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1. INTRODUCTION

In this chapter we give a description of a multigrid method developed for the steady Euler and
Navier-Stokes equations. The discretization method is based on cell-centered finite volumes. The
solution method, that does not use time stepping, is based on nonlinear multigrid iteration (FAS). The
method gets many of its good properties by the use of a sequence of first-order discretizations, based
on a variant of Osher’s approximate Riemann solver. Higher-order accuracy is obtained by defect
correction iteration.

In this chapter, the method is described for the Euler equations only. However, it can be used for the
Navier-Stokes equations equally well [16,17]. Recent research has shown that the method can be
applied for flows ranging from subsonic to hypersonic speeds, with some slight modifications only for
the latter regime [18,20].

In order to establish the notations to be used in this chapter, first we give the equations considered.
On a two-dimensional domain Q" CR?, the Euler equations, describing the physical laws of conserva-
tion of mass, momentum and energy, can be written as

3,9/ 3@ _g W
at dx dy
where
q=(p,pu,pv,pe)’, (2a)
f =(pu,pu L D, puv, puh)T, (2b)
g =(pv,pvu, pv 24+ ps pvh)T. (2¢)

Here p,u,v,e and p denote density, velocity in x- and y-direction, specific energy and pressure, respec-
tively, whereas h=e+ p/p is the specific enthalpy. For a perfect gas

p=@—Dple—%*+v?), ©))

where vy is the ratio of specific heats. The unknown vector ¢(z,x,y) describes the state of the gas as a
function of time and space, and f and g are the convective fluxes in the x- and y-direction, respec-
tively.
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Written in the quasi-linear form, the time-dependent Euler equations form a hyperbolic system;

8q df dq , dg dg _,

ot dgq 9x dgqdy @
i.e. the matrix
d d
kA +sz=k1—&§+k271§— )

has real eigenvalues for all directions (k,k;). These eigenvalues are: k;u +k,v (a double eigenvalue)
and k u+k,v=c, where c=Vyp/p is the local speed of sound. The sign of the eigenvalues deter-
mines the direction in which the information about the solution is carried along the line with direction
(k1,k7), as time develops.

Because.of the nonlinearity, solutions of the Euler equations may develop discontinuities, even if the
initial flow (r=t,) is smooth. To allow discontinuous solutions, following Lax [21], eq. (4) is rewrit-
ten in its integral form

a *
= S{ gdxdy + a<£(fnx +gn,)ds=0, VRCE, 6)

where 0% is the boundary of & and where (n,,n,) is the outward unit normal at 0. The form (6) of
eq. (4) clearly shows the character of the system of conservation laws: the increase of g in £ can be
caused only by the inflow of g over 3Q. In symbolic form, (6) is rewritten as

d
—E;s{qudy+N(q)=0. @)

The solution of the Euler equations in the weak form (7), is known to be non-unique. A unique and
physically realistic solution (which is the limit of a solution with vanishing viscosity) is obtained by
imposing the entropy condition.

Because we are mainly interested in steady flow computations, we can concentrate on a solution
method for the steady Euler equations:

N(g)=0. ®)

Notice that N can be seen as a nonlinear mapping between two Banach spaces, N: X—7Y.
2. A MULTIGRID APPROACH FOR THE FIRST-ORDER DISCRETIZATION
2.1 THE FIRST-ORDER FINITE VOLUME DISCRETIZATION

To discretize eq. (8), the domain Q" is divided into disjunct quadrilateral cells £
such that

ij» in a regular fashion

2=y, )
ij

where ﬁ,».j is the closure of ;;. We restrict ourselves to divisions where each cell has (at most) four
neighbors, such that ;. ; and Q; ;. are the neighboring cells of &;;. Further we denote the neigh-
bors of £;; by @, (k =N,S,E,W), and a common wall by T;;, =Q;; M, ,+. The boundary of &,
is given by 0@, ;= | J Tk The restriction to this kind of regular geometry is not necessary for
k=N.S.EW
the discretization method but leads to a simple data structure when the method is implemented.
Evaluating eq. (6) over £, ;, we obtain
9¢; ;
A=t Ek:r [ (fn,+gn,)ds =0, (10)

.
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where 4;; is the area of cell ;; and where g;; is the mean value of ¢ over §;;. Further we introduce
the notahon

[ (netgnyds=fijusijur  Virk, (11)
T

ik

where s is the length of T';; , and where f;; is the mean flux across I'; ;x, outward &;;. If &;; and
;. ;» are neighbors with a common side (I';;x =Ty j+), then f;; =~ f; ;4. The space discretiza-
tion of eq. (6) is done according to the Godunov principle: the state ¢(z,x,y) is approximated by
q;() for all ©;; and the mean fluxes f ik, are apprommated from the states in the ad_]acent cells For
this purpose, a computed flux f;; k(q, ],q, &) 1s introduced to replace f;;;. Here, q, ; and q, .k are
approximations of ¢ at both sides of I';; ;. Thus we obtain the following semi-discretization of eq.

