4

Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

J.T. Tromp

More computations on Gauss' lattice point problem

Computer Science/Department of Algorithmics & Architecture Report CS-R9017 May

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
1946, as a nonprofit institution aiming at the promotion of mathematics, com-
puter science, and their applications. It is sponsored by the Dutch Govern-
ment through the Netherlands Organization for the Advancement of Research
(N.W.0O)).

Copyright © Stichting Mathematisch Centrum, Amsterdam

More Computations on Gauss’ Lattice Point Problem

J.T. Tromp
Centre for Mathematics and Computer Science (CWI)
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
Email: tromp@cwi.nl

May 22, 1990

Abstract

We present a new method for counting the number of lattice points within increasingly larger
circles, and use it to study the difference between these numbers and the area within the circles.

1985 Mathematics Subject Classification: 11P21.

CR Categories: G.2.1.

Keywords and Phrases: Lattice points, circle, highly composite, error function.
Note: This paper will be submitted for publication elsewhere.

1 Introduction

Recently, van de Lune and Wattel [7] studied the asymptotic behaviour of the function P : R2? —
IN, defined as

P(t) = |{(z,9) € Z° : 2* +4* < t}].
If we denote by D(r) the closed circular disc with center (0,0) and radius 7, then P(t) is the number

of lattice points in D(v/t).
Furthermore, if we denote by L(r) the union of the square regions

1 1 1 1
R(z,y) = [z — 3=t 5] x[y— 3yt 5],

where (z,y) ranges over all lattice points in D(r), then P(t) equals the area of L(V/t). (L(r) is what
D(r) might look like on the bitmapped display of a computer, the R(z,y) being single pixels.)

Note that L(+/Z) contains the disc D(v/t—+/1/2), while being contained in the disc D(vt+4/1/2)
(see Figure 1). This yields

7r(t+%—\/2_t)$P(t)§7r(t+%+\/§).

Figure 1: L(v/7) and D(/7 + p) for p = 0,+4/1/2.

Report CS-R9017 1
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Thus P(t) can be approximated by the area of a disc with radius r = Vt, which is 7r? = =t.
This leads us to the definition of the error function E : IRZ° — IR as

E(t) = Area(L(Vt)) — Area(D(Vt)) = P(t) — =t.
In the early 1800’s Gauss [1, 2] showed, by the simple geometric argument above, that
E(t) = O(t}).

In general we can ask for the infimum of all a’s satisfying

E(t) = O(t?).
Denoting this infimum by 6, we have that
1 7
-<6< —.
4~ b< 22

The lower bound was shown in 1915 by Landau [5], and, independently, by Hardy [3], while the upper
bound was obtained in 1988 by Iwaniec and Mozzochi [6]. The value of 1/4 cannot be achieved by
any of the above a’s, as in 1916, Hardy [4] showed that

E(t) = Q(t¥ (logt)).

For more historical data and further references the reader is invited to consult [7].

2 The brute force approach

The most obvious way of getting an impression of the behaviour of P(t) and hence E(t), is to
compute these functions for large ranges of t. In the past, many of these attempts have suffered
from

e lack of computing power, (the very first computations had to be done by hand)
e inefficient algorithms, and
o lack of completeness, i.e. considering only selected values of ¢.

In [7] van de Lune and Wattel have addressed these problems and their systematic computations
(for ¢t up to 6-10'?) led them to the conjecture that
E(t) = O(t% logt).

The aim of this paper is to extend the computations described in [7] using an improved method
for counting lattice points in circles. This method can also be applied to curves other than circles.

3 Counting lattice points

We can write
[t]

P(t) =) p(r),
=0
where
p(r) = {(z,y) € Z° : 2 + y* =r}|.

Our method consists of computing the 27 + 1 values p(r?),...,p((r + 1) — 1) in a single “pass”.
A pass starts at the point (r,0) and goes up, visiting lattice points between the circles of radius

r and 7 + 1, until it crosses the line z = y. More precisely, the pass visits the points (z,y) with
0 <y <zandr?<z?+y? < (r+1)2% which accounts for approximately one-eighth of all points
between the two circles. Using an array of 2r 4+ 1 counters ¢[0],...,c[2r], initialized to zero, we add
8 to the counter c[z? + y? — r?] upon visiting (z,y). (In the special case that y = 0 (x-axis) or
z = y (diagonal), we only add 4.) Simple arithmetic shows that after (z,y), the next point to be
visited is either (z,y + 1), (z — 1,y) or (z — 1,y + 1). The corresponding increments of the index
d=x2+y%?—r%2are2y+1, —2z + 1 or 2y — 2z + 2 respectively.

