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We study here a natural subclass of the locally stratified programs which we call acyclic. Acyclic programs 
enjoy several natural properties. First, they exhibit good termination behaviour with respect to a large and 
natural class of general goals, so they could be used as terminating PROLOG programs. Next, their seman­
tics can be defined in several equivalent ways. In particular we show that the Immediate consequence 
operator of an acyclic program P has a unique fixpoint Mp, which coincides with the perfect model of P, is 
the unique Herbrand model of the completion of P and can be identified with the unique fixpcint of the 3-
valued immediate consequence operator associated with P. The completion of an acyclic program P is 
shown to satisfy an even stronger property: addition of a domain closure axiom results In a theory which is 
complete and decidable with respect to a large class of formulas including the variable-free ones. This 
implies that Mp is recursive. 
On the procedural side we show that SLS-resolution and SLDNF-resolutlon for acyclic programs coincide, 
are effective, sound and (non-floundering) complete with respect to the declarative semantics. 
Finally, we show that various forms of temporal reasoning, as exemplified by the so-called Yale Shooting 
Problem, can be naturally described by means of acyclic programs. 
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I. INTRODUCTION 

1.1. Motivation 
This paper is about a simple, yet remarkable class of general logic programs. We call them acyclic 
because, given an acyclic program, for a large class of general goals, including the variable-free ones, 
no infinite SLDNF-derivations exist. 

The class of acyclic programs includes the recursion-free general programs and is included in the 
class of locally stratified programs defined by PRzYMUSINSKI [P]. It was originally introduced in 
CAVEDON [C] under a rather unattractive name of w-local~y hierachical programs. Intuitively, a pro­
gram is acyclic if a mapping from variable-free literals to natural numbers can be exhibited showing 
that no recursion on the variable-free level exists. 
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The goal of this paper is to show that several ways of defining the semantics of general logic pro­
grams including Clark's completion, perfect model semantics, fix.point semantics based on the immedi­
ate consequence operator Tp and its 3-valued counterpart cI> p, and two forms of resolution - SLDNF 
and SLS - coincide in the case of acyclic programs. Thus the class of acyclic programs can be viewed 
as a common denominator of various approaches to the proof theory and semantics of general logic 
programs, approaches which in general yield different results. 

This striking uniformity can lead the reader to wonder whether acyclic programs are sufficiently 
strong for modeling non-monotonic reasoning and for computing in general. It has been argued (see 
e.g. PRzYMUSINSKI [Pl]) that Clark's completion, comp(P), is in general too weak to model satisfac­
torily non-monotonic reasoning. 

To ward off such a criticism we show that a large class of problems in temporal reasoning, as 
exemplified by the so-called Yale Shooting Problem of HANKS and McDERMOTT [HMD], can be 
naturally formalized using acyclic programs. 

In BEZEM [BJ it was shown that even without the use of negation every total recursive function can 
be computed by an acyclic program. Moreover, the guaranteed termination of SLDNF-derivations for 
a large class of general goals shows that acyclic programs could be used as terminating PROLOG 
programs. Thus, after all, acyclic programs form a powerful class. 

However, not all things are so rosy. It can be shown that the property of being an acyclic program 
is highly undecidable - it is rrg complete in the arithmetical hierachy. In some cases, including the 
Yale Shooting Problem, we can easily prove that a program is acyclic by exhibiting a simple •termina­
tion function' defined in terms of the program clauses. 

1.2. Plan of the paper 
The paper is organized as follows. In the next subsection we define acyclic programs and introduce 
the important concept of a bounded general goal. Bounded general goals include the variable-free 
ones. 

In Section 2 we study the declarative semantics of acyclic programs. We show that for every acyclic 
program P its immediate consequence operator T p has a unique fix.point. By the results of PRzYMu­
SINSKI [P] and APT, BLAIR and WALKER [ABW] this fixpoint is the unique perfect Herbrand model of 
P and the unique Herbrand model of Clark's completion, comp(P). Moreover, we show that this 
fixpoint can be identified with the unique fix.point of the cl> p operator due to FITTING [F], defined on 
the 3-valued Herbrand interpretations of P. 

In Section 3 we study Clark's completion of acyclic programs. We prove that for an acyclic pro­
gram P, comp(P) augmented by a domain closure axiom DCA, is a complete and decidable theory for 
bounded general goals. This implies that the unique perfect Herbrand model of P is recursive. 

Then we turn to the procedural semantics of acyclic programs. In Section 4 we show that SLDNF­
derivations for a bounded general goal and an acyclic program always terminate. Moreover we show 
that for acyclic programs SLS-resolution and SLDNF-resolution coincide and are effective. The 
results of CAVEDON [C] and PRZYMUSINSKI [P2] imply (non-floundering) completeness of these two 
resolution methods. 

Finally, in Section 5, we show how a well known problem in temporal reasoning, called the Yale 
Shooting Problem, can easily be formalized and solved using acyclic programs. We also show how a 
much larger class of problems in temporal reasoning can be solved by analogous means. 

1.3. Preliminaries 
For definitions, terminology and notation concerning logic progranuning we refer the reader to [A] or 
[L]. More specifically, for a general logic program P we use Up, Bp, Tp, comp(P) and ground(P) as 
abbreviations of, respectively, the Herbrand Universe of P, the Herbrand Base of P, the immediate 
consequence operator of P, Clark's completion of P and the set of all variable-free instances of clauses 
from P. From now on we simply say program and goal instead of general program and general goal. 
We recall the following notions which are due to Przymusinski [P]. 
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DEFINITION I. I. A program P is locally stratified if there exists a mapping stratum from B p to the 
countable ordinals such that for every A ~L 1, .•. , Ln (n ;;;;.o) in ground(P) the following conditions 
hold for every l ~i~n: 
- if L; is positive, say L; is B for some BEBp, then stratum(A);;;;.stratum(B); 
- if L; is negative, say L; is -.B for some B EBp, then stratum (A)>stratum (B). 

