Gjn+DRj2(8) + d4(5) 3 gjn1R;20), (3.2.20)
j=m j=m Jj=0

and replacmg all indices ”2” by ”1”:

m~—1

m—1

op(s) = 2 hi(s) + 2 P;I(S) + ¢p(s) 2 (6 +gn+ DRNE) + ¢4(5) X Gjn 1 Rj1(5). (3.2.21)
Jj=0

After some simple algcbra (3.2.13) and (3.2.14) are obtained from (3.2.20) and (3.2.21). O

3.3. Moments of 7gs4

Using (1.2) we obtain the expected time to system failure E[rgr4] by setting s : = 0 in (3.2.13). Here
we present the calculation of the second moment E[r%r,]. One could obtain an explicit expression
directly by taking the derivative of ¢,(s) in (3.2.13). A more efficient way is to use (3.2.20) and
(3.2.21) and compute ¢4(s) and ¢,4(s) subsequently.

From (3.2.20) we obtain:

m-—1 n n n
ba(s) = D hi(s) + T Pja(s) + 65(8) D (s +in+ )DR2(8) + 05() D {Rj2(5)+ (6 + Gt DR2(5))
Jj=0 j=m j=m jEm
m~—1 m-—1

+ ¢4(s) _2 Gin+1Rj2(5) + 4(s) 2 Gin+1R;2(5). (3.3.1)

Replacing all 1nd1ces ”2” by ”1” at the right hand side of the latter equation gives ¢3(s). Now again
we have a system of two equauons and two unknowns from which ¢ ,(s) can be solved easily. Note
that we can express p ]k(s) and R ]A(s) in terms of P ,k(s) analogous to the way we expressed p(s) and

Rj(s) in terms of Pjy(s) in (3.2.5)-(3.2.7). Starting with ho(s) we obtain A J(s) iteratively, cf. (3.2.8)
and (3.2.9).
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4. Time to system repair

The time to system repair, which is defined as the length of an arbitrary system down time, is denoted
by 7sg. In this section we shall subsequently derive the distribution function of 75z and its Laplace
transform from which all moments of Tgz can be obtained by straightforward differentiation.

4.1. Probability distribution of 755
We use the observation that gz equals the residual repair time of the unit under repair at the
moment the system goes down because of failure of the working unit. Using the theory of regenera-
tive processes (Ross [9]) we note that at the beginning of an arbitrary down period there is a type k
repair going on with a probability, which does not depend on the particular regeneration cycle. We
denote this probability by py, k = 1,2 (p; +p,=1).
Let
- D, := length of an arbitrary down period given that a type k repair is going on at

the beginning of that down period.
Conditioning on the type of repair to be completed during the time to system repair we obtain:

2
P(rsg > 1) = > prP(Dy > 1). 4.1.1)
k=1

First we shall derive an expression for p;, k = 1,2. For this purpose we study an embedded Mar-
kov chain of the process describing the state of the system.
For 7 = 0 let

- T':= the Ith epoch at which one unit enters operation and the other one goes under repair
(either preventive or corrective),

- Z':= type of repair that started at time T”,

- p! := time to finish the repair that started at time 7",

- 7l ., := time to failure of the unit that entered operation at time T’ (where 7/, .; = oo if at

T'*! a preventive repair is applied).

-~

We assume that the process starts at time T®. Also we assume that Z° = 2. Then {Z,/ = 0} is a
positive recurrent Markov chain on the state space {1,2}.
For k = 1,2 we define the steady state probabilities:

m = limPZ' = k),

which are known to be (van der Duyn Schouten & Ronner [1]):
1 = D,,5(0) _ Dyy1(0)

m = ;M = , 4.1.2)
' D@ + 1= D) 7 P Dpa(0) + 1 = Dp2(0)
where D,,(0) and D,,,(0) are defined in (3.2.10).
Using Bayes’ formula we prove the following lemma.
LeEMMA 4.1.
n+ 140,
Pk = ZL_li.(__)f_"_ k=12 4.13)
> Pn +1,;(0)m;
j=1
ProoOF:

pe = lim P(Z! =k | 7y < p)
Pl <p | Z' =k)P2Z' =k)

