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1. INTRODUCTION

In August 1987 C.W. Gear wrote in his survey paper [9]
on parallel methods for solving the initial-value problem
(IVP) for ordinary differential equations (ODEs):
"Compared to the enormous amount of work done on
parallelism in other areas of scientific computation,
relatively little has appeared on ODEs". In spite of the
increasing popularity of parallel computers for scientific
computing, this situation has not been changed in the last
three years. The main reason is that the greater part of the
computational intensive IVPs originate from the semi-
discretization of partial differential equations, that is, the
system of ODE:s is usually extremely large.

When using explicit IVP methods, a straightforward
approach is offered by segmenting the equations into
separate subsystems, still of considerable size, which are to
be handled by the various processors. This form of
parallelism inherent to the problem is called parallelism
across the problem. In the case of implicit IVP solvers, it
is the linear algebra problem associated with the implicit
relations to be solved, that requires the bulk of the
computational work. Of course, a lot of research has been
done in developing parallel linear algebra methods which
plays a central role in parallel ODE solvers, but the
achievements in this area are not considered as
contributions to the ODE literature.

Orthogonal to the two forms of parallelism indicated
above, one may think of parallelism across the ODE
method. However, most methods for solving IVPs are by
nature step-by-step methods and leave little scope for this
form of parallelism. An alternative to this step-by-step
approach is given by Bellen et al. [2], but it appears that
these methods are efficient only when implemented on a
(very) large number of processors. Thus, in order to achieve
parallelism across the ODE method and thereby a further
speed-up of the integration process, new algorithms have to
be designed. This is a challenge to the numerical analyst
and requires an approach which differs from the usual
approach in developing sequential algorithms.
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In designing parallel ODE methods, we shall distinguish
two categories of methods: (i) Methods with reduced 'wall-
clock time' (turn-around time) per step, but producing
numerical solutions with comparable quality when
compared with existing 'sequential' methods (i.e., methods
without parallelism across the method). When using such
‘wall-clock time reducers', one should be prepared to accept
a certain amount of redundancy, that is, one should not
require that the wall-clock time of the parallel algorithm on
¥ processors equals T/x, where T is the wall-clock time on
one processor of the ‘best' sequential algorithm producing a
comparable numerical result. (ii) Methods with improved
quality of the numerical solution, without increasing the
wall-clock time per step in comparison with numerical
solutions of the same quality furnished by sequential
methods. However, improved quality (for example,
methods of higher order of accuracy or with larger stability
regions) should result in larger stepsizes, so that the
ultimate effect of 'quality improvers' is again a reduction of
the (total) wall-clock time.

In this contribution, we shall concentrate on parallel, one-
step ODE solvers for integrating the first-order IVP

(1.1) y'(0 = f(t,y®), y(to)=yo, to <t< Tend.

We shall discuss two approaches of constructing parallel
ODE methods that are more efficient (in terms of wall-
clock time) than the conventional methods. These
approaches are based on extrapolation of basic ODE solvers
and on iteration of implicit Runge-Kutta (RK) methods.

In order to facilitate a comparison of the parallel methods
presented in this paper with sequential and already available
parallel methods, we list below the 'best' sequential
methods belonging to two popular families of one-step
ODE solvers.

Explicit Runge-Kutta methods. In the case of explicit RK
methods of order p, it is the number of stages (or:
righthand side evaluations) per step that is the main
characteristic for the efficiency of the method. The minimal
number of stages k of methods actually constructed is listed
in Table 1.1. Parallel versions of such methods have been
discussed in [20], [21], [24] and [26]. In Subsection 3.2.1,
we shall present the parallel methods derived in [16] and in
Subsections 2.2.1 and 2.2.3, we present a new family of
parallel explicit RK methods. These methods are designed



with the purpose to achieve a given order with less stages
per step than listed in Table 1.1.

Table 1.1. Sequential explicit RK methods.

Diagonally-implicit Runge-Kutta methods. For stiff ODEs
we need highly stable methods which leads us
automatically to implicit methods. Within the class of
implicit RK methods, the singly diagonally-implicit RK
(SDIRK) methods are most popular, because the dimension
of the implicit systems to be solved is equal to the
dimension of the system of ODEs and all systems can be
solved using Newton-Raphson iteration with the same
Jacobian matrix and LU-decomposition. The literature
provides only SDIRK methods of order p<4 of which a few
examples are listed in Table 1.2.

Table 1.2. SDIRK methods.
Order Stages Stability Reference
p=3 p-1 A-stable Ngrsett [25]
p=3 p-1 Strongly A-stable  Crouzeix [4]
p=4 p-1 A-stable Crouzeix [4],
Alexander [1]
p=4 p L-stable Iserles & Ngrsett [20]

In this table, we also added the two-processor method
constructed by Iserles and Ngrsett. The sequential costs of
these methods are half the number of stages (as far as we
know they are the first parallel SDIRK methods constructed
in the literature). Until 1989 SDIRK methods (either
sequential or parallel) of order higher than 4 were not yet
available. This motivated us to develop parallel versions of
order higher than four to improve the quality of this type of
method (see Subsections 2.2.2, 2.2.4, 3.2.2 and 3.2.3).

2. METHODS BASED ON EXTRAPOLATION

Many times it has been remarked that extrapolation
methods possess a high degree of parallelism and offer an
extremely simple technique for generating high-order
methods (cf., e.g. Deuflhard [6], Hairer [13], Gladwell
[10]). First, we shall summarize the basic properties of
Richardson extrapolation (see, e.g., Hairer, Ngrsett and
Wanner [15]), and we shall specify a Romberg sequence
that is suitable for use on parallel computers. Since
Richardson extrapolation is not restricted to IVP solvers,
we consider more generally extrapolation of numerical
approximations u(A) to obtain approximations to the true
solution value uyye with increased order of accuracy. The
application to IVP solvers is given in the Section 2.2.