DEFINITION 1.2. Let P be locally stratified. A Herbrand model M of P is called a perfect model of P 
if there exists no Herbrand model of P which is preferable to M. Here preferable is the following rela­
tion between Herbrand interpretations: I is preferable (or preferred) to J if for every A El -- J there 
exists B El - I such that stratum (B)<stratum (A). 

Although the definition of a perfect model seems to depend on stratum and it is not obvious from 
this definition that perfect models exist, Przymusinski has shown in [P] that every locally stratified 
program has a unique perfect model. It is easily seen that the perfect model of P is a minimal Her­
brand model of P (a smaller Herbrand model would be preferable to it). Consequently, if P is a posi­
tive logic program, then the perfect model of P equals the least Herbrand model of P. 

The following three basic definitions are straightfoiward generalizations of definitions given in [B]. 
The first two definitions can also be found in [CJ. 

DEFINITION 1.3. Let P be a program. A level mapping for P is a function I I: Bp-41\1 of variable-free 
atoms to natural numbers. We extend I I to variable-free literals by putting 1-.A I= IA I for all A EBp. 
For A EBp we call 1(-.)A I the level of (-,)A. 

DEFINITION 1.4. Let P be a program and I I a level mapping for P. We call P acyclic with respect to 
I I if for every A~ L 1, ••• , Ln (n ;;;;.Q) in ground (P) the level of A is higher than the level of every L; 
(l .s;;;i.s;;;n). Moreover P is called acyclic if P is acyclic with respect to some level mapping for P. 

A simple example which will play a prominent role in this article is provided by a formalization of 
the so-called Yale Shooting Problem [HMD] by the program YSP consisting of the clauses (a)-(e) 
below. In this section YSP serves only as an example of an acyclic program. We postpone the discus­
sion of this program to Section 5, where YSP is considered as a key example of the special form of 
non-monotonic reasoning captured by acyclic programs. 

holds (alive, rn~ 

holds(loaded, [load lxsituationD~ 

holds (dead, [shoot I X5;ruation ])~holds (loaded, Xsitziation) 

ab (alive,shoot,x5;1u1J1ion)~holds (loaded,xsittiation) 

(a) 

(b) 

(c) 

(d) 

(e) 

In this program Xsituution• x fact> Xevent are variables, alive, dead, loaded, load, shoot are constants and 
we have used a representation of lists such as in LISP or PROLOG. The empty list is represented by 
a constant denoted []. If L is a list and t a term, then the list with t as first element (the head), fol­
lowed by the list L (the tail) is represented by the term [t I L ], denoting the application of a binary 
function tot and L. Furthermore [th ... ,tn ILJ abbreviates (t 1 I[··· [tn ILJ ···JI, and [tl> ... ,tn] 
abbreviates [t 1, ••• , tn I[]] (n;;;,. J). In the alphabet of YSP every variable-free term is either a con­
stant, or a term [t 1 It 2]. Hence we can define a mapping l: U ysp~N by l (t) = 0 if t is a constant and 
/([t1lt2])=1+/(t 2). We define a level mapping I l:Bysp-41\J by Jholds(t,t')l=2/(t') and 
lab(t,t',t")l=2l(t")+ I, so that we have 

!holds (t, [h I !DI> lab (t',t", 1)1 >!holds (t"',/)I 
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for all variable-free terms t, ... , t'",h,l. Now it is not difficult to see that YSP is acyclic with respect 
to I 1. 

DEFINITION 1.5. A literal Lis called bounded with respect to a level mapping I I if I I is bounded on 
the set [L] of variable-free instances of L. If Lis bounded, then l[LJI denotes the maximum that I I 
takes on [L]. A general goal G = ~L 1 , ••• , L,, (n;a.O) is called bounded if every L; (l o;;;.io;;;.n) is 
bounded. If G is bounded then l[GJI denotes the (finite) multiset (see [DJ) consisting of the natural 
numbers l[L di, ... , llLnll· 

The following easy lemmas are instrumental in proving the termination of a number of inference 
procedures for acyclic programs and bounded goals. 

LEMMA 1.6. Let I I be a level mapping and L a bounded literal. Then, for every substitution 0, LO is 
bounded and l[LO]l..s;;l[LJI· 

PROOF. Follows immediately from [LO]~[L). D 

LEMMA 1.7. Let P be acyclic with respect to I I· Then for every clause A ~L 1> ••• , L,. (n ;;z.O) from P 
and every substitution 0 we have: if A 8 is bounded, then every L;O is bounded and l[L;O]I <J[A OJI 
{l .r;;;;,i..s;;n). 

PROOF. For every L'e[L;O] (l..s;;i..s;;n) there exists a variable-free instance A1~L'1> ... ,L',. of 
A8~L 1 8, ... ,L,,O, and hence of A~Ll> ... ,L,., such that L' occurs in the body. Since P is acyclic 
and A (J is bounded, it follows that llA OJl;;.IA'l>IL'I· Now the conclusions of the lemma immediately 
follow. 0 

2. DECLARATIVE SEMANTICS OF ACYCLIC PROGRAMS 

In this section we define the declarative semantics of acyclic programs. We follow the 2-valued and 
3-valued approach in successive subsections. In general these approaches lead to different semantics, 
but, among others, we show that in the case of acyclic programs they lead to the same declarative 
semantics. 