2
S PErha <o |Z'=)HP2Z =)
j=1

= lim

-0



P(mp+1 < Rm

2 : g
> P11 < Rpm;
j=1
REMARK 4.1: If we assume that {G ,(r) < G,(¢), for all # > 0}, then
P(1,., <R)) < P(1,+1 < R;) and so we see from lemma 4.1 that p, < m; and p, = m,.
The distribution function of 75z can now be obtained easily.
LEMMA 4.2
® —
, J Gt +y) dH, 1(y)
0
P(tsg >1t) = 4.14
o kgl P Pn+ l.k(O) ( )
PROOF:
PDy, >1t) = P(Ry—Ty+1 >t | R > 74y41) 4.1.5)
_ PRy—Ty+1 >1; Ry > Tn+1)
- PR > 7y1)
® —
[ Gt +y) dHy 11 ()
0
[ Gu(y) dH, 1 ()
0
By partial integration and using (4.1.1) we obtain (4.1.4). O

REMARK 4.2: Due to the memoryless property we see from (4.1.1) and (4.1.5) that in case of exponen-
tially distributed repair times the length of an arbitrary down period has a hyperexponential distribu-
tion.

4.2. Laplace transform of 7¢g
Define for k = 1,2:

[~ =]

Veera@ 1= [ [ e H, 1()G(2) dy dz, @2.1)
£=0y=0

and let ¢,_(s) be the Laplace transform of Tgg (cf. (1.1)).

THEOREM 4.1.

o) = 3 po | Lt @ = oFn14)

4.2.2
=1 Pn+1,4(0) “2.2)

PROOF:

Using lemma 4.2 we obtain:

=<]
¢, () = [ e P(Dy > 1) dt
0



10

TGt +y) dt dH,
Pn+lk(0) yf(“! e Wt +y) +100)

1 oo z e _
= —P o L, L TG dHy ) de
n \ z=0y=

= e“H, (z) — YH, —S:E dz
Pn+1k(0) -'[0 [ 1@) = s { e¥H, .1(y) d)’] e % Gy(2)

= n+1@)Gr(z) dz — 5 / e CNH . 0)Gi(2) dy d
Pn+1k(0) [;l +l( ) l‘( ) .[oy'io +1(}’) k( )dy

_ 1 [ ]

- Pn b 0 - SVn S .
pron@) LTk ® = Vi)

Combining this last result with (4.1.1) gives (4.2.2). O

As in the previous section we note that all expressions mentioned in this section can be calculated if
Pji(s) and V, 4y «(s) are known for j =0,..,n +1, k =1,2. In general Py(s) and V), .1 ,(s) have to be
evaluated by numerical integration techniques. In case of generalized Erlangian distributed repair
times however, they can be obtained iteratively using lemma’s 6.1 and 6.2 in section 6.

5. Availability

5.1. Average availability

The two-unit standby system as defined in section 2 constitutes an alternating renewal process (Ross
[9]. That is, the process starts over again after a complete cycle consisting of an up and down inter-
val.

We define

- g(m) := long run proportion of time the system is down when CLR(m) is used,

that is, 1—g(m) is the availability of the system. From the theory of regenerative processes it is
known that (Ross [9]):

E[7sg]
m) = . 5.1.1
g0m Elrsp4] + El7sz] ©-1D
Using (3.2.13) and (4.2.2), we obtain after some tedious calculations from (5.1.1):
(1=D,,,(0) P, +1.1(0) + D,,(0) P, .1 2(0)
(]—Dm2(0)) Hml + Dml(o) Hm2 ’

gim) = l<sms<n+l, 6.1.2)

where

m-—1
Au’/\’ + 2 R}/\(O)5 k = 172)
j=0

Hmk :

I := mean type k repair time, k = 1,2 (cf. section 2).

Formula (5.1.2) has been found already by Kawai [7]. Kawai uses intuitive probabilistic arguments to
derive this formula. Van der Duyn Schouten & Ronner [1] proved (5.1.2) using the embedding tech-
nique from Markov decision theory.
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5.2. Interval availability distribution

In production planning one often requires the production system to be available for more than a cer-
tain fraction of time over a finite observation period. Steady state measures like the average availabil-
ity (1—g(m)) mentioned above don’t always give enough guarantee of meeting this required level of
availability. In such a case the evaluation of the probability of meeting this interval availability
requirement becomes necessary (e.g. Goyal & Tantawi [4]).