2.1. Richardson extrapolation
Suppose that

(2.1) u(d) =ugue + C(A) A9, q21,

where C(A) is some (unknown) function of A with C(0)#0.
A denotes a control parameter that determines the accuracy
of the approximation.

Computing the numerical approximations u(A/m;),
i=1,...,r, where the m; are distinct, increasing, positive
numbers, we can define the numerical extrapolation

(22) uRjch(d) = 2 Ciu(mAi),

T
=1

-

where the c; are to be determined such that urjch(4) is
more accurate than u(A). Evidently, the approximations
u(A/m;) can all be computed in parallel and therefore
extrapolation formulas are ideal for parallel execution. The
sequence {m;} represents the Romberg sequence, and the
methods providing u(A) and urjch(A) respectively represent
the generating method and the extrapolation formula. Since
we can fix one of the numbers m; in advance, we may
assume without loss of generality that mj=1.

If the numerical solution u(A) is sufficiently smooth, so
that C(A) possesses a Taylor expansion in A, then the
coefficients c; can be chosen such that the order of the
extrapolation formula (2.2) equals gq*=qg+r-1. The
corresponding equations for the coefficients c; are

r

r

Ci .

2.3) Zci=l, 2 ——=0,j=q,...,q+r-2.
i=1 =1 (i)

In the particular case where q=1, the value of uRjch(A) can
be generated by the Aitken-Neville recursion

A
T := “(_rr—ni-)’ i=12,..,n
Ti,i-1 - Ti-1,j-1
m;j
mj-j+1

(24) Tij=Tija1+

b

j=2,3, ..., i=j,j+1, ..,1
and is obtained by setting
URich(4) = Tr,r-

Since we aim at extrapolation formulas that are suitable for
use on parallel computers, we have to make assumptions
on the computational complexity of the numerical
approximation u(A). Throughout, we shall assume that the
computational effort involved in computing u(A) is
essentially proportional to A-1/5, For example, in the case
of IVP solvers, we have A=hS, where h is the stepsize, and
s=2 for symmetric methods and s=1 otherwise. Usually, the
computational effort of applying an IVP solvers is
proportional to 1/h=A-1/S, Thus, given x processors, we
should partition the tasks of computing the approximations
u(A/m;) such that they roughly get the same amount of



work, that is, we have to specify « sets M; of integers i
which minimize the sum S defined by
Y, (mplls.

ie Mj

S = max {S1,S2, ... .S¢}, Sj:=

Table 2.1. Distribution of u(A/is) over parallel processors
for the Romberg sequence {if} in terms of the

index sets M;.
Processors 1 I il v
r=2 {1} {2}
r=3 1,2} {3}
r=4 {1,4} (2,3}
{1,3} {2} {4}
r=5 {1,2,5} (3,4}
{1,4} 2,3} {5}
r=6 {1,4,6} {2,3,5)
{1,6} {2,5) (3,4}
{1,5} 2,4 {3} {6}
r=17 {1,6,7} {2,3,4,5)
{1,3,6]} (2,7} {4,5}
{1, 6} {2, 5} 3,44 {7

In many applications, the approx1matlons u(A/m;) are only
defmed for integer values of (m;)1/s. This leads us to set
(ml) /s=i, by which we achieve that the largest value of the
m;, i.e. the value of my, is as small as possible, so that the
computational work involved in computing the most
expensive u(A/m;) is minimized. The optimal partitioning
of the evaluations of the r quantities u(A/i%) over x
processors is listed in Table 2.1. It is easily shown that the
minimal number of processors such that S=r is given by
x¥=[(r+2)/2], where, [.] denotes the integer-part function.
The corresponding index sets are defined by (indicated by
bold face in Table 2.1)

25) Mj:={j,rj}, j=12,.

2.2. Application to IVP solvers

We now apply Richardson extrapolation to IVP solvers. It
will be assumed that we are given a method of order p for
integrating (1.1) from tg until t;:=tg+H with (not
necessarily uniform) stepsizes which depend on a parameter
h. The numerical approximation to the exact solution value
y(to+H) will be denoted by y(tp+H,h). The method
producing this approximation will be called the generating
method and y(tg+H,h) will be called the generating
function.

If the generating function possesses an asymptotic
expansion in powers of hS, then we may identify y(to+H,h)
with the function u(A) and A with hS, Here, s=2 if the
method providing the values y(tg+H,h) is a symmetric
method, and s=1 otherwise. The values u(A/mj;) in the
extrapolation formula (2.2) are defined by

, K-1; My = {x].

(26) u(-—) —y(t()'i'H ( )]/s) =Y(t‘O+H’ Dlg-)

By means of the extrapolation formula defined by
{(2.2),(2.3)} we can extrapolate the r values y(to+H,ho/i)
to establish the first step of the extrapolation method:

T
@7 yi= Z Ciy(to+ H, 1119-)
i=1

Evidently, y; approximates y(t) at the point t;. Having
computed y1, we can perform a second step by using y; as
the new initial value at t;, etc.. The quantities hp and H are
called the internal and basic stepsizes, respectively.

Theorem 2.1. Let the generating method providing the
values y(tg+H,ho/i) be of order p, then the extrapolation
method defined by (2.7) has order p*=p+s(r-1). 0

We remark that the r grids in the interval [tg,to+H]
associated with the r values y(tg+H,ho/i) often contain
common grldpomts t1,j» and that the numerical values
obtained at t} j again can be thought of being derived from
some generating function possessing an asymptotic
expansion. In such cases, we may compute at each
common point tj j additional numerical solution values of
order p*=p+s(r-1).