2.1. The 2-valued approach 
Let I I be a level mapping for a program P. We can view I I as a way of partitioning the Herbrand 
Base Bp. Any partition of Bp naturally induces a partition on every Herbrand interpretation I ~Bp. 
Let us denote these partition classes by I (n), so I (n)= {A ell IA I =n} for all n EN. 

DEFINITION 2.1. Let P be acyclic with respect to I I· The declarative semantics of P is defined as a 
specific Herbrand interpretation M for P; M is the union of an inductively defined sequence 
M(O),M(l), ... of subsets of Bp such that M(n) contains only atoms of level n (thus conforming to 
the notation just introduced). This sequence is defined as follows: 

M(O)= {Al IAI = 0 and A~ is in ground(P)} 

M(n + 1)= {A I IA I= n + 1 and there exists A ~L 1> ••• , Lk (k ;a.Q) 

in ground (P) such that U M (i) I= L 1 /\ • • • /\Lk} 
i<n 

Alternatively, for all n 

M(n)= Tp( U M(i))nBp(n). 
i<n 
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At first sight the declarative semantics M of P seems to depend on the level mapping. However, it fol­
lows from the Lemmas 2.3 and 2.4 below that this is not the case. Therefore we denote from now on 
the declarative semantics of an acyclic program P by Mp. 

LEMMA 2.2. For all interpretations I and variablefree literals L we have I I= L if! I (IL I) I= L. 

PROOF. Trivial. 0 

LEMMA 2.3. Let P be a~yclic. Then M P is a fixpoint of T P· 

PROOF. Let P be a program which is acyclic with respect to a level mapping I I: Bp-7N. As to 
MpC.Tp(Mp), suppose that A EMp. Then A EMp(IA I). If IA i=O, then A ETp(Mp) by the definition 
of Mp(O). If IA 1>0, then A ETp(Mp) by the construction of Mp(IA I), the acyclicity of P and Lemma 
2.2. 

Conversely, if A ETp(Mp), then there exists A~L 1 , ••• ,Lk (k;;;a.O) in ground(P) such that 
Mp 1= L 1 !\ · · · !\Lk. Since P is acyclic, we have IA l>IL;J for all l<i<k. Now, again by the construc­
tion of M p and by Lemma 2.2, it follows that A EM P· 0 

LEMMA 2.4. The Tp operator of an acyclic program has at most one fixpoint. 

PROOF. Let I and J be fixpoints of Tp for some general program P which is acyclic with respect to a 
level mapping I I: Bp-7N. We shall prove by induction on n that U J(n)= U J(n), which immedi-

i<n i<n 

ately implies I =J. For n =O there is nothing to prove. Assume U J(n)= LJJ(n). We have to prove 
i<n i<n 

I (n)=J (n). Let A El (n); then A El= Tp(J), so there exists A +-L 1, •.. , Lk (k ;;;a.Q) in ground(P) such 
that I 1= L 1 !\ · · · !\ Lk. Since P is acyclic, we have IL1 I< IA I= n for all l <j <k. It follows by Lemma 
2.2 above that U I (i) " L 1 !\ · · · !\Lk, so by the induction hypothesis we have 

i<n 
U J (i) 1= L 1 /\. · · · !\Lk. By Lemma 2.2 J 1= L 1 !\ · · · !\Lk so we have A ET p(J) =J, hence A e.J (n ). 
i<n 

We have proved I (n) CJ (n ), and the converse follows by symmetry. This completes the induction 
step. 0 

THEOREM 2.5. Let P be an acyclic program. Then we have: 
(i) Tp has a unique fixpoint, Mp; 
(ii) M p is a minimal model of P; 
(iii) M p is the peifect model of P; 
(iv) Mp is the unique Herbrand model of comp(P). 

PROOF. 

(i) By the Lemmas 2.3 and 2.4. 
(ii) Assume by contradiction that N c Mp is a model of P. Let n be the smallest natural number such 
that N (n) =/:- M p(n ). Now a contradiction follows by inspection of the construction of M p, the acycli­
city of P and Lemma 2.2. 
(iii) We first observe that a level mapping naturally induces a local stratification (see [P]) of the acy­
clic program. Hence every acyclic program has a unique perfect model. To show that Mp is perfect, 
assume by contradiction that a model N of P is preferable to Mp. Since Mp is minimal by (ii), it fol­
lows that there exists an atom A EN such that A tl:Mp. Let A be such a variable-free atom having the 
lowest level. By the definition of the preference relation between the models Mp and N there exist 
BEMp such that Bt!:.N and IBl<IAI. Let B be such a variable-free atom having the lowest level. It 
follows that U M p(i) = U N (i) and N (IB I) c M p(JB J). Now the desired contradiction follows in a 

i<IBI i<IBI 
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similar way as under (ii). 
(iv) We recall that fix.points or the T, operator or a general program are exactly the Herbrand models 
of the completion of that program (see (A, Lemma 7.1 (ii))). 0 

2.2. Tht 3-valued approach 
In this subsection we provide yet another characterization of the model M p of an acyclic program - in 
tenm or 3-valued models. First we recall the necessary background results, due to FITTING {F], which 
use a 3-valued logic due to KLEENE [Kl). 

In Kleene's logic there are three truth values: t for true, f for false and u for undefined. Every con­
nective takes the value t or f if it takes that value in 2-valued logic for all possible replacements of u's 
by t or f; otherwise it takes value u. 

A Herbrand interpretation for this logic (called a 3-valued Herbrand interpretation) is defined as a 
pair (T. F) of disjoint sets of variable-free atoms. Given such an interpretation I= (T,F) a variable­
free atom A is true in l if A ET, false in I if A eF and undefined otherwise. Given I =(T,F) we 
denote T by r and F by I ... Thus I =(r ,/ ). 