(6):

9gi, ..
A;j at] +Zsi,j.kfi.j,k(qu,qu.k):0, Vi,j. (12)
k

For steady flows, this reduces to
zsi,j,kfi.j,k(q{‘fj’q{fj.k):0’ Vi, (13)
k

which we abbreviate as

Ny(gn)=0. (14

Notice that N, can be seen as a mapping between two discrete Banach spaces, N,: X, —Y,,.

If the cell 2;; is adjacent to the boundary of @, i.. T;;, C3Q", then the state ¢, is not available in
general. In that case f;; is computed from g, and the boundary conditions at L)

The main dll’ﬁculty in eq. (13) is the evaluauon of fi, k(q, S q, ;.x) for a given q, ; and q, J.k- One possi-
ble approach is to con51der the state ¢(¢,x,y) at t=t, as piecewise constant over each cell separately,
to take gf ;=¢i; and q* .k =ik and to compute the fluxes over the walls as a quasi-one-dimensional
problem during a small time interval (¢y,, +A?), by approximately solving the Riemann problem for
gasdynamics. Approximate Riemann solvers have been proposed by Steger and Warming [34], Van
Leer [22], Roe [29], Osher [28], and others. (Notice that by taking q* 7 =¢q;; and qf‘] k=i« the space
discretization is first-order accurate.)

The possible irregularity of the mesh is easily dealt with by making use of the invariance of the Euler
equations, under rotation of the coordinate system. Let the normal of a skew wall T, directed
from ;; to Q, Jj.k» De given by (n,,n,)=(cos¢; x>Sing;; ). Then the simple local rotation

, n, n,
5= 15 w6 09
reduces the computation of f; «(g;,, 4 .k) tO
Sijk(GijsGijk) = Ti._j,]kf (Tijx4ij> TijxGijk)s OF (16a)
fijx(Gij»Gijx)= Tz_Jll\f (TijxGijk> Tijx i s (16b)

where the rotation matrix 7}, transforms the velocity components in g to the coordinate system that
is associated with the normal to the cell interface. Notice that we have either (16a) or (16b), depend-
ing on whether g;; is at the left or right side of T', 4, respectively. The function f (¢',9") is called the
numerical flux function. We see that the quantities s;;; and ¢, are the only geometrical data about
the mesh which are needed to set up system (13). (Handling an irregular mesh by this rotation
approach, the equations simply remain in the form (4).) It is clear that the resulting discrete system is
conservative, also for the irregular mesh.
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2.2 OSHER’S APPROXIMATE RIEMANN SOLVER

A convenient numerical flux function f (go,¢:)=f (¢',q") is Osher’s approximate Riemann solver [28].
In this subsection we give a short description of this function. In fact, we may distinguish two
strongly related variants: the O-(original) variant and the P-(physical) variant [10]. Here we restrict
ourselves to the P-variant. It is our experience that it yields very reliable discretizations. Though
being less complex than the O-variant, its main disadvantage still seems to be its supposed complexity
when compared with other approximate Riemann solvers (such as e.g. those of Steger-Warming, Van
Leer and Roe). An objective of our present exposition is to show that the scheme can be imple-
mented in a simple and straightforward way. Further, we need this description to show (in section
2.4) how its linearization is obtained.

According to Osher, the numerical flux function is defined by

91
fGoa0=75 |f @0+ @0~ [ ag) a7)
9o
where
(LD = RiaR ()
dq

with |A] the diagonal matrix of the absolute values of the eigenvalues A of the Jacobian df (¢)/dq. In
eq. (17) the integration path is still to be defined, but we know that the Jacobian has a complete set
of eigenvalues Ay, Kk =1,2,3,4: \y=u—c, A;=A3=u, \y;,=u+c, and a set of three corresponding
eigenspaces R,R, 3 and R,. The integral in eq. (17) is computed along a path g=g(s), 0<s<1,
9(0)=go, g(1)=¢,. This path is divided into subpaths I';, Kk =1,2,3, connecting the states g — 1,3
and gy,3. Each subpath I'; is constructed such that the direction of dg(s)/ds is tangential to R, x,
[10], the corresponding eigenvector. In the P-variant, the choices for R, , are: R,u) =R,
Rmﬂ:Rm’ R,,3y=Ry4. The states g, and g;, are computed by means of the Riemann invariants
7®(q(s)), I£m, 1=1,2,3,4, which are constant along T [30].

The state g is suitably expressed in the dependent variables c,u,v and z, where z=In(pp~7) is an
entropy function. We obtain directly: z,=z¢, 23, =21, vyy=vg, v;,=v; and p,= p;. Defining

P Ry

a=e % | (19a)
2
\PO:uO'*'FCO’ (19b)
. 2
Vi =u — 1, (19¢)
vy—1
we also find (assuming that no cavitation occurs, ¥(>¥,):
_x—1 ¥o— V¥,
€ 2 1+a ’ (202)
Cy=acy, (20b)
_ N . ‘I’] '+‘(X‘I’0 20
Uy =Uy = Uy = l+a (200)
The eigenvalues at the points g;,3, K =0,1,2,3, are:
Xo:)\m(l)(qo):uo—fo, (21a)
A=Ay (@) =ty —cy, 21b)
M =A@ 1) = Amy (@) =ty = us, 2lc)
X%:)\m(a)(q;f-):“;a'*'c%, (21d)