If the behaviour of a system is modeled as a homogeneous continuous-time Markov process a very
elegant way to obtain the interval availability distribution is to make use of the uniformization tech-
nique (de Souza e Silva & Gail [11]). If the state space grows too large however this technique
becomes computationally infeasible. Aggregation techniques become necessary to analyze the system.

Promising results in this area are obtained by van der Heijden [5] and van der Heijden & Schor-
nagel [6]. In the following we will shortly present some basic elements of their approach applied to
our model.

We approximate our two-unit standby system by a two state single component system which alter-
nates between up- and down-state. Sojourn times in up- and down-state constitute two sequences of
iid. random variables which are assumed to be independent of each other. Appropriate probability
distribution functions (G(.) and H(.)) of the length of the alternating up and down periods have to
be extracted from our analysis in section 3 and 4 respectively.

For example in case of exponentially distributed repair times arbitrary down times turn out to be
hyperexponentially distributed (remark 4.2). In case of highly reliable components unit lifetimes last
considerable longer than unit repair times. During fault-free operation the system may reenter system
states A and B for several times (section 3). In such a case the process describing the system’s
behaviour during system up time is called a ‘regenerating process with rare events’ (rare event: repair
of one unit). The exponential distribution with mean to be obtained from (3.2.13) might be a proper
approximation for the distribution of system up time in this case (cf. Gertsbakh [3] and section 6).

Assuming that we start observing the system at the beginning of an arbitrary up period, we define:

B(#) : = total sojourn time in down state during [0,7],
Qe x) := PB@) < x).
Using the results of Takacs [12] we obtain:

smnszﬁimm[qmqy—@Hmﬁﬁ,o<x<g G2.1)
n=0

where we denote by G,() and H,() the n-fold convolution of G() and H(.) respectively;
Go(z) = Hy(z) = 1, 0 < z < 1. A similar result can be obtained if one starts observing the system
at the beginning of an arbitrary down period.

Let IA (¢) be the interval availability during [0,7], (i.e. the fraction of time during [0,7] that the sys-
tem is functioning). We easily see that:

PUA@) =2) = Qt,(1-2)), 0<:z<1

There are some difficulties in using this approach. The first problem that one encounters is the fact
that in general the first observed period is not an arbitrary complete up- or down period. When at the
beginning of the first period both units are new the first up period will be stochastically larger than an
arbitrary one (recall that an arbitrary up period starts when one unit takes the working position and
the other one enters the repair facility for a corrective repair). Another possibility is that one starts
observing the system at some point in time so that the first observed period can either be a residual
up period or a residual down period.

The second difficulty is that the length of a particular down period depends on the length of the up
period immediately preceding it, so the independency assumption needed for (5.2.1) to hold does not
apply here. For example in case some particular up period has very short length, there is a high pro-
bability that the corrective repair started at the beginning of this system up period has not been
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completed at system failure. So the probability that at the beginning of the down period immediately
following this particular up period a corrective (type 2) repair is going on exceeds p, (4.1.3). We also
know that this repair still has to be performed almost completely, because it was going on only for a
very short while when the system broke down. As it seems natural to assume corrective repair times
to be stochastically larger than preventive ones, we conclude from both observations above that the
system down time immediately following a very short system up time is stochastically larger than an
arbitrary one (cf. (4.1.1)). In case of highly reliable units however, this dependency does not seem to
influence the results considerably (van der Heijden & Schornagel [6]).

Finally we mention the fact that using (5.2.1) involves evaluation of an infinite summation, consist-
ing of multiple convolutions, which has to be truncated properly. For further computational aspects
of this approximative method we refer to van der Heijden [5], van der Heijden & Schornagel [6] and
van Rijn & Schornagel [10].

6. Computational aspects and numerical examples
To compute ¢4(s) from (3.2.13) and (3.2.14) using (3.2.5)-(3.2.7), the only difficulty is the computation
of Pj(s). In order to compute ¢, (s) from (4.2.2) we need to compute V, ;,«(s). Generally Py (s)
and V,.,,(s) have to be computed by numerical integration techniques. In case of generalized
Erlangian distributed repair times however, Py(s) and V, . (s) can be computed iteratively using
lemma 6.1 and lemma 6.2 below respectively.

