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We consider the following parallel machine scheduling problem. Each of nindependent jobs has to
be scheduled on one of m unrelated parallel machines. The processing of job J; on machine M,
requires a positive processing time p;;. The objective is to find an assignment of jobs to machines so
as to minimize the maximum job completion time. The objective of this paper is to design practical
algorithms for this MP-hard problem. We present optimization and approximation algorithms, in
which the notion of duality plays a key role. The optimization algorithm is capable of solving quite
large problems within reasonable time limits. The approximation algorithm is based upon a novel
concept for iterative local search, in which the search direction is guided by dual multipliers.
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1. INTRODUCTION

We consider the following machine scheduling problem. There are m parallel machines avail-
able for processing n independent jobs. Each of these machines can handle at most one job at a
time. The processing of job J; (j = 1,. . ., n) on machine M; (i = 1, ...,m) requires a positive
integral processing time p;;. Each job has to be scheduled on one of the machines and has to be
processed without interruption. A schedule is an assignment of each of the jobs to exactly one
machine. The length of the schedule, also referred to as the makespan, is the maximum job
completion time, which is equal to the maximum machine completion time. The objective is to
find a schedule of minimum length.

This problem may arise in the context of computer system scheduling, where the machines
are processors of a distributed computing environment with varying capabilities across the
tasks. Another application is found in the area of flexible manufacturing systems, in which a
cluster of parallel machines form a single or bottleneck stage in the production process.

In case p;; = p; for each J; and M;, the machines are said to be identical. If p;; = p;/ s, where
s; denotes the speed of machine M;, the machines are uniform. In the general case, the machines
are unrelated. Following the notation of Graham, Lawler, Lenstra, and Rinnooy Kan (1979),
we refer to these problems as P | | Cpyax; Q | | Cmax> and R | | C pax, TESpECtively.

Since P2| | C pax is already NP-hard, there does not exist a polynomial-time algorithm for
R | | Crax unless 9 = 9F. The traditional problem is to balance solution quality with running
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time: an optimal solution may only be found at the expense of an exponential amount of com-
putation time, while a polynomial-time algorithm cannot be guaranteed to produce the optimal
solution.

Two attempts have been made to solve R | | Cpax to optimality. Stern (1976) presents a
branch-and-bound algorithm, and Horowitz and Sahni (1976) develop a dynamic program-
ming procedure. In both cases, no computational results are reported.

Much research effort has been invested in the development of approximation algorithms
with a guaranteed accuracy. An approximation algorithm that never delivers a schedule length
of more than p times the optimal length is referred to as a p-approximation algorithm. In other
words, the approximation algorithm has worst-case performance ratio p. Ibarra and Kim (1977)
and Davis and Jaffe (1981) propose various approximation algorithms with worst-case perfor-
mance ratios that increase with the number of machines. For fixed m (i.e., the number of
machines is specified as part of the problem type and not of the problem instance), Horowitz
and Sahni (1976) give a fully polynomial approximation scheme, which has time and space
complexity O (nm(nm/(p—1))" "~ h A polynomial approximation scheme is a family of algo-
rithms that contains for any p > 1 a p-approximation algorithm with a running time that is
bounded by a polynomial in the problem size; this running time may depend on p. A family of
algorithms is called a fully polynomial approximation scheme if it contains for any p>1 a p-
approximation algorithm for which the running time is bounded by a polynomial in the prob-
lem sizeas wellasin 1/(p—1).

Potts (1985) presents a 2-approximation algorithm. The running time of this algorithm is
polynomial only for fixed m, but the space required is polynomial in m. For the two-machine
case, Potts shows that the worst-case ratio can even be improved to (1+ V/5)/2. The algorithm
is a two-phase procedure, in which linear programming is used in the first phase to assign at
least n —m +1 jobs and complete enumeration is applied in the second phase to schedule the
at most m — 1 remaining jobs. Lenstra, Shmoys, and Tardos (1987) use Potts’ algorithm as the
basis for a 2-approximation algorithm that is polynomial in m. They also present a polynomial
approximation scheme for a fixed number of machines, where the space required is bounded
by a polynomial in the problem size and log(1/ (p— 1)). In addition, they prove a notable nega-
tive result: unless ¥ = NP, there exists no polynomial p-approximation algorithm for any
pP<7.

There are two papers that consider R | | Cpmax from an empirical point of view. De and Mor-
ton (1981) present several hybrid list scheduling algorithms and perform a large-scale compu-
tational testing. From our experience, however, we found that their algorithms display a signi-
ficant proportional deviation from the optimal solution. In the spirit of Potts’ 2-approxiation
algorithm, Hariri and Potts (1990) propose several two-phase heuristics that use linear pro-
gramming in the first phase to schedule at least n —m +1 jobs and another heuristic to
schedule the remaining jobs. They also consider several constructive heuristics that are used in
conjunction with iterative local improvement procedures.

In spite of the considerable attention that the R | | C ¢ problem has received, there is still a
lack of practical algorithms and computational insight. This paper addresses this issue. We are
concerned with methods that solve R | | C,y satisfactorily from a practical standpoint. We
develop a branch-and-bound algorithm that is capable of solving relatively large problems to
optimality within reasonable time limits. In addition, we propose a new approximation
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algorithm that produces outstanding results. Both algorithms make extensive use of the notion
of duality in min-max integer linear programming. Furthermore, we will discuss the relation-
ships between these duality-based algorithms and the linear programming based approxima-
tion algorithm of Potts for the case m = 2.