Two often used versions of the above extrapolation process
set H=hg and H=Tepg4-tg. They are respectively called local
extrapolation and global extrapolation. In the case of global
extrapolation, the stability of the integration process is
determined by the stability properties of the generating
method, whereas the stability of the local extrapolation
method also depends on the extrapolation formula (2.7).

If we want to specify the computational effort of
extrapolation methods on parallel computers we need the
notion of the number of sequential (or effective) stages
associated with numerical results. The following definition
parallels a similar definition dealing with the number of
sequential stages of explicit RK methods (cf. Iserles and
Nogrsett [20]):

Definition 2.1. Let the numerical result produced by a
numerical method require the computation of k righthand
side functions and let the required wall-clock time on x
processors be equal to T, the.1 this numerical result is said
to require kTy/T7 sequential (or effective) stages. 0

Assuming that the computational complexity of com-
puting y(to+H,h) is proportional to 1/h, we see that the
sequential costs per step of length H of the method
{(2.5),(2.7)} on [(r+2)/2] processors equals that of com-
puting y(to+H,hg/r). Furthermore, if y(to+H,ho/r) requires
k righthand side functions, then the number of sequential
stages needed for integrating from tp until Tend on
[(r+2)/2] processors equals k(Teng-tg)/H=kr(Tend-to)/ho,
and is independent of the basic stepsize H. Hence, global or
local extrapolation with the same internal step is equally
expensive.

In order to compare parallel methods with sequential
methods, we introduce the redundancy factor



Re : Ty(parallel method)
k = K T (sequential method) °

Ideally, this factor should be 1, but in practice this will
seldom be achieved.

In the following subsections, we investigate the sequential
costs, the order of accuracy, and the stability properties of
extrapolation methods generated by the Euler methods, the
Midpoint rule, Gragg's method and the trapezoidal rule. For
notational convenience, we shall assume that the equation
(1.1) is a scalar, autonomous equation. However, all
considerations below are straightforwardly extended to
systems of ODEs, and therefore, also to nonautonomous
equations.

2.2.1. Explicit Richardson-Euler method. Consider the case
where the generating method is defined by the forward Euler
method with constant stepsizes h:

Yo=yo0, Yj=Yj1 + hf(Yj.1),j=1,2,..,m
(2.8)
y(t() + H’h) = Ym9 m= }I/h'

Here, it is assumed that H/h is always integer. Evidently,
we have p=s=1. We observe that (2.8) and the generated
Richardson-Euler method may be considered as explicit RK
methods with respect to a step of size H. Before discussing
this Richardson-Euler method, we mention a few results
from the literature. Firstly, we have the theorem (cf. Iserles
and Ngrsett [20]):

Theorem 2.2. The numerical results produced by explicit
RK methods of order p at the step points necessarily require
at least p sequential stages per step point. 1

This statement justifies the following definition:

Definition 2.2. An explicit RK method is said to be
optimal on K processors if its order equals the number of
sequential stages per step point on X processors. 01

In Ngrsett and Simonsen [26] the question was posed
whether it is always possible to find explicit RK methods
of any order p which are optimal assuming that sufficiently
many processors are available. The following theorem
answers this question.

Theorem 2.3. The Richardson-Euler method {(2.5), (2.7),
(2.8)} with H=hg is an explicit Runge-Kutta method of
order p*=r with r(r-1)/2+1 stages, which is optimal on
[(r+2)/2] processors. 01

On one-processor computers, this Richardson-Euler method
is much more expensive than the 'conventional’ RK
methods (cf. Table 1.1). However, on multi-processor
computers, the higher-order ones are of interest. From
Table 1.1 we see that there exist RK methods of orders p<4
which are optimal on one processor, but higher order RK
methods cannot be optimal on one-processor computers.
For example, the 'best' RK method of order p=10 available
in the literature (cf. Hairer [12]) requires 17 stages. From

Theorem 2.3 it follows that there is a 10th-order
Richardson-Euler method with 46 stages requiring 10
sequential stages on six processors. At first sight, a gain
factor of 1.7 on 6 processors, that is, a redundancy factor
Rg=3.53 is rather disappointing. On the other hand,
together with the numerical approximation of order 10, a
whole set of additional (embedded) approximations of orders
1 until 9 are provided. This enables us to compute error
estimates without additional computational effort which
can be used for varying-order, varying-step implement-
ations. Nevertheless, it is a challenge to find optimal RK
methods of order p* requiring less than [(p*+2)/2]
processors. This is possible by using s=2 extrapolation,
that is, by choosing a symmetric generating method, and
will be discussed in Subsection 2.2.3.

Table 2.2. Real and imaginary stability boundaries of
optimal RK methods.

Orderp 1 2 3 4 5 6 7 8 9 10

Real 2.02.0 2.5 2.7 3.23.5 3943 4.75.0
Imaginary 0.0 0.0 1.7 2.8 0.0 0.0 1.7 3.3 0.0 0.0

o

Finally, we briefly mention the stability of the Richardson-
Euler methods {(2.5), (2.7), (2.8)}. Being optimal RK
methods, they possesses a nonempty stability region. In
Table 2.2, the real and imaginary stability boundaries of
optimal RK methods are listed for orders p*=1 until 10.
The methods of orders p*=7 and p*=8 are particularly
interesting because they possess not only a substantial real
stability interval, but also a nonempty imaginary stability
interval.

2.2.2. Implicit Richardson-Euler method. Consider the
generating method defined by the backward Euler method
with constant stepsizes:

Yo = yo. Yj=Yj1 + hf(Yj),j=1,2,..,m,
2.9)
Y(lO + H9h) = Ym’ m= H/h,

where H/h is again integer and p=s=1. Method (2.9) may be
considered as an SDIRK method. The generated Richardson-
Euler method is a DIRK method, but on parallel
computers, it has the same computational complexity as an
SDIRK method, because each processor needs to compute
only one LU-decomposition. In estimating the sequential
costs of this Richardson-Euler method, we observe that the
bulk of the computational work goes in solving the
implicit relations occurring in (2.9), that is, in computing
the singly diagonal-implicit stages.