Every (2-valued) Herbrand interpretation I for a program P determines a 3-valued Herbrand 
interpretation (J,B,-n. Therefore, in the remainder of this subsection we identify every 2-valued 
Herbrand interpretation I with its 3-valued counterpart (l,Bp - I). 

Given a program P, the 3-valued Herbrand interpretations for P form a complete lattice with the 
ordering <,;;;; defined by 

1 c;..J iff r c,r " 1 c,J · . 
Following FITIING {F], given a program P we define an operator «l>p on the complete lattice of 3-

valued Herbrand interpretations for P as follows: 

~p(l)=(T,F). 

where 

T ={A I there exists A +-L 1, ••• , L* in ground(P) with L 1 /\ • • • AL* true in /}, 

F ={A I for all A +-Li. ... , Lk in ground(P), L 1 /\ • • • l\L1r. is false in J}. 

It is easy to see that T and Fare disjoint, so <Pp(/) is indeed a 3-valued Herbrand interpretation. <Pp 
is a natural generalization of the operator Tp to the case of 3-valued logic. 

The powers of tl>p are defined in analogy to those of Tp: 

<P,to= ( 0, 0 ). 

il>pf(a+ l)=if>p(tl>pja), 

<P,j(a)= U il>pjfJ for any limit ordinal a. 
P<a 

tl>p is easily seen to be monotonic, so tl>pja<;;;«l>pjfJ whenever a~/J. 
We have the following result. 

LEMMA 2.6. Ltt P be an acyclic program. Then M p =if> p jw. 

PROOF. Let P be acyclic with respect to a level mapping I j. Consider the sequence M(O),M(l), ... 
of subsets of BP constructed in Definition 2.1. The proof proceeds by first establishing by simultane­
ous induction on n the following two claims: 

(i) A EM(n) ilf A e4>pj(n + 1) ~ nBp(n), 
(ii) A eBp(n)-M(n) iff A eil>pj(n + 1)- nBp(n), 

and is omitted. 0 
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COROLLARY 2.7. Let P be an acyclic program. Then Mp is the unique fixpoint of <l>p. 

PROOF. We have <l>ptw<;;;;:<l>pj(w+ 1), so by Lemma 2.6 Mp<;;;;:<l>p(Mp). But for no 3-valued Herbrand 
interpretation I, MpCI (otherwise J+ nr * 0), so Mp=<l>p(Mp), i.e. Mp is a fixpoint of tllp. More­
over, by the monotonicity of <l>p, every fi.xpoint of the form tllpta is contained in any other fi.xpoint, 
so in fact Mp is the unique fi.xpoint of ll>p. 0 

The advantage of the characterization of M p by Lemma 2.6 over its original definition is that the 
construction of <l>pjw does not refer to any level mapping. 

REMARKS 2.8. 
(a) Theorem 2.5 has been found independently by CAVEDON [C] in the slightly stronger version for 
locally hierarchical programs. Most of the results in Section 2 can be easily generalized to locally 
hierarchical programs. However, this is not true for the next sections. 
(b) Recall that Tp(/)<;;;;:/ if and only if I" P [A, Proposition 5.12], so that (i) and (ii) of Theorem 2.5 
imply that the unique fixpoint of the Tp operator of an acyclic program is also its minimal pre­
fixpoint. 
(c) In [P, Proposition I] it is proved that every perfect model is minimal, so (iii) implies (ii) in 
Theorem 2.5 above. Note that in our proof (ii) is used to prove (iii) and that the proof that M is a 
perfect model is particularly simple as compared to the argument in [P]. 
(d) It is tempting to think that Theorem 2.5 (iv) could be sharpened in the sense that the completion 
of an acyclic program might be a complete theory (proving or disproving every sentence), or even a 
categorical theory (all models being isomorphic). This, however, is not the case as shown by the fol­
lowing example. Let P be the acyclic program consisting of the two clauses p (0)(,--, q (,---,p (x) (with 
IP (O)I = 0 and lq I= l). Then comp (P) consists, apart from the axioms of free equality (which do not 
play a role here and are given in the next section), of the following two completed definitions: 

p(z) ~ z =O 

q ~ 3x-,p(x) 

The unique Herbrand model of comp(P) is {p(O)}. However, comp(P) has non-Herbrand models in 
which q is valid, for example N with p interpreted as zero, where q is true since zero(l) does not hold. 
Note that addition of a domain closure axiom \fx(x =O) to comp(P) yields a categorical theory in the 
special case of this example. Although this phenomenon does not hold for acyclic programs in gen­
eral, we show in the sequel that adding a domain closure axiom to the completion of an acyclic pro­
gram yields a complete theory with respect to formulas in which only bounded atoms occur. 

3. COMPLETION SEMANTICS OF ACYCLIC PROGRAMS 

In this section we investigate in detail the completion of acyclic programs. We show that any 
bounded atom can be effectively reduced to an equality formula that is equivalent to that atom 
modulo the completion of the acyclic program. Apart from suggesting an interpreter for bounded 
atoms, this reduction enables us to prove that the declarative semantics of an acyclic program is 
decidable. 