The organization of this paper is as follows. In Section 2, we give a mathematical program-
ming formulation of the R | | Cpax problem and we examine the properties of its dual. In Sec-
tion 3, we discuss the ingredients of the approximation algorithm, which is based upon the
dual. A complete description of the branch-and-bound algorithm is given in Section 4, while
some computational results are presented in Section 5. Conclusions are found in Section 6.

2. MINIMIZING MAKESPAN AND ITS DUAL PROBLEM

The 9NP-hardness of the R | | Cmax problem justifies and motivates the development of approx-
imative and enumerative algorithms. The concern of this section is to compute a lower bound,
necessary to apply branch-and-bound, from the dual of the linear programming formulation of
R || Cmax- In addition, we will show that the lower bound computation can almost be
integrated with the search for a good approximate solution.

Evidently, there is an optimal solution in which the jobs are processed without any inserted
idle time. In addition, the ordering of the jobs on the respective machines is irrelevant for the
length of the schedule. Therefore, we are actually looking for an assignment of jobs to
machines. Accordingly, we introduce assignment variables x;; ( = 1,...,m, j = 1,...,n) that
take the value 1 if J; is scheduled on M;, and 0 otherwise. If we let C; denote the completion
time of machine M;, we have C; = 2 ;-'z 1Pijxij- The maximum value of the machine completion
times, denoted by C .y, is then the length of the schedule.

The R | | Cmax problem, hereafter referred to as problem P, is to determine values x;; that
minimize :

Cmax ®
subject to
n
ZPijxij<Cmax’ i=1,...,m, M
j=1
m
> xi =1, j=1...,n, 2
i=1
x,-jE{O,l}, i=L....mj=1...,n &))

Conditions (1) in this formulation ensure that the completion time of each machine is less than
or equal to the length of the schedule, while conditions (2) guarantec that each job is com-
pletely assigned. Conditions (3) ensure that each job is scheduled on exactly one machine,
thereby precluding preemption.

In the remainder of the paper v (-) denotes the optimal value for problem -.

A common strategy for lower bound computation is to identify a set of hard constraints, the
relaxation of which makes the problem more agreeable. For instance, replacing the integrality
constraints (3) with the weaker conditions x;; =0 @=1...,m, j=1,...,n) yields the linear
programming relaxation P, which is efficiently solvable. We choose to apply the more involved
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technique of surrogate relaxation. The central idea is to replace a set of troublesome constraints
by a single condition that is a weighted aggregation of these constraints. In our application, we
aggregate the constraints (1). We therefore introduce a vector of surrogate multipliers

A=, ...,A,)=0withA; >0 foratleastonei (i = 1,...,m), and replace the m conditions
with

m n m

2 Ai 2 p,]xy < Cmax 2 Ai, (la)

m n

The surrogate relaxation problem, hereafter referred to as problem S, is then to determine
v(S)), which is the minimum of

m n m

2 2 Apixii I N Sy
i=lj=1 i=1

subject to

m .

inj=1, j=1...,n, )
i=1

x,-jE{O,l}, i=L....mj=1...,n 3

PROPOSITION 1. Problem S, provides a lower bound on v(P), since any solution that satisfies
(1) also satisfies (1b) (but not necessarily vice versa). Therefore, we have that v (S, ) < v(P) for
any vector A = 0.

PROPOSITION 2. Problem S is solvable in O (nm) time by assigning each job J; to the machine
M), for which Ayp; = min; <; < m Apij-

Note that v(S)) = 2]=; min; <; < m Ap;;/ Z7=1A;. We refer to Ajp;; as the dual processing
time of J; on M;. The conditions (3) in the surrogate relaxation problem can be replaced with
the conditions x;j=0( = 1,..,m, j=1,...,n). Problem S, is said to have the integrality pro-
perty, since it can be solved as a linear programming problem.

PROPOSITION 3. Any solution to S,, for any A = 0, is also a feasible solution to the primal prob-
lem P. This is true, since constraints (2) enforce the assignment of each job to exactly one
machine. The approximate solution value is given by max; <; <, Ci(\), where C;(A) denotes
the completion time of M; in the solution to problem S, .

PROPOSITION 4. The objective value v(S,) is a convex combination of the machine completion
times. This implies that min; < ; <, C;(A) <v(S)) < max) <; < m Ci(N).

Consider the following example where eight jobs need to be scheduled on three machines



with the processing times given in Table 1. Let A = (1,1, 1) be the vector of surrogate multi-

Jy Jo Jz Jg Js Je¢ Jq; T
M, 6 3 10 12 11 14 8
M; | 10 o 15 6 6 11 14
Mi; | 11 9 14 14 o« 10 10

O 3 O\

TABLE 1. Processing time matrix.

pliers. The multipliers are such that S, is solved by scheduling each job on the machine with
the smallest processing time. This produces the schedule as represented by the Gantt-chart of
Figure 1. The initial choice A = (1,1, 1) results in an elementary lower bound: it is the sum of
the minimum processing times divided by the number of machines. Therefore, the lower bound
is v(S») = 18, and the length of the schedule is 33.

My [T 2] T | 77 [ 75 ]

My [(Ta [ 75 ]
M; Je :
10 720 30 33

FIGURE 1. Gantt-chart for A = (1,1,1).

Naturally, we have a particular interest in finding the vector of surrogate multipliers that
produces the largest lower bound. In fact, this is the surrogate dual problem, hereafter referred
to as problem S, and it is defined as '

v(S) = max{v(Sy) |[A=0}. )

PROPOSITION 5. Since S, possesses the integrality property, we have v(P) = v(S): the surro-
gate dual yields the same lower bound as the linear programming relaxation P (Greenberg and
Pierskalla, 1970, Karwan and Rardin, 1979).