Theorem 2.4. The Richardson-Euler method {(2.5), (2.7),
(2.9)}) with H=hg is a DIRK method of order p*=r with
r(r+1)/2 diagonal-implicit stages and r sequential singly
diagonal-implicit stages on [(r+2)/2] processors per step of
length H. 01



Table 2.3. L(0,B,y)-stable Richardson-Euler methods of order p*=r requiring r sequential, diagonally

implicit stages on [(r+2)/2] processors.

p* r=2 r=3 r=4 r=5 r=6 r=7 r=8 =9 r=10
o 90° 89.85° 89.77° 89.76° 89.78° 89.79° 89.80° 89.82° 89.83°
B: 0 0.829 1.535 2.235 2.955 3.696  4.455 5.223 6.005
Y: 0 1.710°3 49193 7.51()'3 9.6103 121973 1310'3 15103 16193

On one-processor computers, these implicit versions are,
like the explicit Richardson-Euler methods, much more
expensive than their sequential counterparts (cf. Table 1.2).
On parallel computers, they may be of interest because
their order can be made arbitrarily high. However, it is
crucial that their stability region is sufficiently large. For
large values of r we expect a large stability region because
the stability function of {(2.5), (2.7), (2.9)} converges to
the L-acceptable function exp(z) as r—eo. In order to
characterize the size of the stability region for finite values
of r, we extend the notion of A(o)-stability and introduce
the notions of A(a.,B,Y)-stability and L(a,p,Y)-stability:

Definition 2.3. Let S be the stability region in the
complex z-plane where the characteristic polynomial of the
numerical method has its zeros within the unit circle.

The method is said to be A(a,B,7)-stable if

(i) S contains the regions {z: -o<n - arg(z)<a, O<a<m/2},
and {z: Re(z)<0, 1zI>B}

(ii) 1+yis the maximum absolute value of the zeros of the
characteristic polynomial when z runs through the
region of instability lying in the nonpositive
halfplane.

It is said to be L( o, f,7)-stable if

@ itis A(o,B,Y)-stable

(i) all zeros of the characteristic polynomial vanish at
infinity. 11

It is easily verified that implicit Richardson-Euler methods
are always L(q,p,Y)-stable. In Table 2.3 the values of
(0,B,y) are listed for r=2 until r=10. In view of the fact that
there are no sequential, L-stable SDIRK methods of order
higher than four available in the literature (see Table 1.2),
we conclude that the 'almost' L-stable Richardson-Euler
methods of arbitrarily high order p* requiring p* sequential
stages are a substantial improvement on the present
situation.

2.2.3. Richardson-Midpoint-Gragg methods. Gragg [11]
proved that the Midpoint rule

Y1 = yo + hf(yo),
(2.10) Y;j=Yj2+ 2hf(Y;.1),j=2,3, ..., m, m=H/,
y(to + Hh) = Y,

and the 'smoothed' Midpoint rule (or: Gragg method)

Y1 = yo + hf(yo),

@.11) Yj=Yj2 + 20f(Yj-1),j =2, 3, .. ,m, m = Hp,
1
y(t0 + Hh) =5 [Yme1 + Yo + h(Ym)],

are symmetric provided that m=H/h is an even integer.
Both methods are easily verified to be second-order, explicit
RK methods using respectively 2m and 2m+1 stages.

Theorem 2.5. The Richardson-Midpoint method {(2.5),
(2.7), (2.10)} and the Richardson-Gragg method {(2.5),
2.7), (2.11)} with H=2hg are_ explicit Runge-Kutta
methods of order p*=2r with r2+1 and r2+r+1 stages,
respectively, and requiring 2r and 2r+2 sequential stages on
[(r+2)/2] processors per step of length H.

Thus, (2.10) generates optimal RK methods of even order
p*>4 on [(p*+4)/4] processors which is about half the
number of processors needed by the explicit Richardson-
Euler methods to be optimal. For example, there exists an
optimal tenth-order RK method that needs only three
processors, so that, when compared with the tenth-order
one-processor method of Hairer, we now have a gain factor
1.7 on 3 processors, that is, a redundancy factor R3=1.8.
The methods {(2.5),(2.7),(2.10)} and {(2.5),(2.7), (2.11)}
both possess, like any consistent RK method, nonempty
stability regions. However, the recursion for the
‘intermediate’ approximations Y;, when applied to the
stability test equation y'=Ay (Re(A)<0), is unstable in both
cases, because its characteristic equation {2-hA{-1=0 has
roots outside the unit circle for all values of hA in the left
halfplane. Hence, these extrapolation methods are both
‘internally’ unstable and will develop instabilities unless m
is sufficiently small, say m<10. As a consequence, these
methods should only be used in local extrapolation mode,
rather than in global extrapolation mode. In the literature,
the Richardson-Gragg method {(2.5),(2.7),(2.11)} is recom-
mended in spite of the two extra sequential stages (cf. [23,
p.175] and [15, p.225]).