For notational convenience we omit the index k in the following :-pressions. So, in case of
Erlang (p,)) distributed repair times we denote:

() = ge—“ ’;"l ,p €{1,2,.}, A >0, 6.1)
Pe(s) = Ze"’ H,0OG @) at, (62)
VEa(s) = 70 }oe“(Z‘-*”H“.x(,v)E”(z) dy dz. 63)
Loyt
LEMMA 6.1.

Let G'(f) and P{(s) be as defined in (6.1) and (6.2) respectively. Then

ey = 17 A
Bls) = s+qotA Sy |stgotA |’
iy = —1 S0 'S =2 1<) <
f(s)_s+qj+)\i§0q" ,go stgtA| (@) 1 <j<ntl

PROOF:
For j = 0 we have:

Pis) = [e e MG () dt

0
p— o
— 2 _je—(s+qu+)\)lt[ dt
0

) (s +qo+N) 71



Forl1 < j < n+1 using Kolmogorov s forward integral equations:

Hi(t) =e ¥ f 2 ql]H(x)qu )

x=0i=

we find from (6.1) and (6.2):

_1 o0 _ I
Pi(s) = 2 G f e G (e ¥ [ Hix)e™ dx
i =0 =0 x =0
-1 o o B
= 2 gij f Hi(x)e" f e"(s+‘l,)tGP(t) dt dx
1=x
» POV N T age
= 2 9 f Hi@e™ 3 [ e 0T dr ax
j_ p— 1 m
= » Hi(x e Ix }\le—(S*rq,H\)x X d
igo B x£0 ) 2 2—0 m! (s +qj+}\)"’”“ o
_ 1 j=1 p-1 ! o . p—1-1 N Ax)”
- s+g+A igoqijlgo S+qj+}‘ xie Hix) 2_: € m! dx.

In a similar way we can prove:
LEMMA 6.2
Let G’ (), PE(s) and V% .1 (s) be as defined in (6.1), (6.2) and (6.3) respectively. Then

!
1 P31 A
na1(s) s+A ,;0 s+A P31(0).

13

a

Note that lemma’s 6.1 and 6.2 can easily be extended to the case of generalized Erlangian distri-
buted repair times. Such distributions can be used to approximate arbitrarily closely the distribution
of any nonnegative stochastic variable (Tijms [13], pp. 397-399). For example if G(.) is a mixture of

an Erlang (n,,A) distribution and an Erlang(n,,A) distribution then

n,—1 1
- — -MM
G :=p |1 2 e M 2 T

n,—1 ]
+ 1 - p) [l— Ee"}"M}, 0<p <

Pi(s) = p P}'(s) + (1-p) P]’(s), 0<p <1
V1) =p Viaa() + 1—p) Viia(s), 0<p <1

where we obtain P'(s), P*(s), V51 (s) and ¥}’ | (s) from lemma 6.1 and lemma 6.2 respectively.

Finally we shall illustrate the results of this paper by some numerical examples. Let n = 7 and let

the Q-matrix be given by:
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-1 098 0.02
-2 1.95 0.05
-3 290 0.10
-4 3.80 0.20
-5 4.70 0.30
-6 5.50 0.50
-7 6.30 0.70
-8 8

[oSHEN I BRI S R R )

In table 1 the following repair time distributions are considered:

- Gy()is Erlang (2,;,) and Erlang (4,2,) respectively with p; = 2.2, 2.6, 3.0, 4.0, and 8.0,

- Gy()is Erlang (2,2) and Erlang (4,4) respectively.

Let ¢2 denote the coefficient of variation of a stochastic variable X with expectation E, and variance
o2. Then ¢} := o2 / (E,)?, where 02 := E(X—E,)>. In table 1 below we give m", the optimal
value of m; 1— g(m'), the availability; E,, ¢ and E,, cJ, the expected up- and down time with their
coeflicients of variation respectively.