This result can also be derived in the following direct way. Geoffrion (1974) points out that it
is feasible to take the dual of a linear programming problem with respect to only a portion of
the constraints. We assert that doing so for problem P with respect to conditions (1) yields
exactly the dual problem S, since the conditions (3) in problem S, can be replaced with x;; =0
G=1....mj=1,...,n).

PrOPOSITION 6. The surrogate dual problem max{v(S,) | A= 0} is a convex programming
problem, since v (S, ) is a linear non-differentiable concave function in A (see Fisher, 1981).

Proposition 6 implies that any local optimum to problem S is also global. In addition, we know
that the optimum is found in a point of non-differentiability. Hence, problem S can be solved
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by an ascent direction technique. This is an iterative procedure that requires a direction and a
step size by which the current vector A should be perturbed in order to improve on the value
v(S). Since v(S) is a concave function in A, we may restrict ourselves to perturbing one com-
ponent of A per iteration. If no such direction can be found, then we have identified an optimal
solution. _

Solving problem S instead of problem P is motivated by two arguments. First, the ascent
direction technique we propose generates a series of vectors of multipliers, and each of them
has an associated lower bound. As we will see, the procedure requires only O (mn) time per
iteration. Second, each vector induces a feasible primal solution. It turns out that the quest of
finding the vector of multipliers that solves problem S concurs with finding vectors that pro-
vide satisfactory approximate solutions.

We define machine M;, i =1,...,n, to be overloaded in the solution of problem S, if
Ci(N) > v(S)). Conversely, machine M; is underloaded if C;(\) <v(S}). In the remainder, the
superscript ¢ counts the number of iterations in the ascent direction procedure. For brevity,
however, we denote C;(\") by C}. The basis of the ascent direction procedure is constituted by
the next theorem.

THEOREM 1. Consider problem Sy and its solution. Identify a machine M, with Cj, > v(Sy). Let
U, be the set of jobs scheduled on M, in the optimal solution of problem Sy,
Ay =Min) <i<m ighs, € v;QP/Prj —AL)  and  NTT=Q4, 0 A+ AL A I
A >0, then v(S§T1) > v (S%).

PROOF. The value A, is the smallest perturbation of Aj such that some job J; currently
scheduled on the overloaded machine M, can equally well be scheduled on some other
machine M,. In view of Proposition 2, this implies that (A}, + A,)py; = Ajp;. In addition, we
have C}*! = C, —pj; and C;*! = C% + p,;. Hence, we have

m m
SATICT A ANCE ) TAUCE ) T S NC
vs§H == - = hizeh
m m
> Al Ay + A
i =1 i=1
m
> AiCi
m A,Ch + }_:—;,,1—_ 2 Aj m
A, Ch + 2 AiCS _Z A =l Ay + _2 ADv(SK)
= ‘;] = '—r]n > t_lm =V(Stx)’
A+ A A+ F A A+ XA

i=1 i=1 i=1
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THEOREM 2. Consider problem Sy and its solution. Identify a machine My, with C}, <v(Sy). Let
U;, be the set of jobs not scheduled on M, in the optimal solution of problem Sy,
Ay =i < < m;istn, s, € U, NP3 /prj — M), and NP =4, A+ A, LA I
A, <O, then v(S§T1) > v (S%).

PROOF. Analogous to the proof of Theorem 1. [

The iterative application of Theorem 1 and Theorem 2 is an ascent direction procedure to solve
problem (S). Evidently, such a procedure solves problem (S), since it always identifies an
ascent direction and a corresponding step size, if one exists.

Given an initial multiplier A, it takes O (mn) time to solve problem Sy:. If we create for each
machine M; a list with elements A;p;; (j = 1,...,n), sorted in non-decreasing order, then it
takes only O (mn) time to compute an ascent direction, its associated step size, and the solution
to problem S):. The relevant lists are updated in only constant time. The ascent direction pro-
cedure is not a polynomial-time algorithm, since there is no guarantee that the number of itera-
tions is polynomially bounded.

Let us reconsider our example and the solution of Sy with Al =(1,1,1). Machine M, has
here maximum completion time. According to Theorem 1, A} has to be increased by A, = <,
which makes it possible to move Jg to M. Doing so, we obtain a schedule with makespan 27
and v(Sx:) = 19.1 (see Figure 2). Machine M has still the largest overload; if we increase A,

M| J, [Ja] J3 [ J, |

My[Ta | Ts [ Js |
My [ Jg | :
10 20 2730

FIGURE 2. Gantt-chart for A = (,1,1).

to <, then we have also the option to schedule J; on M3. Note that for the new value of A job
J g must be executed on M,. The associated schedule has makespan 20 and v (Sys) =19.3 (see
Figure 3). Since all processing times are assumed to be integral, the optimal makespan must be
integral as well. Hence, we have found an optimal primal solution. Note that we have not yet
solved the dual problem; M, is underloaded and a nonzero stepsize can be computed. If we
decrease A, by 5, then J¢ can equally well be scheduled on M;. Accordingly, we get
A = (2,2,1) and v(Sy¢) = 19-%-. This is the optimal vector of multipliers, as it is impossible
to compute a nonzero stepsize: J ¢ can be scheduled both on M, and M3, and J g both on M,
and M. Therefore, the schedule in Figure 3 represents only one of the optimal dual solutions.
At this point, we discuss the relationship with Potts’ 2-approximation algorithm for the case
m = 2. For an arbitrary number of machines, the first step in Potts’ algorithm is to solve prob-
lem P, the linear programming relaxation problem of R | | Cpay. This provides us with an
assignment in which at most m — 1 jobs are split over two or more machines and in which at