2.24. Richardson-Trapezoidal method. Finally, we consider
extrapolation methods generated by the trapezoidal rule:

Yo =yo,
1 .
(212) Yj=Yj 1+ Eh H(Y;.) + £((Yplj=1,2, .., m,
Y(tO + H,h) = Ym, m= I'I/h-



As in the implicit Richardson-Euler case, the generating
method (2.12) is an SDIRK method and the Richardson-
Trapezoidal method {(2.5),(2.7),(2.12)} is a DIRK method
with singly diagonal-implicit stages when run on a parallel
computer. Since (2.12) is symmetric, we can generate
relatively high order extrapolation methods by setting
H=hg. However, it can be shown that A(c,f,Y)-stability is
not possible. Therefore, we set H=2hg and obtain:

Theorem 2.6. The Richardson-Trapezoidal method {(2.5),
2.7), 2. 12)2] with H=2hg is a DIRK method of order

p*=2r with r=+1 diagonal-implicit stages and 2r sequential
smgly diagonal-implicit stages on [(r+2)/2] processors per
step of length H. 1

Table 2.4. A(o)-stable Richardson-Trapezoidal methods of
order p*=2r requiring 2r sequential, diagonally
implicit stages on [(r+2)/2] processors.

o 79.2°70.4° 64.3° 59.8° 56.3° 53.2° 50.6°

When compared with the implicit Richardson-Euler
method, we see from this theorem that we have again a
method of which the number of sequential stages per step
equals its order, but the number of processors and the
internal stepsize are about halved. On the other hand,
instead of L(a,f,Y)-stability we now have only A(c,B,Y)-
stability with B=co, In Table 2.4, the values of o are listed
for r=2 until r=8. It should be remarked that the original
Romberg sequence {mj}={21} also leads to A(c,B,Y)-
stability with B=co, however, with considerably larger
values of o (see Stetter [27]).

3. METHODS BASED ON ITERATION

Ideally, we want ODE solvers that are highly accurate and
highly stable. For example, such methods are provided by
the implicit RK methods based on Gaussian quadrature
formulas (such as Gauss-Legendre, Lobatto and Radau
methods), which are known to be A-stable for any order of
accuracy. However, the high degree of implicitness of these
methods implies that solving the implicit relations is
rather costly. In general, a k-stage implicit RK method
applied to a d-dimensional system of ODEs requires in each
step the solution of a system of dimension kd, so that the
computational complexity is of order (kd)>. This compares
unfavourably with implicit linear multistep methods (LM
methods) which require in each step the solution of a
system of dimension d. Although implicit LM methods
have less favourable stability properties (particularly the
higher-order ones) than implicit RK methods, they are
more popular, just because they are cheap. However, on
parallel computers this situation may change. In this
section, we shall show that the implicitness of implicit
RK methods can be tackled rather efficiently on multi-
Pprocessor computers.

In Section 3.1, we give a brief description of the parallel
iteration methods to be used and in Section 3.2 they are
applied to implicit RK methods.

3.1. Parallel iteration
Suppose that we want to solve the system of equations

(3.1) Y =F(Y), F:Rdx  RdK

where Y is the unknown vector, F is a nonlinear function,
and where F, x and d are such that the computational
complexity of the first set of d components of F is about
equal to that of the second, third, ... sets of d components
of the function F.

Consider the iteration method

B2) Y;-G(Y)=F(Y;1)-G(Yj, j=1,2,..,

where we assume that an initial approximation Yy is given
and where G is a 'free' function with block diagonal
Jacobian matrix the blocks of which are of dimension d.
Evidently, if Y; is solved from (3.2) by Newton iteration,
then each set of d components of Yj can be computed
independently of the other sets of d components, that is,
they can be computed in parallel provided that k processors
are available. If this Jacobian of G is a nonzero matrix,
then we shall call (3.2) diagonally-implicit iteration, or
briefly diagonal iteration. If the Jacobian vanishes, then we
speak of explicit iteration. For notational convenience, we
assume in the following that d=1, but all considerations are
straightforwardly extended to the case where d>1.

There are several options for choosing the function G:

(i) If the implicit relation (3.1) is well-conditioned, we may
simply choose G=0 to obtain explicit iteration.

(ii) Another possibility consists in choosing G such that
after a fixed number of iterations we have optimal stability
properties for the resulting ODE solver. This leads to
diagonal iteration.

(iii) A third possibility is improving the rate of
convergence. In first approximation, we have the error
equation

Yj-Y=Z[Yj1-Y], Z:=[1-JgI'0p-Jgl,
where JE and JG denote the Jacobian matrices of F and G at
Y. We now choose G such that the norm of the matrix Z

is in some sense small in magnitude. This leads again to
diagonal iteration.

3.2. Application to implicit Runge-Kutta methods

As before, we shall assume in the various formulas that
(1.1) is scalar and autonomous. It is convenient to write
the general RK method in the form

Yn+1 = Yn + hbof(yn) + hbT £(Y),
3.3)
Y = ype + haf(y,) + hAf(Y),

where e is the column vector of dimension k with unit
entries, a and b are k-dimensional vectors and A is a k-by-k
matrix. Furthermore, we have used the convention that for
any given vector v=(vj), f(v) denotes the vector with entries



f(vj). The RK method (3.3) will be called the generating
corrector and will always be assumed to be of order p.
Choosing G(Y)=hDf(Y), where D is a diagonal matrix (and
therefore, the Jacobian of G is diagonal), and using a one-
step method for computing the initial approximation to Y,
the iteration method (3.2) assumes the form

(34)
Y; - hDE(Y}) = yne + haf(yn) + h{A-D] f(¥j.1),

where j=1, ... ,m, B is an arbitrary diagonal matrix and C
is an arbitrary matrix. We assume that x=k processors are
available, so that (3.4) is a parallel iteration method.

Two versions of computing yn+1 Will be considered. The
most natural one sets

(35) Yn+1 = Yn + hbof(yn) +hbT f(Ypy).

A related method computes yn+1 from the relation

(3.5%) Yn+1 =6k Y,

where ey is the kth unit vector. If the generating corrector
happens to be stiffly accurate that is, if bg equals the last
element of a and if bT equals the last row of A (cf. [1]),
then the method {(3.4),(3.5*)} has better stability
properties for stiff equations than {(3.4),(3.5)}. We shall
call {(3.4),(3.5)} the nonstiffly accurate version and, if the
generating corrector is itself stiffly accurate, then we call
{(3.4),(3.5%)} the stiffly accurate version. Both versions
lead to RK-type methods with a large number of stages
depending on k, m and the matices B, C and D.