M =A@ =us ey, 2le)
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Because A; and A4 are genuinely nonlinear eigenvalues, )\,,,(,\)(q(s)) is monotonous along I'; and T,
and hence it changes sign at most once along I'y and I';. A sonic point g, with A,,(;(g(s)) =0 exists

on T if )\0)\% <0. This sonic point g, =(c;,,u;,,Vs,,Zs,), is computed from the linear system

u;, —¢;, =0, (22a)

ug, + 1% =¥, (22b)
Vs, =Vo, (22¢)

2, =2z, (22d)

Similarly, a sonic point ¢, is found on T; if A A1<O. Along the complete path
q(s), 0<s<1, A, +)(¢(s)) can change sign only at the points 9% 9 s, and ¢,,. We notice that
f(qo,q1) according to Osher, is a continuous function in all N's and we see that J\y,<}\y <)\;/,

Because of this continuity we may neglect the case of a zero eigenvalue A and we compute the numeri-
cal flux by

f@o.g0) = HAo) £(g0)
+ H(—AoAy) sign(x,/j) fgs)
+ H(=N\g) f(q%)
+ H(—AAy) f(g3)
+ H(=X\\) sign(dy) f (45,)
+ H(=X) f(q1), 23)

where H(A\) is the Heaviside unit step function; HA)=0 for A<0 and HQA)=1 for A>0. In most
cases, many eigenvalues A will have equal signs. If the ordered sequence Ag,Ay,Ax,Az A, can be split
into two parts (possibly empty), the first one containing only negative eigenvalues and the second one
only positive eigenvalues, then a g exists such that simply f(g0.91)=f(¢). We identify this state g as
the state of the gas ar the cell wall. This situation occurs for instance for fully supersonic or fully
subsonic cases. If we exclude the unlikely cases wu,<<0, ug—co>0 and wu,,>0, u;+c;<<0, the
numerical flux near a shock is the only one for which f(go,g:) is found to be a sum of more (namely
three) terms f (¢). For more details we refer to [10] and in particular to [32].

2.3 THE NUMERICAL FLUX AT THE BOUNDARY

The flux f;; at the boundary 39" is partially determined by g;;, the state of the flow in the boun-
dary cell, and partially by the boundary conditions [26]. To compute f;;, at 9", first, from ¢;; and
the corresponding boundary conditions, we determine the state gz =g« at the boundary oQ". Then
the P-variant of Osher’s approximate Riemann solver is used to compute the boundary flux. This is
completely consistent with the discretization over internal cell walls as described in section 2.2.

To satisfy the boundary conditions in system (13), we determine g, the state at the boundary, such
that it satisfies the boundary conditions, i.e. B(gz)=0, as well as the equality (assuming that the
boundary is at the left):

fij=f(q8)= f(q5,9:))- 24)
In view of (17), eq. (24) implies
9,
f de: J1E (25)
qs

i.e. gp should satisfy the boundary condmons and should be connected with g;; by a path g(s) such
that

Amk(q (5))=0. (26)
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Now only the eigenvectors corresponding to the positive eigenvalues can be used and the number of
subpaths to be considered depends on the number of in-going characteristics.

2.4 THE LINEARIZATION OF OSHER’S SCHEME

In the multigrid method, see section 2.5, we apply a point relaxation method. In this relaxation,
locally, a system of four nonlinear equations has to be solved. An efficient way of doing this is by
Newton iteration. For this we need convenient expressions for dN,(q,)/dg,. From egs. (13) and (14)
we derive

ONw(gn)i; 9

%si,j.kf i,j,k(qi.j’ qi,j,k)

aqu B aql.m
d .
= Es,;j.k 3 fi,j.k(qi,j’qi.j,k): if Q,,, :Qi.j, (27a)
k qi;

ad .

=Sijk 990« fi,j.k(‘]i,j,qx',j,k), if Q,,, :Qi.j.k, (27b)
i,

=0 otherwise. (27¢)

Now, in view of egs. (16a) and (16b), the computation of dN,(q,)/dg, reduces to evaluations of

af (qo,

f'(O)(Qo,ql):“‘]:%%%q—l), (28a)
3f (qo,

S (qo.91)= -—f-(a%iglﬁﬁ. (28b)

If in (27a) ¢;;x=¢gp is a boundary state, then a relation g;;x =¢p(g;;) exists and the corresponding
term in (27a) is (assuming again that the boundary is at the left):

d d
Sij.k _dqi_j Jijk(Gij>Gijx) = Sijik _—-dqr‘.j Jijx(9i>98(g:,))
d _
=Sijk [T 1J‘”(T‘IB(%‘.;), Tqi,j)]
dq,J

_ dqp 1 2
=sijxT ]f,(D)(TquTqi,j)T—dq‘ -+ T 'f (Tq, Tq; )T, (29)
ij

where 7" denotes T, as in eqgs. (16a) and (16b). The derivative matrix dgp/dg;; depends on the
specific boundary conditions imposed and is derived from the relation gz(g; ).