M| J, |Jp] J3 ]

Myl Ja [ Js | Js |

My [ g 7] |
0 10 %0 30

FIGURE 3. Gantt-chart for A = (5, 1,1).

least n —m +1 jobs are assigned to exactly one machine. The jobs that have been assigned to
exactly one machine are retained as a partial schedule. The split jobs are assigned so as to
minimize the makespan, given the partial schedule. Since v (P) < v (P), the length of the partial
schedule is no more than v (P). The scheduling of the split jobs proceeds by complete enumera-
tion; this adds at most v(P) to the length of the partial schedule. Hence, the resulting schedule
has a makespan at most twice the optimal makespan. Since P is solvable in polynomial time
and complete enumeration for at most m — 1 split jobs requires O (m™) time, the procedure is
polynomial for fixed m. It is easy to verify that the split jobs in the solution to P correspond to
the jobs in the solution to S for which the minimum dual processing time is attained by more
than one machine. In our example, J ¢ and J; would be the split jobs in the solution to problem
P.

In the case m = 2, the linear programming relaxation is solvable in O (n) time (Gonzalez,
Lawler and Sahni, 1990). Moreover, there is at most one fractional job. The solution generated
by Potts’ algorithm then concurs with the best primal solution found by solving problem S
through the ascent direction procedure. '

3. DUALITY-BASED HEURISTIC SEARCH

The approximation algorithm we propose conveys the idea that a near-optimal dual solution
induces a good primal solution. In that sense, we need to develop a scheme that generates a
series of promising dual multipliers. As seen from the example, the search for such multipliers
might be integrated into the ascent direction method. The ascent direction method as such,
however, is too restrictive for our purpose. From computational experience, it appeared that it
generally solves the dual in only a few iterations. In contrast, we need a scheme that allows us
to browse quickly through various near-optimal solutions for problem S. On that ground, the
approximation algorithm differs on two counts from the ascent direction method. First, we
always select the machine for multiplier adjustment that has the largest load. From a primal
point of view, this choice is easily justified: one of the jobs scheduled on this machine must be
rescheduled in order to lower the completion time that induces the current makespan. Second,
we increase its multiplier more than would be strictly necessary to enforce a change in the
schedule. Let machine M, be such that C}, = Chy,,, where Ch,x = max; <; <,,C! and let U},
denote the set of jobs currently scheduled on M;,. Then we compute

Oy = Min2y <; < m s, € v Aipii /Prj — Ah),

where min2 denotes the second minimum of these values. Note that A, <§,. If we put
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NtL=Q@4,...,A,+8,,...,AL), then we enforce that some J; leaves M, and goes to some
other machine M,, and that another job can equally well be scheduled on M), as on some other
machine. Nonetheless, we keep this second job scheduled on M. The next step is to compute
Ctil. We have no guarantee that the rescheduling of J; induces an improved schedule: we can
have either Cih) <Cl, OF Chot >Chyax. The latter occurs if Ci¥!'= Ch + pg > Chyax.
Hence, the approximation algorithm is equipped with a mechanism that accepts deteriorations
of the makespan. We repeat this process for the machine with the largest load, and store the
best solution on the way. Notice that we must put an upper bound on the number of iterations,
since this procedure does not have any convergence properties. Below we give a stepwise
description of the algorithm, in which maxiter is some prespecified number of maximum itera-
tions and ub is the currently best solution value.

APPROXIMATION ALGORITHM
Step 1. Put A < (1,...,1), £« 1, ub < 0, and solve Sy.

Step 2. Determine M, with C} = Chux. If Cj <ub, put ub< Cj and store the current
schedule. Compute &,, and identify a job J;, and a machine M, such that
AP/ Phic = WD) < < m, ith, J, € Uy NPy / Phy)- Put 1=t + 1.

Step 3. Put C* ! <~ Ch—pue, CoT 1 Ch+pges N1, ..., A, +8, ..., A}), and solve
Sx+1. If t < maxiter, go to Step 2, else stop.

In the remainder, we refer to the approximation algorithm described above as the duality-based
approximation algorithm, and to the particular strategy employed as duality-based heuristic
search. Note that the approximation algorithm applied to the example goes through the same
steps as described in Section 2.

There is a wide variety in heuristic search strategies that are all applicable to the parallel
machine scheduling problem. Most of them have in common that they adjust the current
schedule somewhat to try to improve on its value. Let o be some arbitrary schedule and let o
be the schedule that can be obtained from ¢ by swapping J; and J; (j7k). We then define the
so-called single pairwise interchange neighborhood for o as the set N, that comprises the
schedules o for all j=1,...,n—1, k=j+1,...,n. Suppose M, is such that
Cy(0) = Cpmax(0), where Cy(0) and Cpnax(0) denote the completion time of M, and the max-
imum machine completion time in o, respectively. Let (J;,J;) be a pair of jobs such that J; is
scheduled on M, and J; on some other machine M,, (g5h), for which we have

Cg +Pg]_ng < Cg, and Ch _phj +Phk < Ch'