By also summing those y for which we have decreased z in the last step, we obtain the number
of lattice points in the region below the radius-r circle and bounded by the z-axis and the vertical
line z = r/+/2. From this it is easy to compute the value of P(r — 1), the number of lattice points
strictly within the circle of radius 7.

This method is a big win over previous ones, in which one pass along the circle segment was
made for every value of t, requiring 27 + 1 passes to compute P(t) for all 72 < t < (r+1)2. It follows
that the speedup equals the size of the diameter of the circles considered.

For the purpose of estimating the order of growth of E(t), only those ¢ for which E(t) achieves
a new best extreme (larger in absolute value than all previous extremes) are of interest. In [7] this
was exploited by observing that, since P(t) is nondecreasing, the slope of E(t) = P(t) — nt is no
less than —7. Hence, given a computed FE(t), it takes a certain number of t-steps before E(t) can
become negative enough to beat the previously found best infimum. E.g., if we look for the infima
of E, which at some t > 10'? is positive, then the next 2900 t’s can be safely skipped because we
cannot improve on the negative extreme

E(914697101156—) ~ —9186.57 < 29007.

A few remarks on notation are in order here. For n € IN, we use E(n—) to denote lim1, E(t),
and similarly, E(n+) to denote lim¢j, E(t). Actually, E(n+) = E(n) because we defined P(n) to
be right-continuous, but we prefer the symmetrical notation with a plus or minus sign, so as not
to depend on the choice of continuity. Note that the infima of E are of the form E(n—), while the
suprema are of the form E(n+).

The “skipping” technique can also be used to locate best suprema, except that the scan of a
given range should proceed backwards.

It turns out that the speedup achieved by skipping, at some point, is about equal to 1/ times
the best extreme up to that point, which is still significantly less than a speedup equal to the size
of the diameter. In fact, the first is roughly of the order ti, whereas the second is of the order t3.
Hence, our method improves on the skipping method as much as the latter does on plain evaluation.
The only drawback of our method is the excessive use of memory. Fortunately, it is possible to
exchange memory for either speed or accuracy.

If there is not enough memory to store all 2r + 1 counters, but say, only one k-th of that, then

we may proceed by subdividing the range 72,...,(r + 1)2 — 1 into k pieces, and making k passes
instead of one. In this way, we lose a factor k in speed.
We can also trade memory for accuracy by merging k consecutive counters c[ik],...,c[(i+1)k—1]

into one new counter C[i]. Instead of adding 8 to c[d], we add 8 to C[d div k]. The resulting
inaccuracy is made explicit in the equation

=gt L]
> Cll< P <Y Clil

For the extremes of E(t) this may lead to an inaccuracy of k — 1 in the value of ¢ where the
extreme occurs, and an additional inaccuracy of (k — 1)« in the value of the extreme. We may use
a memory friendly version of the procedure to locate likely best extremes (which occur with a very
low frequency) and filter these through an exact version.

We close this section by considering the merits of our method for more general curves f(z,y) = t,
with f(Z?) C IN. We can visit all lattice points in the region between two curves f(z,y) = n and

f(z,y) = n' to obtain values of the function
F(t) = {(z,y) € Z* : f(z,y) < t}|

for all n < t < n'. The efficiency now depends on the ratio between n’ —n and the area between the
two curves. The circle is a prime candidate for our method since it combines a small constant ratio
(2t : 2tw/8 = 1: w/8) with a very simple scheme for visiting lattice points.

4 The program

Appendix A gives a program in the language C embodying the procedure outlined above. Since
the program is required to handle very large values and still be efficient, the sizes of the variables
have been chosen very carefully. In order not to hurt performance, floating point arithmetic is
avoided whenever possible. Fortunately all the computations on P(t) can be done with integers.
Furthermore, since no variable needs to take on negative values, we declare them as unsigned.
Most integers are declared of type long, which should be at least 32 bits wide, giving a range
of about 0,...,4.3 - 10°. This suffices for the radius, the coordinates, as well as for the index into
the array of counters. However, 32 bits do not suffice for counting the lattice points below the
circle-segment that we visit. We choose to represent this in two separate long’s, the most significant
part sumh and the least significant part suml. Of course we have to do the carries ourselves (see the
comment). A single variable sum can be used on machines supporting integers of at least 48 bits.
Because the array of counts can be very large, we need to make a single count as small as possible.
To this end we will analyze for which values of ¢ we can compute P(t) using 16-bit counters (with

range 0,...,65535). It is well known that
p(n) = {(z,y) € Z* : 2* + y* = n} = 4(di(n) - ds(n)),

where d;(n) and d3(n) are the number of divisors of n of the form 4k + 1 and 4k + 3, respectively.
If the prime factorization of n is p{* - - - p;*, we thus have

p(n) < 4di(n) < 4(e1 +1)---(ex +1).