We already noticed that the integration paths are easily expressed in the dependent variables c,u,v
and z. Similarly, the numerical flux and its partial derivatives are conveniently expressed in the same
variables. The flux vector f =(pu,pu’+ p, puv,u(E + p))” is expressed as a function of ¢=(c,u,v,z)”

by using
1
p= [%e “e? v , (30a)
_1 -

p=-ech (30b)
E=pe=Wpu*+vH)+ Y(Yl_ D pc. (30¢c)

For the variables c,u,v and z, the derivative matrix

' = a _ d(ou, pu’ + p, puv,u(E + p))

f@= TR (31)



reads
Bpu/c i) 0 — %Bpu
u*+cd/c 2pu 0 —%Bpu*+
9= Bao( ) p B(pu”+ p) ’ 32)
Bouv/c pv pu — ¥Bpuv
Bu(E +p +pc?)/c pu*+E +p puv —¥%Bu(E + p)
where f=2/(y—1). In terms of this derivative matrix, from (23) it follows
9/ (q0,91) T\
= = HM) [0
90 _
T .~ dgs,
+ HRA) signy) [1g.) 5!
- - , aq%
+ H(=AyAy) f'(q4) 3
90
- , aq‘/J
+ H(=NA) f1(qa) 5 (33)
9o

The derivatives 99 /9q, ¢ =¢;,,9 4,9 %, are derived from differentiable relations such as (19), (20) and
(22). Explicit expressions are found in [10]. In this way the matrices f()(¢0,41) and f’1)(q0,41) are
readily computed. It appears that both matrices are continuous functions of g, and ¢, as long as
Ax=uy,=uy0. An efficient implementation is obtained by expressing the fluid state in the
Riemann-like state variables c,u,v,z.

2.5 MULTIGRID ITERATION
In order to solve the discrete equations (14), first we slightly generalize them to

Ny(gn)=rs. 34

For the solution of (34) we apply then nonlinear multigrid iteration (in the FAS-variant [3]). For this
we need a sequence of discretizations

Nu(qy), 1=0,1,2,..,L, ho>h;>h, -+ >h; =h (35)

For a regular mesh with size h,_,, we take h;_; =2h;,. For an irregular mesh we delete each second
line of mesh points to obtain the cells in the coarser grid. Further, we introduce grid transfer opera-
tors Ry, p: Xy—> Xy, and Ry 1Y, —Y,, (restrictions that make a representation onto the level 2k of a
grid function at the level /), and P, 54:X,,— X, (which interpolates a solution-function at level 24 to
the level #). Now, one iteration cycle of the FAS-algorithm for the solution of eq. (34) consists of the
following steps:

0. start with an approximate solution gj,

1. improve g, by application of p (pre-) relaxations to N,(g,)=r,

2. compute the residual N,(g,) — 74,

3. find an approximation of ¢, at the next coarser grid, say ¢,,. (For this we use either a restricted
solution g, = Rp 4q4, OT a previously obtained approximation q,;),

compute 2, = N24(q24) + Ropn(rn — Np(gn)),

approximate the solution of N,,(g24) =72, by application of o nonlinear multigrid cycles. The
result is gy,

6. correct the current solution by g, =g, + Py 21(q2n — qan)s

7. improve g, by application of g (post-) relaxations to N,(gs)=ry.

w e
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The steps 2-6 in this process constitute the coarse grid correction. These steps are skipped at the coar-
sest grid hy. For the solution of the nonlinear system (14), the FAS-algorithm is applied with r, =0
at the finest grid. During the FAS-iteration, at the coarser grids, non-zero right-hand sides appear. In
order to complete the description of the FAS-cycle we need to be explicit about: (i) the choice of the
operators Ny, Py 24, Ropy and possibly Ry, (i) the FAS-strategy, ie. the numbers p,q, 0, (iii) the
nonlinear relaxation method, and (iv) the computation of an initial guess for the FAS-iteration.
These subjects will be treated in the following paragraphs.

2.5.1 A nested sequence of Galerkin discretizations. For the operators P, 5, and R, we make a
choice that is consistent with the concept of our finite volume discretization. The discretization is
essentially a weighted residual method, where the solution is approximated by a piecewise constant
function (on cells ©;;) and where the residual is weighted by characteristic functions on &;;. From
this point of view, it is natural to use a piecewise constant interpolation for P, ,, and to use addition
over subcells for R,, 5. Notice that Ry, is the adjoint of P, ,,. With these choices it is clear that

N3(g2n) =R NA(PY 249 20), (36)

i.e. the coarse grid finite volume discretization is a formal Galerkin approximation of the fine grid
finite volume discretization. By the superscript 1 (starting from eq. (36)) we indicate explicitly that
the discretization used is first-order accurate. Applying (36) on all different levels we obtain a nested
sequence of discretizations. _

The effect of the Galerkin approximation N}, =Ry, ,NiP} 2, on the approximate solution g, obtained
after a coarse grid correction is the following. If we take g,, =Ry, g, in step 3 of the algorithm, with
R, such that Ry, Py 2, =14 is the identity operator on X, and if Ny,(g2,) =72, is solved exactly,
then