If we interchange J; and Jj, that is, we put J; on M, and J;, on M, then we reduce the mak-
espan. In other words, we have identified a schedule gj; € N, With Ciax(0k) < Cmax(0)- This
process can be repeated until no further improvement is found. Iterative local improvement pro-
cedures are based upon these concepts. The main danger is to get stuck in a relatively poor
local optimum, from which no escape is possible. The traditional policy to avoid this pitfall is
to use multiple schedules as starting points in order to obtain multiple local minima. Hope-
fully, one of these local minima is then a satisfactory approximate solution. Some refinements
have been developed, among which simulated annealing and tabu search take prominent places.
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Simulated annealing (see e.g. Van Laarhoven and Aarts, 1987) leaves the possibility open to
travel from one local optimum to another. This is achieved by accepting deteriorations of the
objective value with a probability that is a decreasing function of running time. Tabu search
(Glover, 1989, De Werra and Herz, 1989) is much similar to simulated annealing, but provides
a deterministic mechanism to accept deteriorations. The willingness to accept deteriorations
unconditionally marks the duality-based search technique as described above from simulated
annealing, tabu search, and general iterative local improvement schemes.

Anticipating on the implementation and the evaluation of the duality-based approximation
algorithm in Section 5.2, however, we will consider two versions of the algorithm. On the one
hand, we evaluate the duality-based algorithm on its own, and on the other hand we evaluate
the algorithm in conjunction with an iterative local improvement procedure of the type we
described. For the latter case, we only submitted the best solution to the improvement pro-
cedure. It appeared that the duality-based algorithm in conjunction with the iterative local
improvement procedure produced excellent results. Apparently, the duality-based approxima-
tion algorithm succeeds in finding an attractive starting solution, the neighborhood of which
can be further explored by the iterative local improvement procedure.

4. THE BRANCH-AND-BOUND ALGORITHM

The first step in the branch-and-bound algorithm is to solve problem S and to compute the
optimal vector of dual multipliers A" =(A], .. .,A,,) through the ascent direction procedure
described in Section 2. On the way, we store the best approximate primal solution. We also try
to find an improved upper bound through the duality-based approximation algorithm and the
constructive heuristics presented by De and Morton, Ibarra and Kim, and Davis and Jaffe.
The implementation of this process is described in Section 5. The vector A* plays an important
rule in the growth and truncation of the search tree.

4.1. Initial reductions

The size of an instance may be reduced by a simple reduction test, which is common in linear
programming theory. It can be conducted for any vector of multipliers, but success is most
likely for A"

THEOREM 3. If for a given vector of multipliers X = (Ay, . . . ,A,), we have for some J;. and M), that

m
Awpre — miny < < mApi)/ 2 A > UB—v(S))—1,
i=1
where UB is a given upper bound on v (P), then x,; = 0 in any schedule with C oy < UB, if such a
schedule exists.

PRrOOF. Suppose there is a schedule with makespan less than UB, and yet with J; scheduled on
M, Solving the surrogate relaxation problem S, under the additional constraint x;; = 1 gives
the lower bound LB with

n n
}\hphk + . 2 min,- Axpxj ()\hphk - mini)\,-k) + 2 min,- }\,p,j
LB = JZ Ly = J=1 > UB—1,

S S
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which is clearly a contradiction. [J

4.2. The search tree

A node at level k of the search tree corresponds to a partial schedule with a specific assignment
of the jobs J4,...,J;. Each node at level k (k =1,...,n—1) has at most m descendant
nodes: one node for the assignment of job J; .| to machine M;, fori = 1,...,m, respectively.
We note that the jobs and machines have been reindexed in compliance with the branching
rule that we discuss in the next subsection. The algorithm we propose is of the ‘depth-first’
type. We employ an active node search: at each level we choose one node to branch-from,
thereby adding some job to the partial schedule. We backtrack if we reach the bottom of the
tree or if the active node can be discarded on the basis of the lower bound computed or on the
basis of reductions made.

4.3. Branching rule

The dual processing times A Piis (i =1,...,m, j=1,...,n) serve as a guideline to structure
the branch-and-bound tree. Define y; = min2; <; < mAjp; — Min <; < mA;p;j, Where min2
denotes the second minimum of the dual processing times. As Potts and Lenstra et al. pointed
out, it follows from linear programming theory that, in case of the optimal dual multiplier, we
have for at least m —1 jobs that y; = 0; in the dual solution these jobs can equally well be
scheduled on at least two machines. On the other hand, some jobs will have a relatively large
value y;, with 0 < Y; < UB —v(S)— 1. From a dual point of view, a large value ¥, is an indica-
tion for the existence of some optimal primal solution with J i scheduled on the machine with
minimum dual processing time. After all, in view of Theorem 3, there is some value UB that
fixes J; to this machine. In order to enhance the possibility that we find improved values UB
soon, we wish, therefore, to enumerate first the various configurations in which the jobs with a
comparatively large value y; are assigned to their most likely machines. This is obtained if we
reindex the jobs in order of non-decreasing values y;. As a result of our branching rule, the jobs
associated with the upper levels of the search tree are then assigned to their most likely
machines.

In addition, at each level k (k = 1,...,n —1) the descendant nodes are branched from in
order of non-decreasing values A Pik+1 (@ =1,...,m). In this fashion, we obtain the same
effect as above: we first consider the schedules with jobs assigned to machines according to
minimum dual processing times.

By sorting jobs and machines with the help of the dual processing times we try to reduce the
search as much as possible. Suppose we find an improved upper bound which entails addi-
tional reductions. If we have created the tree as indicated, then the most newly fathomed nodes
have not been considered yet.