G, Erl (2,2.0) Erl (4,4.0)
Gy |m|m 1-gm’) E, ci E; cg|m" 1-gm) E, ci E; ci

221 17 0.9736 2313 1.05 0.63 088| 8 0.9813 25.39 1.04 048 0.78
26| 5 0.9801 2759 1.10 0.56 091 7 0.9839 30.50 1.07 050 0.84

Erl(2,py) |3.0] 4 0.9849 33.17 1.14 051 095( 5 0.9875 36.20 1.11 046 0.84
40| 3 0.9913 5044 120 044 1.10| 3 0.9930 53.37 1.16 0.38 0.88
80| 1 09968 101.44 125 032 1.75| 1 09976 107.13 1.20 026 1.27
2215 0.9801 25.01 1.09 0.51 050 | 7 0.9839 28.09 1.07 046 0.78
26| 4 0.9856 31.72 1.14 046 097 | 5 0.9882 34.68 1.11 041 0.80

Erl. (4,24,) | 30| 3 0.9892 38.61 1.18 042 1.04| 4 0.9911 4252 1.14 038 0.83
40| 2 0.9935 56.83 122 037 124| 3 0.9949 64.75 1.17 033 0.92
80| 1 09972 11000 125 031 197| 1 09979 11652 120 0.24 1.45

Table 1: optimal control limits, availability and moments of system up- and down times

A general conclusion from table 1 is that a decreasing coefficient of variation of the corrective
repair time distribution yields a higher value of the optimal availability and a higher preventive repair
limit; preventive repair is postponed for a while, because the probability of occurrence of a very long
corrective repair gets smaller. However, a decreasing coefficient of variation of the preventive repair
time distribution again yields a higher value of the optimal availability, but a lower preventive repair
limit; preventive repair is applied earlier, because excessively long preventive repair times will occur
less frequently.

Another remarkable result is that ¢ increases in case of decreasing coefficient of variation of the
preventive repair time distribution (G(.)).

Recall that an Erlang (n,)) distributed variable X has expectation E, = n/A, and ¢2 = 1/n. Table
2 and table 3 concern repair times which are twice as short on average as in table 1. Note that the
coefficients of variation of repair time distributions in table 2 are twice as large as they are in table 3.
Thus from our conclusions concerning table 1 we would expect the optimal availability in table 3 to
be higher than in table 2.

Comparison of the first lines of table 1, 2 and 3 reveals that dividing the mean repair times by a
factor 2 gives rise to a multiplication of the mean time to system failure by a factor 3 to 4; the
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corresponding mean times to system repair differ considerably as well. These differences may have
substantial consequences in case of high set up costs or in case finite buffers are used to cover system
down times.

G, Erl.(1,2.0) Erl (2,4.0)
G p |m" 1-gm") E, c E; i |m l1-gm’) E, c, E; ¢

221 17 0.9934 7132 1.03 047 1.00| 8 0.9564 9257 1.02 0.34 0.87
26| 5 0.9952 86.13 1.04 042 1.03| 7 09964 101.39 1.02 0.37 0.97

Erl (,py) [3.0] 4 0.9964 103.39 1.05 0.38 1.08| 7 0.9972 121.10 1.03 0.33 0.94
40| 3 09979 15191 1.07 032 124 4 0.9984 17295 1.04 0.28 0.98
80| 1 09992 256.60 1.08 0.21 2.12| 2 09995 348.34¢ 1.05 0.19 141
2215 0.9958 86.99 1.04 036 1.04| 7 09969 10222 1.02 0.32 0.87
26| 3 09970 10195 1.06 031 1.08| 5 09977 123.19 1.03 0.28 0.88

Erl.(2,2) (30| 3 0.9977 127.04 1.06 0.29 121| 4 09982 14549 1.04 026 0.91
40| 2 0.9985 168.28 1.07 0.25 149| 3 0.9989  201.65 1.05 0.22 1.02
80| 1 0.9993 27379 1.08 0.18 2.68| 1 0.9995 294.03 1.05 0.13 1.72

Table 2: optimal control limits, availability and moments of system up- and down times