Rops [’h —Nlln(Ph.ZhRZh.hZIh)] =Ros [N}n(qh)_N}n(Ph,ZhRZh,h‘Ih)]y (37
or, for the restriction of the residual
Ronp ["h "N}.(éh)] =Ry [ [Nfln(‘Ih)_Ni]A(Ph, 2hR2h.hqh)}
- [Nf]:@h)— Ni(Py R 2h,h‘~1h)] ] (38)

In the neighborhood of a solution, the difference g, —g, will be small and N} will approximately
behave as a linear operator: the restriction of its residual will be very small; 0(|1g,—g,!1%). For a
sufficiently differentiable operator N}, this implies

Rons [r,,—NAo}h)} =61 1gs—n 1 12). (39)

Because R, ;, is an addition over four neighboring cells, this means that the residual mainly contains
high-frequency components. A small restriction of the residual implies that large residuals cancel over
neighboring cells. Because the residual is varying rapidly, local relaxation methods should be able to
eliminate such residuals efficiently.

2.5.2 Multigrid strategy. Experience with multigrid algorithms in other contexts shows that
p=q=0=1 (i.e. a multigrid V-cycle with a single pre- and post-relaxation sweep) may be a good
choice for a successful strategy. It is the standard choice in our computations. Other choices, with
small values for p,q and o, can be made. What is best depends much on the relaxation used, and
research can be made for seeking the most efficient combination. However, the result may depend on
the particular problem solved. Up to now, it appears that different (p,q, o)-strategies are not much
different in efficiency. A smaller convergence factor is usually compensated by a corresponding
amount of additional work.
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2.5.3 Relaxation. The important feature for a relaxation method in a multiple grid context (both for
linear and nonlinear problems) is its capacity to damp the high-frequency components in the error.
Therefore, the difference scheme should be sufficiently dissipative. The first-order upwind schemes
usually are. An advantage of these schemes over central difference schemes is that their numerical
dissipation is well-defined and independent of any parameter, this as opposed to central difference
schemes. For the relaxation method several alternatives are available. For nonlinear multigrid
methods most experience exists for methods of the collective Gauss-Seidel type. Here, all the cells in
the computational domain are scanned in a well-defined order, and when a cell is visited, the four
state variables (c,u,v,z) are updated simultaneously. For the solution of the corresponding system of
four nonlinear equations, one or more steps of a Newton iteration are used until the local residual is
reduced below a specified amount. In almost all cases it appears to be most efficient to take this toler-
ance so crude that usually no more than a single iteration step per cell is performed. Possible relaxa-
tions are: (i) Gauss-Seidel-relaxation with lexicographical ordering (GS), (ii) symmetric Gauss-Seidel-
relaxation from north-west to south-east and vice versa (SGS1), (iii) the same but going from north-
east to south-west and vice versa (SGS2), (iv) checkerboard- (or red-black-) relaxation (RB). In
almost all cases the same relaxation can be used in both the pre- and post-relaxation. Another good
choice is SGS3: to use SGS1 for the pre- and SGS2 for the post-relaxation. In [9], some of these
relaxations are compared in combination with a uniform grid. There, also the effect of other (p,q, 0)-
strategies is considered. For a standard model problem (transonic flow in a channel with circular-arc
bump) on a non-uniform grid and with SGS3, the following convergence rates per multigrid cycle are
obtained: 0.38 for p=¢=1,0=1; 0.23 for p=g=1,6=2; and 0.17 for p=¢g=2,0=1. The smooth-
ing behavior of the different possible relaxation methods can be analyzed by local mode analysis, but
we should notice that the smoothing factor as used for common elliptic problems, has no significant
meaning for the Euler equations because we have to take into account (unstable) characteristic modes.
Here, a local mode analysis should follow more the lines used for elliptic singular perturbation prob-
lems, see e.g. [13]. Jespersen has published some results [12], in which he shows that for a subsonic
and a supersonic case SGS has a reasonably good smoothing behavior, when applied to a first-order
scheme. Of course, the non-symmetric GS-relaxation is only effective if the direction of the relaxation
sufficiently conforms with the direction of the characteristics. Although there is no proof, experience
shows that for transonic flows the convergence rate for FAS-iteration, with SGS as pre- and post-
relaxation, is almost grid-independent.

2.5.4 Initial estimates. For the nonlinear multigrid method as just described, it is important to start
with reasonably good initial estimates. These can be obtained by nested iteration. Here the solution
is first approximated on the coarsest grid. Then the solution is interpolated onto the next finer grid,
where a few FAS-cycles are performed. This procedure is repeated until the required finest grid has
been reached. In many cases, for starting the nested iteration, a very crude initial estimate on the
coarsest grid can be used. As soon as the solution on the coarsest mesh is approximated with
sufficient accuracy, it is interpolated to the finer grid. It can be shown that, for all finer levels, a
small, fixed number of multigrid iterations is sufficient to obtain truncation error accuracy.