Note that the first complete schedule encountered in the tree solves the dual problem. Furth-
ermore, implicit enumeration of the bottom m —1 levels of the tree concurs with Potts’ 2-
approximation algorithm. The n —m +1 jobs with y; > 0 are assigned according to the linear
programming solution (i.e., according to minimum dual processing times), and the remaining
configurations are enumerated.
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4.4.Fathoming

Here we describe in detail the various rules by which nodes can be fathomed. Surprisingly
enough, it appeared from computational experience that it is not worthwile to recompute the
lower bound v (S) in each node of the tree. Rather, we use the optimal vector of dual multipliers
1, ...,A,,) from the root node for lower bound computation in the descendant nodes. Sup-
pose the values z;; @i=1,...,mj=1,...,k)record the current partial schedule at level k of
the tree. That is, z;; = 1 if J; has been assigned to M;, and z;; = 0 otherwise. Let v(Sy, k)
denote the lower bound value for problem Sy subject to x; = z; for i=1,...,m,
j =1,...,k. Then we have

k m m
v(Sx,k) = v(Sy) + D (X Aipyziy — mini<i<mAipi)) 2 Ai
j=1i=1 i=1
Note that v(Sy,k) = v(Sy) = v(S). Hence, a node at level k that assigns J; to machine M,
can be fathomed if

m
Apae — Miny <; <mAipin)/ 2 Ai > UB—v(Sy k- — 1 (F1)
i=1 ‘
Note that this test requires constant time per node of the tree. In addition, the corresponding
node can be fathomed if
k—1
2 PhjZhj +Phk >UB—1. (F2)
j=1
The third test tries to establish whether the current partial schedule is dominated by another
partial schedule for the same k jobs. Suppose we have some job J; 1<I<k—1) that is
currently scheduled on M; for which '

Pit > pik and pp <pp- (F3)

Interchanging J; and J, would reduce the load of both M; and M,. The current partial can
then be discarded, since there is at least one optimal schedule in which there is no pair of jobs
for which property (F3) holds.

Conditions similar to (F2) can be checked for every job J; (j = k +1,...,n). In case there is
ajobJ; (k +1<1 < n) for which

k

> pijzij T pa > UB—1 foreach M;,i=1,...,m, (F4)

j=1
we fathom the node, too. Similarly, if condition (F4) applies to some J; (k +1 </ <n) for all
machines M; (i = 1, ...,m) but one, we can assign J; to this machine. Subsequently, we can
possibly carry out additional assignments, which enhances the likelihood that the node can be
closed on account of (F1), (F2), (F3), or (F4).
In addition, we try to identify a machine M, (1 <h < m) for which

!
PhjZhj +P'll >UB-—1
j=1

for each J;, {=k+1,...,n. In this case, M, can be ignored for the assignment of any
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remaining job. Therefore, we can discard the node if

k m * n - * m *®
[,2 2 Alpljzt] + 2 m1n1<,<m;,-¢;, A,p,} / 2 Ai > UB —1.
j =1i=1is%h j=k+1 i=1is5h

5. COMPUTATIONAL EXPERIMENTS
Both algorithms have been coded in the computer language C; the experiments were conducted
on a Compag-386 personal computer.

The algorithms were tested on a broad range of instances with n and m varying from 20 to
200 and from 2 to 20, respectively, giving rise to 80 combinations altogether. The processing
times were generated from the uniform distribution [10,100]. For each combination of 7 and m
we considered 10 instances.

3.1. The branch-and-bound algorithm

For the branch-and-bound algorithm we put an upper bound of 100,000 nodes; computation
for a particular instance was discontinued at this limit. In Table 2 we present for each combi-
nation the number of unresolved problems. An empty cell indicates that the branch-and-bound
algorithm was not run, as it could be expected from adjacent cells or initial computations that
most of the instances would be prematurely terminated. Table 3 shows the average number of
nodes explored. The average for a particular combination of n and m is computed by aggregat-
ing the number of nodes for each of its corresponding instances and dividing the sum by 10,
the total number of instances for each combination. Note that prematurely terminated
instances contribute 100,000 nodes each to the average number of nodes. Table 4 presents the
average computation time for the branch-and-bound algorithm in addition to the running time
for the heuristics and the duality-based approximation algorithm. The time spent on unfin-
ished instances is included, too. The average computation time for a particular combination is
computed in a similar fashion as the average number of nodes.

The general impression is that instances with a few machines are relatively easy. In addition,
the required effort to solve a problem seems to increase more with the number of machines
than with the number of jobs. However, surprising exceptions to this statement form the
instances with m =12 and n <40. Note, in addition, that the 100,000-node limit on the
branch-and-bound algorithm is quite arbitrary, as it induces distinct fime limits across the
instances. For example, it appears that instances with m = 20 and n = 50 or 60 are solvable
within about ten thousand nodes on the average, but requiring approximately 5 minutes run-
ning time. From Table 4, however, one can easily form some idea which instances are within
reach with, say, one minute of computation time.