NOTATION 3.1. We use the vector notation t (resp. x) to denote a sequence of zero or more terms 
(resp. distinct variables). Furthermore, t = s abbreviates the conjunction t 1 =s 1 /\ •• • /\111 =sni where 
t = t 1, ••• , t,. and s = s 1, ••• , s,,. Similarly L abbreviates the conjunction L 1 /\ • • • AL,, of the 
literals occurring in L. Also 'Vx abbreviates 'Vx 1 ••. 'Vx,.. The empty conjunction stands for verum, a 
true proposition, dually to the convention that an empty disjunction, such as the empty goal, stands 
for fa/sum, a false proposition. If, for any syntactic expression E, we write E(x), then no other 
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variables occur in E than those explicitly shown in x. If we abbreviate sequences of variables in a 
different way, say x and y, then all the variables occurring in x and y are supposed to be distinct. We 
do not use this convention for abbreviations of sequences of terms and literals. Syntactical identity is 
denoted by =· 

DEFINITION 3.2. The theory of free equality, denoted by EQ, is defined by the following axiom sche­
mata. 

f (x) = f (y) ~ x = y for all function symbols f 
-, (j(x) = g(y)) whenever f ;E g 

-, (x = t) for all terms t ;Ex such that x occurs in t 

As usual for first order logic with equality we interpret = as the identity relation on the domain of 
interpretation. Consequently, we do not have to axiomatize = as a congruence relation. 0 

LEMMA 3.3. ( CLARK [0]) 
(i) If t(x) and s(y) do not unify, then EQ I= 'Vx 'Vy -, (t(x) =s(J,')). 
(ii) If t(x) and s(J,>) do unify, then there exists an mgu 8={ · · · ,x,lu;, · · · , · · · ,y/vi, · · · } of t(x) 

and s(y) such that all the variables occurring in () are among x,y and 
EQ 1= 'fix 'Vy [t(x)=s(y) +-+ (x=u I\ y=v)]. 

Here and below it is understood that u;=x; (resp. Vf1=y) if (} does not contain a binding for x 1 (resp. 
YJ). D 

For a simple proof of the above lemma, based on the use of the Martelli-Montanari unification algo­
rithm, see APT [A, Lemma 5.21]. 

THEOREM 3.4. (Equivalence Theorem, or substitutivity for logical equivalents) 
Let T be a theory and <P' a formula obtained from a formula </> by replacing some occurrences off ormulas 
l/11, •.• , l/;,, by o/ 1', •.• , o/n' respectively. If TI= o/1 +-+ o/1', ••• , TI= If;,, +-+If;,,', then TI=</>+-+ <j>'. 

PROOF. This is just a mild generalization of the Equivalence Theorem in [Sb, 3.4]. It should be noted 
that the replacement of formulas may involve renaming of variables to avoid variable clashes. 0 

LEMMA 3.5. Let P be acyclic with respect to I I : BP~N. For every bounded atom A there exists a for­
mula </>A> all whose free variables occur in A, such that comp (P) I= A- <l>A and all atoms A' occurring in 
<l>A are either equality atoms, or are bounded with l[A 'JI < l[A JI. 

PROOF. The proof is essentially by unfolding completed definitions. The decrease in the bound on 
the level of variable-free instances is ensured since the atom is bounded and the program is acyclic, 
but the price is the introduction of equality formulas which express the unification process. Let 
A =p (s(y)) be a bounded atom. Consider the completed definition 

p (z) -E-+ (F 1 (z)v · · · v F,,(z)) (n ;;.Q) 

of p in comp (P). Fix l .;o;,i .;;;,n and assume that F;(Z) ongmates from the program clause 
p(t(x))~L(x) from P. (The denotation p(t(x))~L(x) is meant to express that x are all the variables 
occurring in the clause, and not that these variables occur all both in the head and in the body of the 
clause.) We have 

Fi(Z) = 3x(z = t(x)AL(x)) 

and distinguish the following two cases. 



CASE 1: p (t(x)) and p (s(r)) do not unify. Then by Lemma 3.3 (i), we have 

EQ I= "Ix "Vy-, (t(x)=s(y)) 

and so 

comp (P) 1= "Vy -, F;(s(y)). 
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CASE 2: p(t(x)) and p (s(y)) do unify. Let ()be as in Lemma 3.3 (ii). Then by the Theorem 3.4 we 
have 

comp (P) I= "Vy [F;(s(y)) ~ 3x(x= ul\y= vl\L(x))]. 

Since = is interpreted as identity, we obviously have 

I= "Ix "Vy [(x=ul\y= vl\L(x)) ~ (x=ul\y= vl\L(u))]. 

Since L(u) = L(x)8, it follows that 

comp(P) t- Vy [F;(s(y)) ~ 3x(x= ul\y= v/\L(x){})]. 

This completes the second case of the case distinction. 

After these preparations the construction of 4>A can be given. We have 

comp(P) 1=A ~(F1(s(y))v · · · vFn(s(y))]. (t) 

Let 1...;;i :s;;;n and consider F;(s(y)). In Case 1 we simply delete F;(s(y)) from (t). In Case 2 we replace 
F;(s(y)) by 3x(x=ul\y= vl\L(x)()). Let lf>A be the resulting right hand side. By the Theorem 3.4 it fol­
lows that comp(P) 1= A ~ lf>A· It remains to show that all atoms A' occurring in lf>A that are not 
equality atoms are bounded and satisfy ![A 'll < l[A ]\. This can be seen as follows. Recall that 
A =p (s(y)) and A'=L/x)() for some L1 occurring in the body of a program clause p (t(x)) ~ L(x). We 
obviously have l[p (s(y))JI ;;ii: [p (s(y))OJI. Moreover p (s(y))O =: p (t(x))O. Finally, by Lemma 1.7, 
l[p (t(x))OJI > l[L1(x){}]I since p (t(x)) ~ L(x) is a clause of the acyclic program P. It follows that 
l[L;(x)O]\ < ![p (s(y))]\, i.e. \[A'Jl<l[A ]\. 0 

The following theorem is to be compared to Lemma 4.3 from APT and BLAIR [AB]. The class of acy­
clic programs is considerably larger than the class of recursion-free programs. On the other hand, the 
reduction to equality formulas can no longer be obtained for arbitrary atoms, but only for bounded 
atoms. 