In the case of nonvanishing matrices D and a fixed number
of iterations, the resulting RK method is a DIRK method
since only diagonally-implicit relations are to be solved.
On parallel computers, the method only requires the
computation of singly diagonal-implicit stages (cf. the
Richardson-Euler and Richardson-Trapezoidal methods). In
[18], these special (S)DIRK methods were called PDIRK
methods (Parallel, Diagonal-implicitly Iterated RK). In

estimating the sequential costs of PDIRK methods, we
have again that the bulk of the computational work goes in
computing the singly diagonal-implicit stages. Evidently,
the number of sequential singly diagonal-implicit stages on
k processors equals m if B=0O and m+1 otherwise.

Given the generating corrector (3.3), the methods
{(3.4),(3.5)} and {(3.4),(3.5%)} still contain the 'free'
iteration matrices B, C and D. In the following sub-
sections, we discuss a number of special choices leading to
highly stable RK methods with a relatively small number
of sequential singly diagonal-implicit stages on k-processor
computers. First methods with vanishing D matrix are
considered. The resulting RK method is explicit and will be
called PIRK method (Parallel, Iterated RK).

3.2.1. PIRK methods with fixed number of iterates. We
consider PIRK methods with

(B36) a=0, bp=0, D=B=C=0, m fixed.

The construction of ODE solvers of this type has been
suggested in many papers (see, e.g., [26], [24], [21], [20],
[16]). In [16] the following result was presented:

Theorem 3.1. The PIRK method {(3.4),(3.5),(3.6)} has
order p*:=min{p,m+1} with km+1 stages and is optimal
on k processors if m<p-1. There exist optimal PIRK
methods of order p on [(p+1)/2] processors and these
methods can be generated by the Gauss-Legendre methods. 1

A comparison with the Richardson-Euler methods of
Theorem 2.3 reveals that the Gauss-Legendre-based PIRK
methods require one processor less for p even and the same
number of processors for p odd. However, the PIRK
methods are expected to be much more efficient because of
the high accuracy of the generating correctors (see Section
4). On the other hand, the implementation of the
Richardson-Euler method is extremely simple, while the
implementation of the PIRK methods is somewhat more
complicated.

Table 3.1. PDIRK methods of order p*=p on [(p+1)/2] processors.

Corrector Iteration matrices Order Seq. stages Stability Stiff accuracy
1. Radau IIA B=D=diag(Ae-Ce), AZe=BAe p=3 p-1 A-stable Yes
2.Radau IIA B=D=diag(Ae), C=0 p=3 p-1 Strongly A-stable No
3.Radau IIA B=D=diag(Ae), C=0 p=3 p L(89.75°)-stable Yes
4. Gauss-Legendre = B=D=diag(Ae), C=0 p=4 p-1 Strongly A-stable No
5.Radau IIA B=D=diag(Ae-Ce), AZe=BAe p=5 p-1 A(89.997°)-stable Yes
6. Radau ITIA B=D=diag(Ae), C=0 p=5 p-1 Strongly A-stable No
7.Radau IT1A B=D=diag(Ae), C=0 p=5 P L(89.12°)-stable Yes
8. Gauss-Legendre = B=D=diag(Ae), C=0 p=6 p-1 Strongly A(89.97°)-stable No
9. Radau IIA B=D=diag(Ae-Ce), AZe=BAe p=7 p-1 A(89.959)-stable Yes
10. Radau ITA B=D=diag(Ae), C=0 p=7 p-1 Strongly A(83.39)-stable No
11. Radau ITA B=D=diag(Ae), C=0 p=7 p L(89.020)-stable Yes




Table 3.2. PDIRK methods of order p*<p on [(p+1)/2] processors with B=bl and D=dl.

Corrector Iteration matrices Order  Seq. stages Stability Stiff accuracy
1. Gauss-Legendre = B=0, D=dl, C=0 p*4 p*-1 A-stable No
2. Gauss-Legendre = B=D=dI=diag(Ae-Ce),CO p*<4 p*-1 A-stable No
3.Radau IIA B=0, D=dI,C=0 p*<6 p* L-stable Yes
4. Radau ITA B=0, D=dI,C=0 p*=8 p* L-stable Yes
5. Radau ITIA B=D=dI,C=0 p*<8 p*+1 L-stable Yes
6. Radau ITA B=D=dl,C=0 p*=10 p*+1 L-stable Yes

Matters are different with the Richardson-Gragg methods.
According to Theorem 2.5, they need about half the
processors required by the PIRK methods at the cost of two
additional sequential stages. The PIRK methods are again
expected to be more efficient, but are also more difficult to
implement.

Finally, we remark that PIRK methods (like the
Richardson-type methods) contain a whole set of embedded
formulas of lower order which can be used for order and
stepsize control (cf. [16] for a discussion of strategies).