Call a number highly d; -composite if it has more divisors of the form 4k+1 than all of its predecessors
(see also [8]). Table 1 shows a computer-generated list of all highly di-composite numbers with
n < 10'8. From the last entry we infer that a counter with a range of 0,...,4 - 1536 suffices for all
these n. The largest highly d;-composite number below 2.7 - 1022 is

5%13217.29-37-41-53-61-73-89-97-101,

with
p(n) = 4(4+ 1)(2 + 1)2'° = 61440 < 2'°.

Hence, 16 bits suffice for all practical purposes.

The main part of the progam, where the counts are computed, has been commented. Note
that the variables x and y do not hold the coordinates themselves. Letting x hold 2z + 1 and y
hold 2y — 1 proved to be the most convenient for making changes to d and sum. The visit ends
when after decrementing ¢ we find that (z,z) is below the radius-r circle. This will happen when
z = |[(r — 1)/V2]. If we have visited the points (z + 1,z + 1) and/or (z + 1,z + 2), then the
corresponding counters are properly adjusted.

Having computed the array of counts, the program proceeds to find new extremes of the error
function. This part of the program requires the use of floating point arithmetic since the computa-
tions involve .

p(n)/4 n

1 1]=1

2 5| =51

3 25 | =52

4 65 | =5'13!

6 325 | = 5%13!

8 1105 | = 5113'17!

9 4225 | = 52132

12 5525 | = 52131171

16 27625 | = 53131171

18 71825 | = 52132171

20 138125 | = 5131171

24 160225 | = 5213117129!

32 801125 | = 5313117129!

36 2082925 | = 52132171291

40 4005625 | = 5%13117129!

48 5928325 | = 5213117129137!

64 29641625 | = 5131171291371

72 77068225 | = 5213217129371

80 148208125 | = 5%*13117129!37!

96 243061325 | = 52131171291371411

128 1215306625 | = 5313117129137141!

144 3159797225 | = 52132171291371411

160 6076533125 | = 54131171291371411

192 12882250225 | = 5213117129137141153!

216 53716552825 | = 5213217229137141!

256 64411251125 | = 53131171291371411531

288 167469252925 | = 5213217'29'37141153!

320 322056255625 | = 5%131171291371411531

384 785817263725 | = 5213'17129'37141153161!
432 2846977299725 | = 5213217229137141153!

512 3929086318625 | = 5313117129137141'53161!
576 10215624428425 | = 5213217129137141'531611
640 19645431593125 | = 5%131171291371411531611!
768 51078122142125 | = 5313217129137141153161!
864 173665615283225 | = 5213217229137141153161!
960 255390610710625 | = 5413217129137141153161!
1024 286823301259625 | = 53131171291371411531611731
1152 745740583275025 | = 52132171291371411531611731
1280 | 1434116506298125 | = 5%131171291371411531611731
1536 | 3728702916375125 | = 53132171291371411531611731
1728 | 12677589915675425 | = 5213217229137141153161173!

Table 1: Highly d;-composite numbers.

'l
40 + 4

-80 + —

-100 | 1 1 1
0 10000 20000 30000 40000 50000 60000 70000

Figure 2: the first 64 best extremes of E(t).

5 Computational results

We have run our program on two workstations (a DecStation 3100 and a SparcStation 1, yielding
similar performance) over a period of some two months (mostly idle time). This resulted in a table
of all best extremes in the range 0 < t < 2.29 - 10'2. Of the 1391 extremes in the table, 577 are
positive, while the remaining 816 are negative. We represent this data in the following plots.

The first 64 best extremes are shown in Figure 2, which is a close up of Figure 3, showing all 1391
we found. Notice the similarity in shape, i.e. the behaviour of the function E(t) close to the origin
(0,...,6-10*) is similar to that in a much wider range (0,...,2-10'?). By plotting our data relative
to the function ¢ log ¢, we can more clearly examine the order of growth of E(t). As Figure 4 shows,
this function is quite a sharp bound on E(t) for the given range.

We finally examine the non-uniformity in the distribution of fractional radii at which the best
extremes occur, as observed in [7]. To this end, we have plotted the points with x-coordinates as
t — |t] (Figure 5). We see positive extremes occurring roughly between .2 and .5, while the negative
extremes are preponderantly concentrated between .9 and .0. These phenomena, if persistent, have
yet to be accounted for.

6 Conclusion

The vast amounts of memory present on computers nowadays can be exploited to significantly speed
up the counting of lattice points within circles (and other curves). Its application to Gauss’ lattice
point problem has not shown any deviations from the results put forward in van de Lune and
Wattel [7]. Our computations thus provide additional support for their conjecture that

E(t) = O(t% logt).