TueEOREM Consider a sequence of discretizations N (gy)=r4, {=0,1,2,..., L. with b _/h>C,. If
the discrete equations are relatively convergent of order p, i.e. if

[1Pri—191-1— @l |<Cohf-1, (40)

and the convergence of the iteration cycle is independent of 4, i.e. for the iterates g7 in the iterative
solution process we have

llgf ' = ql|<Cllg7 —ql . (1)
then, with N cycles on each level, the result g, =gj of the nested iteration process satisfies
||21h—‘1h||<'—CiLC0h2” 42
1-cregjipl)

assuming that C{C% ||P||<1, where ||P| |=sup| |Pri-al]- O
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Hence, the interpolation used to obtain the first guess on each level should be of sufficiently high
order to comply with the accuracy of the discretization. In our case, where the discretization is first-
order accurate, the first-order prolongation P, 5, as used in the Galerkin approximation is not accu-
rate enough, and a second-order interpolation is necessary.

2.6 CONCLUSION

We have seen that for many steady Euler flow computations, good multigrid efficiency can be
obtained [9,10,15,19]. A good sequence of first-order discretizations is obtained by the consistent use
of the finite volume technique. It yields a conservative discretization and it induces both the prolon-
gations and the restrictions for the multigrid algorithm. The result is a nested sequence of Galerkin
discretizations. Probably the most important ingredient in the finite volume discretization is the
choice of a good numerical flux function. The flux function chosen (Osher’s) allows a completely con-
sistent treatment of the interior and the boundary of the domain. Both at the domain boundary and
in the interior, Riemann invariants are used for transferring information across cell faces. Further,
Osher’s numerical flux function has smooth derivatives, which allows the use of Newton’s method in
the relaxation. A slight variant of Osher’s approximate Riemann solver (the P-variant) leads to a
favorable efficiency.

By the use of nested iteration, sufficiently accurate initial estimates can be obtained (for the cost of
about 1% FAS-cycle). Already for some practically interesting problems, only a single FAS-cycle
(with p =g =0=1 and SGS3-relaxation) appears to be sufficient for obtaining truncation error accu-
racy. This means that the (non-isenthalpic) steady Euler equations can be solved by an amount of
work that is equivalent with about 1% X2 symmetric Gauss-Seidel relaxation sweeps.

3. DEFECT CORRECTION FOR HIGHER-ORDER EULER COMPUTATIONS

3.1 SECOND-ORDER DISCRETIZATION

The first-order discretization introduced in section 2.1 has a number of advantages: it is conservative,
monotonous and it gives a sharp representation of discontinuities (shocks and contact discontinuities),
as long as these are aligned with the mesh. Further, it allows an efficient solution of the discrete
equations by a multigrid method. Disadvantages are: the low order of accuracy (many points are
required to find an accurate representation of a smooth solution) and the fact that it is highly
diffusive for oblique discontinuities. (Oblique discontinuities are smeared out over a large number of
cells.) For a first-order (upwind) scheme these are well-known facts which have led to the search for
higher-order methods.

A key property of the first-order discretization, that we also want to have in a second-order scheme, is
the conservation of g. Conservation allows discontinuities to be captured as weak solutions of (6) and
avoids the necessity of a shock fitting techmque Therefore, we consider only schemes that are still
based on (12), and we select a new f;; k(q, j,q, k) such that we get a better approximation to (11)
than with (16).

Higher-order discretizations can be obtained in two different ways. Higher-order interpolation can be
performed either for the states (i.e. in X}) or for the fluxes (i.e. in Y},). The first approach, called the
MUSCL—approach is used in eg [2,4,23], the second approach in eg. [27,33]. In the MUSCL-
approach, in (12) q, ; and q, .« are obtained by some mterpolatmn in g,={q;;}. In the other
approach, f;«(qF;,q%;«) is obtained by some interpolation in f,= {f1k(qij»qi;4)}- In the following
we restrict ourselves to the more common MUSCL-approach.

From the point of view of finite volume discretization, a straightforward way to form a more accurate
approximation is to replace the first-order approximation (16) with its piecewise constant approxima-
tion g(x,y) over cells, by a piecewise bilinear function g(x,)) on a set of 2X2 cells (a superbox). Such
a superbox at the h-level corresponds with a single cell at the 2A-level. Across the boundaries of the
superbox, g(x,y) can be discontinuous. In the superbox g(x,y) is determined by gy 5;, 92412
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92i.2j+1> §2i +1,2j +1- Using such a bilinear function, we see that the central difference approximation
is used for flux computations inside the superboxes. At the superbox boundaries, interpolation is
made from the left and the right, and the approximate Riemann solver is used to compute the flux at
the boundary. We denote the corresponding discrete operator by Nj. It is easily shown that the
superbox scheme is second-order accurate in the sense that

Ry n(N3 (Raq)— RyN(9) =0(h?). (43)

Instead of the finite volume superbox scheme, we can adopt a finite difference approach. Interpola-
tion from the left and right can be used to obtain the states g/ sk and g;; ;. at the left and right cell
faces, respectively. The simplest second-order scheme is the central differencing scheme. Here the
interpolation leads to a loss of all upwind properties. It simply leads to f(¢',g")=f (%(q' +q") for
the numerical flux function. In contrast with the first-order scheme, the central difference scheme
may even be anti-diffusive, which may lead to instabilities. When a central scheme is used alone, an
additional diffusion (dissipation) term should be added to stabilize the solution method [11].