3.2.2. PDIRK methods with fixed numbers of iterates. In
[18] the following family of PDIRK methods has been
investigated:

(3.7 a=0, bg=0, DO, m fixed.
For these PDIRK methods we have:

Theorem 3.2. The order p* of the nonstiffly accurate
PDIRK method {(3.4),(3.5),(3.7)} is given by

p* = min{p,m+1} forall B, C and D.
(3.8) p*=min{p,m+2} for Ae=(C+B)e.
p* = min{p,m+3} for Ae=(C+B)e, AZe=BAe. )

Theorem 3.2*, Let the generating corrector be stiffly
accurate, then the PDIRK method {(3.4),(3.5%),(3.7)} is
also stiffly accurate and its order is given by (3.8) with m
replaced by m-1. 1

Several types of PDIRK methods can now be distinguished
depending on the particular choice of the iteration matrices
B, D and C. If the generating corrector is the Gauss-
Legendre or Radau IIA for even and odd values of p,
respectively, then the number of processors for exploiting
the parallelism across the method equals [(p+1)/2].
Choosing m such that p*=p we derived a number of highly
stable PDIRK methods which are collected in Table 3.1. In
the stiffly accurate cases, the PDIRK method is defined by
{(3.4),(3.5%),(3.7)}, otherwise by {(3.4),(3.5),(3.7)}. As
before, all PDIRK methods contain embedded formulas of
lower order.

In actual computation, there is some advantage by
choosing the elements of the diagonal matrices B and D
constant, so that all k processors can use the same LU-
decomposition when solving the implicit relations during
the iteration process. In such cases, these decompositions,
as well as the evaluation of the Jacobian matrix of/dy, may
be performed by an additional processor, providing an up-

dated Jacobian and decomposition for all processors as soon
as it is available. In Table 3.2, methods of this type are
listed. The relevant values of d occurring in this table can
be found in [18]. Again, all PDIRK methods contain
embedded formulas of lower order.

3.2.3. PDIRK methods with variable numbers of iterates.
For most stiff ODEs, RK methods exhibit the phenom-
enon of order reduction which means that for realistic
stepsizes the observed (or: effective) order is, in most
cases, much smaller than the classical (or: algebraic,
asymptotic) order. In fact the observed order is dictated by
the so-called stage order (cf., e.g., [S]). Since the stage
order is usually substantially lower than the classical order,
this order reduction phenomenon is a serious problem for
all RK methods (only if the ODE is of a special singular
perturbation form and if the RK method is stiffly accurate,
then this order reduction is not shown in numerical
experiments (cf. [14])). In particular, DIRK methods, and
hence the PDIRK methods discussed in the preceding
subsection, have a low stage order of one or two. This puts
a question mark at the relevance of constructing RK
methods with the highest possible algebraic order and
motivated us to look for generating correctors with the
highest possible stage order, which are then iterated until
convergence. As a consequence, we can rely on the
stability and accuracy behaviour of the (solved) corrector
and thus, in particular, on its high stage order.

In Table 3.3, we have collected a few families of
generating implicit RK methods with high stage order
together with their stability properties (here, k is the order
of the matrix A when presented in the form (3.3)). In [17]
we have analysed the diagonal iteration method (3.4) of
these correctors with

(39) B=C=0, D#0, m variable.
We investigated convergence of the iterates Yy, and of the
stability functions associated with (3.5) and (3.5*) on the
basis of the linear test equation y'=Ay.
Theorem 3.3. Let y(t) denote the exact local solution with
y(tn)=Yn, let r and R¢orr(2) be the stage order and stability
function of the generating corrector, and define

c:=a+Ae, Z:=zD[I-2zD]'[D1A-1], z:=Ah.
(a) The method {(3.4),(3.8)} satisfies the order relation

Y = y(tp+ch) + O(hT+1) + hZM[af(y,) + Af(Y)].



Table 3.3. Summary of characteristics of implicit RK methods.

Method Stages  Orderp Stageorderr  Stability  Stiff accuracy Reference
Gauss-Legendre  k 2k k A-stable for all k no [31
Lobatto ITIA k+1 2k k+1  A-stable forallk yes [5]
Radau ITA k 2k-1 k L-stable for all k yes 3]
Newton-Cotes  k+1  2[(k+2)/2] k+1 A-stable for k<8 yes [28]
Lagrange k+1 k+1 k+1  Strongly A-stable yes [17]

Table 3.4. Stiffly accurate PDIRK methods {(3.4),(3.5%),(3.8)} of order p* = min{p,m}.

Corrector  Orderp Stageorderr  Processors p(D1AD) Omp-fange MA_gtable
1. Radau ITA 3 2 2 0 [0.27,0.35] 1
2. Lagrange 3 3 2 0 [0.21, 0.33] 2
3. Radau ITA 5 3 3 0.0047 [0.52,1.00] 5
4, Lagrange 4 4 3 0.01 [0.49,0.69] 3
5.Radau ITA 7 4 4 0.024 [0.74,1.31] 7
6. Lagrange 5 5 4 0.045 [0.59,0.93] 6

(b) The methods {(3.4),(3.5),(3.8)} and {(3.4),(3.5%),(3.8)}
respectively possess the stability functions

Rn(2) := Reor(2) - 22bTZM[I - zA] le,
R*(2) = Reorr(2) - zex TZM([I - zA]le. o

In the first place, this theorem shows that the stability
function Ry, (z) of the method {(3.4),(3.5),(3.8)} grows
beyond all bounds as z tends to infinity. Hence, we shall
from now on concentrate on the method {(3.4),(3.5%),
(3.8)}. Secondly, Theorem 3.3 illustrates the central role of
the matrix Z(z) both for the accuracy and the stability of
the method. In order to achieve that Z™ converges rapidly
to the zero matrix for a given problem, we should choose
the matrix D such that the spectral radius p(Z(z)) of Z(z) is
as small as possible in the region of relevant z-values. Let
R denote the region of z-values where we want fast
convergence, then this implies the minimization over all
possible diagonal matrices D of the function p=p(D) where
. denotes the maximum of p(Z(z)) in the region R. In [17]
this minimax problem was considered for the case where R
is the region of 'stiff' values of z, that is, we required fast
convergence for IzI>>1 (notice that Z™(z) behaves as
zM(A-D)™ as z—0, so that we have automatically fast
convergence for small values of z). Since p(Z(z))—
p(D-1AT) as z—o0, we were led to minimize the spectral
radius of D-1A-1. Having found a suitable matrix D with
minimal p(D-1 A-I)-value, it is of interest to know the rate
of convergence of R*p, to Reory for that particular matrix
D. The rate of convergence can be measured by the quantity

m,
Om = Max ‘\/'R*m(z) - Reorr(2)! -
Rez<0

Finally, we checked for what value of m the method
becomes (and remains) A-stable. This value is denoted by
MA.stable-

Table 3.4 presents for a number of generating correctors
the values of p(D- 1A-I), the range of op,-values for
1<m<10, and the critical value ma_giaple. We only listed
cases with finite ma_gstable, Which restricted the PDIRK
methods to methods generated by the Radau IIA and
Lagrange correctors.