G, Erl (2,4.0) Erl (4,8.0)
G, p |m' 1—g(@m') E, & E; i |m 1-g(m™) E, 2 E;, o
221 7 09969 10222 1.02 0.32 087| 8 0.9978 11998 1.02 0.27 0.73
26| 5 09977 123.19 1.03 028 0.88| 7 0.9981 139.60 1.02 0.27 0.80
Erl.(2,2,) (30| 4 09982 14549 1.04 026 091| 6 09985 164.04 1.03 0.24 0.80
40| 3 09989 20165 1.05 0.22 1.02| 4 09991 223.68 1.03 0.20 0.84
80| 1 0.9995 29403 1.05 0.13 172 2 0.9997 397.84 1.04 0.14 128
221 5 09977 11467 1.03 0.27 081| 7 0.9981 131.36 1.02 0.25 0.72
26| 4 09983 138,56 1.04 0.24 085| 6 0.9985 157.36 1.03 0.23 0.73
Erl (4,41,) |30 3 09986 15727 1.04 022 0.88| 5 0.9988 182.82 1.03 0.21 0.75
40| 3 09991 218.97 1.05 020 1.11| 3 09993 23286 1.04 0.17 0.82
80| 1 0999 302.10 1.05 0.12 2.02]| 2 0.9997 407.82 1.04 0.13 146

Table 3: optimal control limits, availability and moments of system up- and down times

In case of highly reliable components one often assumes the system up times to be exponentially
distributed (c¢; = 1) as this assumption will simplify further analysis a lot (cf. section 5.2 and van der
Heijden [5]). From table 1 we see that the system up times are not exponentially distributed in gen-
eral (c2 % 1). In table 2 and table 3 (repairs twice as fast) the coefficients of variation approach one
quite closely, so the assumption seems to be justified in these cases. Relatively speaking one could
say that in table 1 components are not reliable enough for the assumption to hold. Note that system
down times are definitely non-exponential in general (cf. (4.1.1) and remark 4.2). The coefficient of
variation of system down time turns out to be quite sensitive to changes in the preventive repair rates.

Although mean repair times are equal, comparison of table 2 with table 3 reveais that there are
considerable differences between the corresponding availability characteristics of the system. So in
applications one may often need more information about the repair times than just the mean. In
table 4 below we present some numerical examples concerning different repair time distributions hav-
ing equal first two moments. The repair time distribution functions are obtained by fitting the first
two moments to an Erlang distribution (Erl), a mixture of exponential and Erlang distributions with
the same scale parameters (E,;), a hyperexponential distribution with the gamma normalization
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(GN), and a hyperexponential distribution with balanced means (BM) respectively (Tijms [13], pp.
397-400). Repair time distributions are presented in table 4 by their mean (E,), coefficient of varia-
tion (c}), and skewness (sk; := E(X —E,)® / 03), k = 1,2.

fit | Ey & sky | Ey & sky | m* 1—-g(m”) E, c2 E, c;
Erl. |05 02 08 |10 02 089 3 0.9954 68.73 1.17 031 0.87
E,, |05 02 05810 02 058 3 0.9955 6928 1.17 031 0.84
Erl. |05 05 141|110 05 141 3 0.9913 5044 120 044 1.10
Eip |05 05 11010 05 110 3 0.9917 50.72 120 043 1.04
GN |05 1.1 210110 11 210 3 0.9806 3519 120 070 1.26
BM |05 1.1 228 |10 11 2281 3 0.9805 3569 119 071 133
E,, |05 1.1 12510 11 125 3 0.9821 33.13 124 0.60 1.00
GN |05 20 28310 20 283| 3 0.9631 2759 116 1.06 131
BM | 05 20 38|10 20 38 | 4 0.9639 3276 114 123 161
Eyx |05 20 23010 20 230} 3 0.9614 2563 114 103 1.02
GN {05 50 447 |10 50 447 4 09214 2674 105 228 134
BM | 05 50 6.62 |10 50 6.621| 4 0.9325 3524 107 255 182

Table 4: optimal control limits, availability and moments of up- and down times;
repair time distributions obtained by two moments fit

The results in table 4 and further computational experiments indicate the first two moments of
repair time distributions to provide sufficient information for practical purposes if coefficients of vari-
ation are not too large (in accordance with the results of van der Heijden [5]). We also note that the
transient measures (E,, cZ,E,, cJ) are more sensitive to the distributional form of repair times than
the steady state measure (1—g(m")).
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