To improve the stability behavior, it is better to take into account the domain of dependence of the
solution (the direction of the characteristics) and to distinguish, at each cell face, between interpolated
values from the left and from the right. For simplicity of notation we shall exemplify this only for the
one-dimensional case. Generalization to two dimensions is straightforward. In the one-dimensional
case, eq. (13) reduces to f;. 4, — fi— 4, =0, where f,»+1,3=f(q§+%,q,’-+ ). Introducing Ag; . ,=¢; 11— q;,
we find for the second-order upwind interpolated values qﬁ v and g7 4y

Gisy=qi+Ylg; g, (44a)
q.’-+z/.~=q,~+1—’/2Aq,~+wz- (44b)

Notice that on a non-equidistant grid, second-order accuracy for #—0 is guaranteed only if the grid is
sufficiently smooth.

Though stability properties of these one-sided approximations are better than those of central approx-
imations, stability and monotonicity are still not guaranteed. The usual way to force monotonicity is
by introducing for each k-th state vector component (k=1,2,3,4) a limiting fmction [31,35], and to
interpolate by

g =g + 7l Fhagl (45a)
q; %) =g — 1 Kl Agh) (45b)

where the limiting functions ¢/ ® =(R®) and ¢ ® =y(1/R®) are chosen, depending on the ratio
RO =pg%), /0g®) ., such that ¢} *) lies between ¢, and ¢f*, and ¢/ %) between ¢ and ¢},
[31,35]. One possible choice is the Van Albada limiter [1]:
R’+R

R*+1°
In [23], Van Leer proposes still another higher-order discretization; a linear combination of the one-
sided and central interpolation. Parametrized by « it reads

YR)= (46)

g =4 (100G i+ (1 +08g, ., (@7a)
7 =g =% [(1=0Ag i+ (1 +08g, ] (47b)
This general formula contains e.g.: (i) the one-sided second-order scheme (44) (k= —1), (ii) Fromm’s

scheme (x=0), (iii) a third-order accurate, upwind biased scheme (x=25), and (iv) the central
difference scheme (k=1). In the one-dimensional case, the superbox scheme, N A corresponds to the
use of k= +1 for odd i, and k= —1 for even i.
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The interpolations (45) and (47) are well-defined in the interior cells of the domain. In the cells near
the boundary 82", one of the values Ag;.;,; is not defined, by the absence of a value ¢; correspond-
ing to a point outside 2". Here, some sort of superbox approximation may be used.

In conclusion: with the MUSCL-approach, here we have constructed a higher-order accurate semi-
discretization of (7):

d
o7 Jndxdy + Ni(gn)=0. (48)
Q

3.2 THE SOLUTION OF THE HIGHER-ORDER DISCRETE SYSTEM
One possible way to find the solution of the steady state equations

Ni(gn)=0, (49)

is to take an initial guess and to solve the semi-discretized equation (48) for -0, i.e. to compute the
time-dependent solution g,(¢) until initial disturbances have died out sufficiently. However, this pro-
cess may be slow. Just as for the first-order discretized equations, we take the fully implicit approach
and try to solve the system

Ni(g)=ry (50)

directly. However, if we try to solve the higher-order system (49) in the same manner as we solve the
first-order equations, we may expect difficulties because the nonlincar equations (49) are less stable.
The higher-order discretizations are less diffusive, and (as already mentioned) in the case of central
differences they may even be ‘anti-diffusive’. This may lead not only to non-monotonous solutions,
but it can also cause a Gauss-Seidel relaxation not to reduce the rapidly varying error components. A
local mode analysis of the smoothing properties of GS-relaxation for first- and higher-order upwind
Euler discretizations can be found in [12]. There, the flux splitting upwind scheme of Steger and
Warming is analyzed. Similar results apply for Osher’s scheme. Further numerical evidence that con-
vergence of a relaxation process for a higher-order upwind discretization is slower than for a first-
order upwind discretization, is found in [24,25], where Van Leer’s flux splitting is applied.

To obtain higher-order accurate solutions, we do not solve the system N3(g;) =0 as such. We use the
first-order operator N} as described in section 2, to find a higher-order accurate approximation in a
defect correction iteration:

Ni(gh)=0, (51a)
Ni(gr")=NhghH—N¥gp), n=12,.,N. (51b)

Both theory [5] and practice [6] show that if the problem is smooth enough, already g¢; is second-order
accurate. If the solution is not smooth (i.e. when higher-order derivatives are dominating), there is no
reason to expect the solution of (49) to be more accurate than the solution of (51a). Nevertheless, in
(6,7,8,14] evidence is given that only a few defect correction steps may improve the (non-smooth) solu-
tion significantly.

In fact, we may use g '—g} as an error indicator. In the smooth parts of the solution
gh—qh "=0(h) and g} —q} "=0(h?). Where these differences are larger, i.c. O(h°), the solution is
not smooth (relative to the the grid used). There grid adaptation is to be considered rather than the
choice of a higher-order method, if a more accurate solution is wanted. Eq. (51b) describes an itera-
tive process, in which a first-order system has to be solved (iteratively) in each step. In practice the
inner iteration can be kept restricted to a single FAS-cycle [14].