THEOREM 3.6. Let P be acyclic with respect to I I : B p-+1\1. For every bounded atom A there exists a 
formula <PA> all whose free variables occur in A, such that lf>A contains only equality atoms and 
comp(P) 1= A ~ lf>A· 

PROOF. By induction on l[AJI, using Theorem 3.4 and Lemma 3.5 above. 0 

COROLLARY 3.7. Let P be acyclic. For every formula Fin which only bounded atoms occur there exists a 
formula lf>H all whose free variables occur in F, such that 4>F contains only equali~y atoms and 
comp(P) F F ~ lf>p. 

PROOF. By induction on the length of the formula using Theorem 3.6. 0 

DEFINITION 3.8. DCA is the axiom 

"VxV3}1 1 •• ·3vr1x=f(yi. · · ··Yr1). 
f<=L • • 

In this definition constants are taken as function symbols of arity 0 and r1 denotes the arity of f. 
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Thus, DCA depends on the alphabet of the language L and hence on the program P. Since it will 
always be clear from the context which P is meant, we do not express this dependence in the denota­
tion. Note that DCA is satisfied in all Herbrand interpretations of P. 

THEOREM 3.9. Let P be acyclic. Then for every bounded atom A we have either comp(P)UDCA I= \fA or 
comp(P)UDCA 1= -,VA. Moreover, it is decidable which of these two possibilities holds. 

PROOF. Follows from the Theorem 3.6 and a result of MALCEV [Ml] recently rediscovered indepen­
dently in MAHER [M], that EQ UDCA is a complete and decidable theory. 0 

Before we finish this section with a simple corollary of this theorem we show that both DCA and 
the condition that the goal is bounded are necessary. Consider the program P from Remarks 2.8 (d). 
Then comp(P) 1= -,q tt \fz(z =O). Now q is true in the non-Herbrand model given in Remarks 2.8 
(d), but false in any model satisfying DCA= Vz (z =O), such as Mp. 

Regarding the condition that the goal is bounded, consider P = {p (O)~, p (f (x ))~ p (x)}. Then P 
is obviously acyclic and the goal .,,_. p (x) is not bounded. Furthermore, the completed definition of p 
is p(z) tt (z =Ov3x(z = f (x)l\p(x))). We have Mp 1= comp(P)UDCA U {\fp(x)}, but for M with 
domain w+ w, with p (x) interpreted as x <w, 0 as the ordinal 0 and f as the successor function we 
have M 1= comp(P)UDCA U{-,Vp(x)}. 

COROLLARY 3.10. Let P be acyclic. Then Mp is recursive and satisfies for all A EBp 

A eMp if! comp(P)UDCA I= A. 

PRooF. By Theorem 2.5, Theorem 3.9 and the fact that variable-free atoms are bounded. 0 

4. PROCEDURAL SEMANTICS OF ACYCLIC PROGRAMS 

Among the various approaches to the procedural semantics of logic programming with negation, 
the most prominent are SLDNF-resolution, see [L], and SLS-resolution from [Pl,P2]. One of the 
difficulties concerning SLDNF-resolution is that for certain programs and goals no SLDNF-derivation 
needs to exist. (Consider for example the program P = (p ~ p} and the goal G = 4:--,p.) We show 
that this problem does not arise for acyclic programs. The major distinction between SLDNF- and 
SLS-resolution lies in the way they treat negation. SLS uses a negation as failure rule, whereas 
SLDNF uses negation as finite failure. A minor distinction between SLDNF and SLS is the way they 
treat floundering, i.e. the appearance of a goal consisting entirely of negative literals containing vari­
ables. Since floundering is not our main concern here, we shall simply ignore this distinction. More 
precisely, by SLDNF we mean a variant of SLDNF in which floundering is treated in the same sys­
tematic way as done in SLS. The following results can be established about these forms of resolution 
for acyclic programs. 

LEMMA 4.1. Let P be an acyclic program and Ga bounded goal. Then every SLS-tree as well as every 
SLDNF-tree of G contains on~y bounded goals and is finite. 

PROOF. We argue in a way similar to [B, Lemma 2.5 and Corollary 2.6). For the multiset ordering we 
refer to (D]. Let G be a bounded goal. We distinguish the following three cases. If a positive literal 
of G is selected, then it follows by Lemma 1.6 and Lemma 1.7 that every resolvent G' of G is bounded 
and that indeed l[G'JI is smaller than llGJI in the multiset ordering. If G consists entirely of negative 
literals containing variables, then there is no resolvent at all. If a variable-free negative literal is 
selected, then both for SLS- and SLDNF-resolution we trivially have that the resolvent (if any) of G 
is bounded and smaller than Gin the multiset ordering. Now use that the multiset ordering over N is 
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well-founded. 0 

COROLLARY 4.2. Let P be an acyclic program and Ga goal. Then, for any selection rule, the SLS-tree 
and the SLDNF-tree of G coincide. 

PROOF. We recall that the difference between SLS and SLDNF amounts to negation as failure versus 
negation as finite failure. Since all goals ~A with A EBp are bounded, it follows by Lem.ma 4.1 that 
~A fails if and only if ~A fails finite?v. Now the corollary easily follows. 0 

Since SLS-derivations always exist for locally stratified programs (so a fortiori for acyclic programs), 
this corollary implies that for all acyclic programs and goals SLDNF-derivations exist. Additionally 
we have: 

COROLLARY 4.3. Let P be an acyclic program. Then both SLS- and SLDNF-reso/ution are decidable 
rules of inference. 