Significant deviations from the averages may occur. For example, a single instance for the
combination n =30 and m = 15 accounts for the remarkably high figure in Table 3 and consid-
erable computation time in Table 4. Finally, it is not unconceivable that the performance of the
algorithm is enhanced by fine-tuning the algorithm to particular instances. For example, it may
turn out to be worthwile to recompute the optimal vector of dual multipliers in each node of
the tree after all for large values of n and m. Even in that case, however, such instances are not
solvable within reasonable time limits.
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n} m— 2 3 4 5 6 8 10 12 15 20
20 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 1 2 0 0 0
50 0 0 0 0 1 5 - - - 0
60 0 0 0 0 1 - - - - 1
80 0 0 0 2 - - - - - -
100 0 0 0 3 - - - - - -
200 0 1 0 - - - - - - -
TaABLE 2. Number of unresolved problems out of 10 for each cell.
n| m— 2 3 4 5 6 8 10 12 15 20
20 16 46 68 203 180 75 33 37 11 0
30 31 90 340 752 434 | 1440 | 784 | 145 | 4784 | 64
40 37 | 170 615 | 4488 | 10149 | 6786 | 23936 | 3800 | 192 | 342
50 59 | 171 | 1188 | 6133 | 16022 | 48202 - - - 5848
60 68 | 358 | 1127 | 12715 | 27942 - - - - | 10669
80 85 | 1232 | 3386 | 37110 - - - - - -
100 132 | 2503 | 5198 | 28116 - - - - - -
200 330 | 12245 | 14274 - - - - - - -
TABLE 3. Average number of nodes.
n} m— 2 3 4 5 6 8 10 12 15 20
20 1 1 1 1 1 1 1 1 1 1
30 1 1 1 2 2 9 6 2 43 2
40 1 1 2 12 39 39 214 63 3 10
50 1 1 3 16 57 285 - - - 204
60 1 1 3 33 105 - - - - 373
80 1 3 8 96 - - - - - -
100 1 6 12 87 - - - - - -
200 3 40 52 - - - - - - -

TABLE 4. Average computation time in seconds.
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5.2. The duality-based approximation algorithm

In the implementation of the duality-based approximation algorithm we have put
maxiter = n-m. Note furthermore that cycling may occur. This happens, for instance, under
the following conditions: J; is scheduled on M, but can equally well be assigned to M, and
we have C} = Cluyy, and C5*' = CLiJl. In such a situation, J; would oscillate between M
and M. The procedure is discontinued once this phenomenon is detected.

The duality-based approximation algorithm was compared with the constructive heuristics
of De and Morton (1980), Ibarra and Kim (1977), Davis and Jaffe (1981), and with Potts’ 2-
approximation algorithm (Potts, 1985). Note that the two-phase heuristics presented by Hariri
and Potts (1990) are dominated by Potts’ 2-approximation algorithm. It turned out that the
constructive heuristics have a very erroneous behavior. For instance, the De and Morton
heuristic, which takes the best result from 10 underlying heuristics, produces solutions which
deviate 27.0% on the average from the best solution found. We have therefore treated the con-
structive heuristics as a single algorithm by only considering the best result.

In Table 5, we present the average proportional deviation for the best schedule generated by
the constructive heuristics from the optimal solution, or if this is not available, from the best
known solution. In the latter case, brackets have been placed around the figures. Table 6 shows
the same information for the duality-based approximation algorithm.

As a whole, the duality-based approximation algorithm shows a better performance than the
constructive heuristics, which behave poorly. This certainly applies to instances with a larger
number of machines. The performance of the constructive heuristics can easily be enhanced by
submitting them to an iterative local improvement scheme. Therefore, the schedules generated
by the constructive heuristics should merely be seen as initial solutions that serve as input for
some iterative local improvement procedure.

Hence, each schedule generated by the constructive heuristics was submitted to the iterative
local improvement procedure that tries to reduce makespan by job interchanges. The pro-
cedure has been described in detail in Section 3. In contrast, only the best schedule generated
by the duality-based approximation algorithm was submitted to the improvement procedure.

In Tables 7, 8, and 9 we present the results for the constructive heuristics, Potts’ 2-
approximation algorithm, and the duality-based approximation algorithm after local improve-
ment, respectively. The sign “** behind an entry in these tables indicates that the corresponding
algorithm has the best average performance for the associated instances. From Table 7 it can
been seen that the iterative local improvement technique is powerful for the constructive
heuristics in case of few machines or jobs. However, its power deteriorates with increasing
number of machines, as only two machines at a time are involved in job interchanges. In that
sense, it is hard to find a way to an attractive local neighborhood, even in case of multiple start
solutions. Generally, the running time, which seems to be increasing with n, is quite modest:
instances up to n = 100 require only one or two seconds, while in case of » =200 approxi-
mately 10 seconds of computation time are required. Because the job interchanges stay limited
to two machines at a time, the number of machines hardly seems to play a role in the computa-
tion time.

Potts’ 2-approximation algorithm was embedded in the branch-and-bound algorithm as
described in Section 4 so as to assign the m — 1 fractional jobs by impicit enumeration, given
the partial schedule for the other n —m +1 jobs. The branch-and-bound algorithm was
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ny mo |2 | 3 4 5 6 8 10 12 15 20
20 29| 80 | 68| 128 | 190 | 203 | 76 | 226 | 89 | 54
30 22| 63 | 82| 180 | 188 | 255 | 225 | 231 | 146 | 130
40 30| 65 | 10.8 | 146 | 133 | (275) | @74) | 256 | 28.6 | 190
50 20| 72 | 120 | 121 | (193) | 234) | (172) | 18.4) | (14.7) | 328
60 14| 60 | 103 | 105 | (15.9) | (14.6) | (17.2) | (15.4) | (16.9) | (42.5)
80 18| 46 | 84| (L) | (134 | Q1.4 | (169) | 175 | 4.7 | (20.5)
100 28| 33 | 72| O auy | as0 | 198 | 18.3) [ (19.8) | 21.2)
200 07| | 39| @2 60| 62055 | a70 |55 | (45

TABLE 5. Proportional deviation for the constructive heuristics.