Furthermore, no exceptions were found to their observations regarding the distribution of the frac-
tional parts of radii at which best extremes occur.

8000 T T | T
6000 .
4000 .
2000 ’M ’ .
0 |
-2000 ~
-4000 .
-6000 - .
-8000 - -
-10000 - .
-12000 : . : .
0 Se+11 le+12 1.5e+12 2e+12 2.5e+12

Figure 3: E(t).

U L AL B LB SR e e a2 e e T LS L1 S e R AL R R e R
1 1 s ™ T il T T

0.4 - -

-0.4 =]

1000 100001000001e+061e+071e+081e+091e+101e+111e+121e+13

Figure 4: E(t)/(1 + t* logt).

0.8
0.6
0.4
0.2

T

T

T

T

-0.2
-0.4
-0.6 -
-0.8

T

1 1 I | I
0 0.2 0.4 0.6 0.8

—

Figure 5: E(t)/(1+ t*logt)) as a function of t — [¢].

A The program

#define PI 3.14159265358979323846
#define TW032 4294967296.0
#define SQR(x) ((double)x * (double)x)

typedef unsigned short ushort;

typedef

unsigned long ulong;

char *calloc();

void
main(argc,argv)
int argc;

char *argv[];

{

register ulong d,x,y,sumh,suml,r2;
register ushort *count;

ulong r,radius,stop;

double inf,max,error,sqrr;

if (argc < 4 || argec > 5) {

printf("usage: %s radius inf max [range]\n",argv[0]);

exit(0);
}
radius =
stop =
count =
if (count == 0) {
printf("conserve memory\n");
exit(0);

atol(argv[1]);

}

inf = atof(argv[2]);

max = atof(argv[3]);

for (r = radius; r < stop; r++) {

sumh = suml = 0;
count [0] = 4;

x=(r2=1%2) +1;

do count[d] += 8;

vhile ((d += (y ;= 2)) <= r2);

if (d -= (x -= 2)) >=y) {
d -=y;
y =2

}

if (y >= x)
break;

sumh += (suml += y) < y;

radius + (argc == 5 ? atol(argv[4])
(ushort *)calloc(2 * stop - 1, sizeof(ushort));

/*
/*
/*
/*
/*

/*
/*

/*

/*
/*

s 1)

visit (r,0) */

At coordinates (X,Y) we have */
x=2%X + 1 and y = 2*Y - 1 %/
d(r,1) =1 */

visit circle segment */

go up */
go left */

and possibly down */

we crossed the diagonal */
DIY carry */

d += x; /* go right */

if (y > x) { /* if above diagonal */

if (d <= r2) /* and in range */

count [d] -= 8; /* then undo last count */

d -=y; /* go down */

}
/* now we are on diagonal */

if (d <= r2) /* if in range */

count [d] -= 4; /* count only 4 times */

sqrr = SQR(r);
error = SQR(x) + 4 * (TW032 * sumh + suml) - PI * sqrr;

for (d = 0; d <= r2; count[d++] = 0) {
if (x = count[d]) {
if (error < inf)
printf("%12.01f- %201f\n", sqrr + 4, inf = error);
if ((error += (double)x) > max)

printf("%12.01f+ %201f\n", sqrr + d, max = error);
}
error -= PI;
}
}
printf("%1d %1f %1f\n", stop, inf, max);
}
References

[1] C.F. Gauss, De nezu inter multitudinem classium, in quas formae binariae secundi gradus dis-
tribuuntur, earumque determinantem, Werke (1863), Vol. 2, pp. 269-291.

[2] C.F. Gauss, Disquisitiones arithmeticae, (German edition by H. Maser), 1886, p. 657.

[3] G.H. Hardy, On the ezpression of a number as the sum of two squares, Quart. J. Math., Oxford
Ser. 46 (1915) pp. 263-283. Collected Papers, Vol. 2 (1967) pp. 243-283.

[4] G.H. Hardy, On Dirichlet’s divisor problem, Proc. London Math. Soc. 15 (1916) pp. 1-25.
[5] E. Landau, Uber die Gitterpunkte in einem Kreise (II), Gottinger Nachr. (1915) pp. 161-171.

[6] H. Iwaniec, C.J. Mozzochi, On the divisor and circle problems, J. of Number Th. 29 (1988) pp.
60-93.

[7] J. van de Lune, E. Wattel, Systematic computations on Gauss’ lattice point problem, CWI tech-
nical report AM-R90-08, 1990.

(8] S. Ramanujan, Highly Composite Numbers, Proc. London. Math. Soc. 2, XIV (1915), pp. 347-
409.

10

ONTYANGEN 3 Jutl 199a

G