PROOF. If a positive literal is selected in a goal, then every inference step is obviously decidable. If a 
goal consists entirely of negative literal containing variables, then there is no resolvent at all. Now 
assume a negative literal -,A with A EBp is selected. Then ~A is bounded, so for any selection rule 
both the SLS- and the SLDNF-tree of ~A are finite. So ~A either succeeds, flounders or (finitely) 

fails. Moreover it is decidable which of these cases hold. It follows that the inference step (if any) is 
decidable. D 

We close this section by combining results previously obtained in this paper with results from 
CAVEDON [CJ and PRZYMUSINSKI [P2] to obtain the following characterizations of the model Mp. 

THEOREM 4.4. Let P be an acyclic program. Then we have: 
(i) Tp has a unique fixpoint, Mp; 
(ii) M p is the perfect model of P; 
(iii) Mp is the unique Herbrand model of comp (P); 
(iv) M P is the unique fixpoint of <I> p; 
(v) for all variablefree atoms A, 

A EMp if! comp (P) U DCA F= A; 
(vi) for all variablefree atoms A that do not flounder, 

A EMp if! there exists an SLDNF-refutation of PU {~A}; 
(vii) for all variablefree atoms A that do not flounder, 

A EMp if! there exists an SLS-refutation of PU {~A}; 
(viii)M p is recursive. 

PROOF. (i), (ii) and (iii) follow from Theorem 2.5, (iv) from Corollary 2.7, (v) from Corollary 3.10, 
(vi) from [CJ and (vii) is implied by results from [P2]. In fact (vi) and (vii) are special cases of more 
general completeness results. Note that (vi) and (vii) are equivalent by Corollary 4.2. Finally, (viii) fol­

lows from Theorem 3.9 and Corollary 3.10. D 

It is worthwhile to note here that some of the results listed in the above theorem can also be 
derived using more general results concerning general programs and their subclasses, proved by 
KUNEN (K], SHEPHERDSON [S], and PRZYMUSINSKI [P2]. However, our proofs are more direct and 
simpler. 



5. APPUCAIIO'S • HM?ORAl. l'U1ASONING 

in is discussed .. h became 
Problem·. Hanks and McDem1ott's interest in this 

~~"'""'·'"1';,, when used to for· 
discussed in the 

(St'e LIFS· 

some of these~ solutions are discussed 

means of 
programs. follow here p. Consider a 
nndlvidua.l who in any siwation can be cither alin: or dead. and a gun that can be either loaded or 
1mloaded. The statements are ""'''"'"'"'"· 
i •~ A! some situation$ 0 the person is alive. 

The gun becomes loaded any time a foad evem m•1;~"'·""· 
Any time t.he pt~rson is shot i.vith a loaded gun. he bec:omes dead. Moreover. the fact of 
alive is abnormal with res~'CI 10 the event of being shot with a loaded gun. 
Facts which are not abnormal with respect to an event remain true. 

To formalize these statements !HMDJ use McCARTHY and HAYES' [MCH! situation calculus m 
wruch one thn.-e entities: e.'t'nts and situations. 

Facts can true in situations and situations can be changed lhe occurrence of events. To 
express statements involving facts, events and situations, relation symbols t and ab and a function 
symbol result are used. 

Given a fact f. event e and a situation s 
t means that fact f is true in situation s. 
result(e,s) denotes the situation resulting from occurrence of event e in situations, 

means that 'fact f i5 abnormal with respect to event e occurring in situation s' or 
·occurrence of evem e in situations causes f to stop being true in result(e,s)'. 

Using this notation !HMD] formulate the above statements (1)-(4) as the following formulas: 

t(alive,s 1J). 

'r:/s 

Thus 

•\t(dead,result(shoot,s)))), 

-+ t (f .result{e,s ))). 

alive. dead and loaded are interpreted as constants 'of type fact', 
load and shoot are interpreted as constants 'of type t!'N::m', 
s 0 is interpreted as a constant 'of type situation'. 

(2) 

(3) 

(4) 

(While an explicit use of types in the underlying first order language would result in a more rigorous 
description, their use is not needed for the purpose at hand.) The last formula - ( 4) - is often called 
inertia a.JCiom. It is a formalization in the situation calculus of the frame problem. 

To draw the desired conclusions from the above formulas (l [HMDj uses the circumscription 
method of McCARTHY [!'vlCJ to circumscribe over the relation ah. 

ln their analysis {HMD] notice that there exist two Herbrand models in which the circumscribed 
relation ab is minimal. In one of them, say Jf 1, the formula t (dead,s 3 ) holds, where s 3 stands for 
result(shoot,res11it(wai1,result(ioad,s 0))). So this formula cannot be inferred by the circumscription 
method. 
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5.2. A solution using acyclic programs 
Our solution to the Yale Shooting Problem is embarassingly trivial: first split formula (3) into 

'V s(t (loaded,s) ~ ab(alive,shoot,s )), (3a) 

'Vs(t(loaded,s) ~ t(dead,result(shoot,s))). (3b) 

1bis obviously does not affect the description of the discussed problem. Then interpret the resulting 
set of formulas as a logic program. That is all. 

Since for logic programs we adopted a different vocabulary (s and t denote expressions etc.), we 
rewrite the formulas (1), (2), (3a), (3b), (4) by 

using the relation holds instead of t, 
using variables x f<U·t• Xevent and Xsituutton instead of, respectively, the variables J,e and s. 

Also, we write the empty list[] for s 0 and [t I L] for result(t,L), and use the clausal form as customary 
in logic programming. Thus, by using the abbreviations concerning lists as given in 1.3, for example 
[shoot, wait, load] stands for the situation s 3 . To be formally correct we add a constant wait to the 
alphabet of YSP. 