4. NUMERICAL EXPERIMENTS

We shall present numerical results obtained by the parallel
methods described in the preceding sections and by existing
sequential and parallel methods. From each family of
methods we tested a representative example. Throughout,
we use the following notations:

length of the integration interval [tg,Tend]

total number of sequential stages

order of the method

number of correct decimal digits at the endpoint,
i.e., we write the maxxmum norm of the error at
t=Teng in the form 10D,

SERA

All methods were applied with constant stepsizes.

4.1. Explicit Runge-Kutta methods

We performed a few tests by integrating the equation of
motion for a rigid body without external forces (cf.
Problem B5 from [19]):

y1' =y2y3, y1(®) =0,
@4.1) y2'=-y1y3, y2(0)=1, 0<t<Tepq=60.
y3'=-.51ly1y2, y30)=1,



Curtis and Hairer used this test problem for testing and
comparing their 10th-order RK methods. In Table 4.1 the
results of the experiments performed by Curtis and Hairer
are reproduced (cf. [12]), together with results obtained by a
few parallel methods. This table shows the superiority of
the PIRK method.

Table 4.1. Results for Problem (4.1).

Method p* D N

Runge-Kutta 4 9.6 48000
Adams-Moulton-Bashforth 4 81 12000
Runge-Kutta-Curtis 10 99 4320
Runge-Kutta-Hairer 10 10.1 4080
Richardson-Gragg with H=2hg=1/3 10 9.5 2160
Richardson-Midpoint, H=2hg=1/3 10 9.6 1800
Gauss-Legendre-based PIRK,m=9 10 10.0 1560

4.2. Richardson-Gragg and Richardson-Midpoint methods
Table 4.1 shows that the Richardson-Gragg method and the
Richardson-Midpoint method produce comparable accu-
racies. A second example confirms this behaviour: Table
4.2 lists results for the Fehlberg problem [8]

y1I'= 2tyilog(max{yz, 103}), y1(0) = 1,

“4.2) 0=t<5

y2' = - 2tyzlog(max(y1, 103)), y2(0) = e,
for the methods:

RM: Richardson-Midpoint: p*=2r, H=2hp=2rL/N.
RG: Richardson-Gragg: p*=2r, H=2hg=2(r+1)L/N.

Table 4.2. Results for Problem (4.2).
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4.3. Diagonally-implicit methods

Finally, we compare a number of diagonally-implicit
methods by integrating a few stiff test problems. The first
test problem is taken from Kaps [22]:

y1'=- @+ Dy + el(yn)2, y100)=1,
0<t<l.

@.3)
y2'=y1-y2(1 +y2), y200) =1,

Table 4.3 clearly shows the superiority of the Richardson-
Trapezoidal methods. Also, notice that the high (classical)
order of the PDIRK method 9 from Table 3.1 becomes
only apparent for the smallest stepsizes.

Our second example is taken from the test set of Enright et
al. [7] and is given by the following system of ODEs
describing a chemical reaction:

.013+1000y3 O 0
@4 L= 0 25003 0 v,
.013 0 1000y1+2500y7

with y(0)=(1,1,0)T. Following [17], we avoided the initial
phase by choosing the starting point at tp=1 and we used
1.009264413846

the corresponding initial values
-.366532612659 10-5 )

This enables us to integrate with constant stepsizes.
Results at Tepg=51 are given in Table 4.3. Notice that
some methods that were the more accurate methods in the
case of Problem (4.3), are now less accurate. For the case
of extrapolation methods for sequential machines, a detailed
comparitive study was carried out by Deuflhard [6]. A
performance analysis of PDIRK methods will be future

0.990731920827
4.4b) y(1) = (

Method H p*=2 p*=4 p*=6 p*=8 p*=10 p*=12 research of the present authors.
RM 01 -02 06 23 45 63 7.6
RG 01 06 09 23 44 6.7 8.5
RM 005 09 21 43 7.1 92 114
RG 005 16 25 45 71 9.7 114
Table 4.3. Results for the Problem (4.3) with €é=10-8 and Problem 4.4).
Problem (4.3) Problem (4.4)
Method p* N=6 N=12 N=24 N=48 N=6 N=12 N=24 N=48
Crouzeix-Alexander 4 2.0 38 36 4.1 44 55 6.7 178
Iserles-Ngrsett 4 2.7 35 43 49 5.1 62 74 86
Richardson-Impl. Euler: H=hp=6L/N 6 5.2 6.6 8.1 9.7 7.1 8.6 10.3
Richardson-Trapezoidal: H=2hg=6L/N 6 6.7 84 10.1 119 97 73 74 78
Richardson-Trapezoidal: H=L=Nhg/3 6 6.7 8.5 10.3 82 100 117
PDIRK method 9 from Table 3.1 7 5.2 6.8 8.6 10.5 74 94 115 120
PDIRK method 5 from Table 3.2 5 42 56 7.1 8.6 53 6.8 83 938
PDIRK method 6 from Table 3.4 5 6.9 77 89 104 69 82 9.7 112
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