In a multigrid context, where solutions on more grids are available, it is also natural to consider other
approaches for computing higher-order solutions, such as: (i) Richardson extrapolation, and (ii) 7-
extrapolation. Both extrapolation methods can well be used to find a more accurate solution if the
solution is smooth [6]. A drawback is that both methods rely on the existence of an asymptotic
expansion of the truncation error for h—0, and (in general) no a-priori information exists about the
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validity of such an assumption. Another disadvantage is that the accurate solution (for Richardson
extrapolation) or the estimate for the truncation error (for 7-extrapolation) is obtained at the one-
but-finest level. Because we want not only a higher order of accuracy, but also a more accurate
representation of possible discontinuities, it is advised to use Richardson extrapolation (only) as a
cheap means to find a higher-order initial estimate for the iteration process (51b). Since the evalua-
tion of N, ,,(q,,) is hardly more expensive than the evaluation of N ,,(q,,) the costs to compute the defect
in (51b) are of the same order as the evaluation of the relative truncation error
'rz,,',,(q,,):N%,,(Rz,,_,,qh)—Rz,,'hNA(q,,). This makes us to prefer defect correction, rather than 7-
extrapolation.

3.3 THE COMPLETE MULTIGRID ALGORITHM

We aim at the efficient computation of the approximate solution g, of the second-order discretized
Euler equations (49) on a given mesh with A=h;, where we assume that a number of L coarser
meshes exists, for which h,~2% 'h,. We denote the level of multigrid refinement again by /, and the
approximate solution at level / again by g,. As explained in section 2.5.4, the coarser grids, / <L, are
also used in the construction of the initial estimates for the iteration processes. With FASCYCLE
(N,g;=r;) denoting a single FAS-cycle as described in section 2.5, the algorithm used to obtain the
initial estimate and further iterates in the defect correction process, is as follows:

0. start with an approximation for gg;

la. 1:=0;

1b. for j from 1 to k; do FASCYCLE (N} g,=0) enddo;

2. forl/fromOto L —1do

2a. qi+1: —P1+11411,
2b. fOl'J from 1 to k1+] do FASCYCLE (NIA, 191 +1 —0) enddo
2. enddo;

3. qui=q Pl A(RL-v091.—9L-1);
4. fornfrom1 to N do

4a. rp: "NL(qL) NL(qL)
4b. for j from 1 to k, do FASCYCLE (N} 1q. =r.) enddo;
4. enddo

Stage 1 is an FAS-iteration process to obtain a first-order accurate initial estimate at level 0. Stage 2
is the nested iteration to obtain the solution of N ,,(q,,) 0 up to truncation error accuracy. The pro-
longation P}, is a bilinear interpolation procedure and, hence, accurate enough to retain the first-
order accuracy on the finer mesh. Asymptotically, the discretization error for g, is bounded by
Ch;=0(2% ') for h, =h—0. Now the theorem in section 2.5.4 shows that, for a fixed k,=k at all
levels, the iteration error at level / is ~Chp*/ (1—2uk), where p is an upper bound for the FAS-
convergence factor. Therefore, to obtain a first-order accurate initial estimate for 1terat10n (51b) it is
not necessary to reduce the iteration error in ¢, by a factor much smaller than p*=~%. This means
that in stage 2, for all />0, only a smgle FAS-step may be sufficient: k=1. Not being sure about the
validity of the asymptotic assumption, in practice we set k =2. Stage 3 is a Richardson extrapolatlon
step to (eventually) find a second-order initial estimate for iteration (51b). The prolongauon P} 1.L—1
and the restriction R} _,, are p1ecew1sc bilinear mterpolatlon over superboxes and avcragmg over
cells, respectively, such that R} (P31 =1I,_, is the 1dent1ty operator, and Pi . 1R} _1,. a pro-
jection operator. With the asymptotic expansion for the error e in g, as

gh=Rug+hPRye +0(h? 1), (52)
where g is the exact solution, for p =1 we obtain the second-order extrapolation
Royg=2Ro4qs — G2 +0(h?). (53

We find the extrapolated value of ¢, in stage 3 as the sum of (53) and
(I.—P3 . 1R} _1.)q.€Ker(Ry;,). We notice that formally the approximation of g, after stage 3 is



14

still O(k), unless g, _; is an O(h?) approximation, and unless stage 2 can reduce the (smooth) error
component R,e by a factor O(h). Nevertheless, in practice we see that already for small values of k,
the Richardson extrapolation can reduce the error significantly [6]. Stage 4 finally, is the defect
correction iteration (51b). If this iteration starts with a first-order initial approximation, for second-
order accuracy it may be sufficient to take N =1. This necessitates an improvement of the error by a
factor O(h) in the iteration 4b, i.e. we need k,=0(log(h)). However, since the FAS-iteration is the
expensive part of the computation in stage 4, for most purposes we take k;=1 and a sufficiently large
number for N.
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