As a result the formulas (1), (2), (3a), (3b), (4) translate into the program YSP given in Section I. 
We proved there that YSP is an acyclic program by exhibiting a simple level mapping. Consequently, 
to analyze it we can use any of the theorems concerning acyclic programs which are proved in Sec­
tions 2, 3 and 4. 

By virtue of Theorem 4.4 and the observation that goals of the form ~A. where A is a variable-free 
atom, do not flounder with respect to YSP, we have: 

COROLLARY 5.1. 
(i) T YSP has a unique fixpoint, M ysp; 

(ii) M YSP is the perfect model of YSP; 
(iii) M rsP is the unique H erbrand model of comp ( YSP); 
(iv) M YSP is the unique jixpoint of iP rsp; 

(v) for all variablefree atoms A, 
A EMysp if! comp(YSP)UDCA FA; 

(vi) for all variablefree atoms A, 
A EM YSP if! there exists an SLDN F-refutation of YSP U {~A }; 

(vii) for all variablefree atoms A, 
A EM YSP if! there exists an SLS-refutation of YSP U {~A}; 

(viii)M rsP is recursive. 0 

This corollary provides overwhelming evidence that among all Herbrand models of YSP, M rsP is 
the preferred one. This model is characterized in several, vastly different ways and naturally arises 
when studying both declarative and procedural semantics of the program YSP. 

It is useful to see that M YSP coincides with the model M 1 considered in the previous subsection. 
Thanks to Corollary 5.1 there are several ways of checking it. Perhaps the simplest is the one using 
the SLDNF-resolution. We only concentrate on the crucial statement t(dead,s 3) or, using the notation 
adopted in this section, holds(dead, [shoot, wait,load]). 

We have the following SLDNF-refutation: 

~holds (dead, [shoot, wait, load]) 

l(c) 
-holds (loaded, [wait, load]) 

!(e) 
~...,ab (loaded, wait, [load]),holds(loaded, [load}) 

I 
~holds (loaded, [load]) 

l(b) 
0 
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The subsidiary derivation of -.ab (loaded, wait, [load]) by means of negation as failure is trivial as 
ab(loaded,wait,[load)) does not unify with any head of the clauses (a)-(e). 

It is also easy to check that the statement t(alive,s 3 ), or in other words 
holds( alive, [shoot, wait,/oad]), cannot be derived using SLDNF-resolution since 
--.ab(alive,shoot,[wait,Joad}) cannot be established by means of negation as failure. In fact, it is easy 
to prove the converse by exhibiting an SLDNF-refutation of 
YSP U { +--Jiolds(alive, [shoot, wait, load])}. 

5.3. Temporal reasoning using acyclic programs 
How general are the considerations concerning the Yale Shooting Problem? It is an instance of a 
problem in temporal reasoning and it is by no means clear that our proposed solution also applies to 
other problems of a similar kind. In this subsection we exhibit a large class of problems in temporal 
reasoning which can be solved by analogous means. 

Let us adopt the notation used in the previous subsection. In case of a temporal reasoning we can 
naturally identify the following four types of statements. 
(1) In some set of situations a certain fact holds unconditionally. Each such statement can be 

represented by an unconditional clause 

holds(j,t) +-

for some fixed fact represented by a constant f and a term t (possibly containing variables) 
representing a set of situations. 

(2) In a certain situation a certain fact holds provided some other fact holds in a previous situation. 
Each such statement can be represented by a clause 

holds(f, [ejs]) +- holds(f',s) 

for some facts f,f', event e and situations. 
(3) In a given situation a certain event affects certain facts unconditionally. Each such statement can 

be represented by an unconditional clause 

ab(j,e,s) +-

for some fact/, event e and situations. 
(4) In a given situation a certain event affects a certain fact provided some other fact holds in this 

situation. Each such statement can be represented by a clause 

ab(f,e,s) +- holds(f',s) 

for some facts f j', event e and a situations. 
Denote clause (e) of the program YSP by IA (for inertia axiom). The following observation is cru­

cial. 

LEMMA 5 .2. Let P be a program consisting of clauses of the form ( 1)-(4). Then P U {IA } is acyclic. 

PROOF. We can use here the same level mapping as the one used for the general program YSP, i.e., 

lholds(t,t')I = 21 (t'), 

lab(t,t',t")I = 21(t")+ 1 

where /(t)=O if t is a constant, and /([t 1 jt2])=1+/(t2) otherwise. It is easy to check that PU{/A} is 
acyclic w.r.t. I I- D 

This lemma allows us to apply our theory of acyclic programs to Of!.Y temporal reasoning problem 
which can be described by means of statements (1)-(4). Thus any such problem naturally yields a 
model which can be viewed as a solution to the problem. This model - the perfect Herbrand model of 
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the corresponding acyclic program PU {IA} - can be characterized in a number of equivalent ways, 
both semantically and proof theoretically. 

Moreover, by virtue of Theorem 4.4, for a large number of questions, namely those which can be 
expressed as bounded and non-floundering goals, we can use SLDNF-resolution to compute the 
desired answers. The level mapping I I exhibited in the proof of Lemma 5.2 permits a simple charac­
terization of bounded goals: a goal is bounded w.r.t. I I if and only if the last argument in each of its 
literals is a list of fixed length. This amounts to saying that a goal is bounded w.r.t. I I if and only if 
all its literals refer to situations that are bounded in time. In contrast, we do not see a simple charac­
terization of non-floundering goals. 

Since SLDNF-derivations always terminate for non-floundering and bounded goals and acyclic pro­
grams, we can also use SLDNF-resolution (or PROLOG) to efI"ectively compute all answers to such 
goals. 
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