nlm— |2 [ 3 [4 [5 6 8 10 |12 |15 20
20 42| 54 | 66| 105 | 113 | 164 | 152 | 146 | 74 | 30
30 15| 49 | 60| 98 | 89 | 147 | 167 | 21.0 | 140 | 152
40 19| 42 | 35| 90 | 83 | (10.0) | (190) | 144 | 135 | 193
50 16| 33 |49 74 | 65| 83| @D | 19 | @5 | 181
60 12| 11 |41 55 | G0 | @0y | 8 | (1.0) | (1.8) | (243
80 14| 23 |29 GH | CH ]| a9 | e | e8| 1| @5
100 23| 23 |24 GO | 08| 22| a9 | 09| 08 | (1.4
200 04las | lan|ay| a8 | G| a3 | G| ©6

TABLE 6. Proportional deviation for the duality-based approximation algorithm.

adjusted at two points: we omitted dominance rule (F3) and and we initially put UB = co.
Condition (F3) is useful if our aim is to find an optimal solution, but might cut off good
approximate solutions. As a result of this, it occasionally happened that Potts’ algorithm took
more time than the optimization algorithm. It is surprising that the final solution was rarely
improved by the local improvement procedure, which was applied to all the jobs. The compu-
tational effort for the algorithm was modest and seemed to increase more with the number of
machines than with the number of jobs. For instances up to m =12, it took one or two seconds,
but for m =15 and m =20 it required about 15 to 20 seconds on the average. The instance
n =20 and m =20 was not run because Potts’ algorithm would require explicit enumeration of
almost the entire state space.

As can be seen from the number of “*’ signs in Table 9, the duality-based approximation
algorithm has the best performance on the average. Note that the entries for m =2 are identical
for the duality-based algorithm and Potts’ algorithm. It is remarkable that the duality-based
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20

ny m— |2 3 |4 5 6 8 10 |12 15
20 00* | 1.0% [30%| 7.1 | 83*| 104 | 49* ]| 111 19| 5.1
30 0.1 | 12* [ 31 | 44*| 76 | 133* | 150 | 174* | 110 | 92
40 02* | 13 [17*] 38| 79 [(136) | (154 [178 | 222 | 14.7*
50 03* [ L1*[27*| 52 [ (7.8) [ (11.6) | (5.0) | (69) | (7.0) | 20.4
60 02*| 1.0 [31 | 38 [(59) | @48 | @5 | (74 | 10.6) | (32.8)
80 0.1*[ 09 [23 [@® |9 | a9 | @D | 67D | 125 |24
100 25 [ 07 [19 [eo|an| e | @&n | 6D ]| 61 |06
200 02 (06 [11 [©® [ ] 18 | G5 @) | 35 | 87

TABLE 7. Proportional deviation for the constructive heuristics after iterative local

improvement.
nl m— |2 3 4 5 | 6 8 10 12 15 20

20 1.7 | 30 |54*( 91 [ 110 89% | 10.8 | 142 4.8 -
30 02 | 27* 146 | 79 | 69 | 134 | 127 | 220 | 104* | 3.7*
40 04 | 21 |28 | 53 | 87 [(136) [ (176) | 195 | 206 | 15.1
50 04 | 1.6 |33 | 56 | (76) | (11.8) | (8.6) | (6.6) | (6.2) | 216
60 03 126 (28 |51 (@D (19 | 3D |@a0D)| @2 | (370
80 0.1* 1 19 (22 | 57D @0 | G4 | 05 | (7.2) | (10.3) | (12.4)
100 2317 |19 | @44 | EBD| 26 | B9 | B9 9.3) | (10.6)
200 0.1* [ (0.8) |10 [ (0D | 24| (B9 | 5.0 | 63| (5.0 | (147

TABLE 8. Proportional deviation for Potts’ 2-approximation algorithm after itera-

tive local improvement.

ny m— |2 3 4 |5 6 8 10 12 15 20
20 1.7 | 1.0% [54 | 54« | 98 [145 | 140 |108* | 74 3.0*
30 02 [ 26 [39 [ 52 | 67* [142 | 150 |197 |113 | 148
40 04 | 1.0* [28 [ 52 [ 44* [ 93)*[(152* | 13.9* | 120* | 164
50 04 | 15 [23*| 41 [@2* | 72*| (3] 00)* | a2)* | 17.0*
60 03 | 0.5* [20%| 27% [ (35) | 1.0 | (08)* | (08)* | (09" | (22.8)*
80 0.1* | 0.7% [ 1.0* [ 1.9* [ (1.8)* | 0.6)* | (0.6)* | 22)* | (1.6)* | (45)*
100 23*| 06* [ L1*[22* [ (08)* | 09* | ©7* | 0.7)* | 03)* | (0.79)*
200 0.1* [ (0.5)* [ 0.7 [ (0.3)* | (0.1)* | 08)* | (1.D* | 0.4)* | (12)* | (0.0)*

TABLE 9. Proportional deviation for the duality-based approximation algorithm
after iterative local improvement.
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approximation algorithm performs considerably better than Potts’ algorithm in spite of their
close relationship. Perhaps more information can be drawn from Table 10, which presents the
number of times (out of 10) that the duality-based approximation algorithm produced the best
or equally best solution. It appears that the algorithm performs remarkably well if m and n are
large; apparently, these instances are mostly beyond the reach of the iterative local improve-
ment procedure and Potts’ 2-approximation algorithm. In a sense, the duality-based approxi-
mation algorithm and the branch-and-bound algorithm are supplementary: the latter is appli-
cable to instances for which the former yields to other algorithms. The running time is about a
factor two more than the running time of the constructive heuristics and Potts’ approximation
algorithm, but it seems to be comparable or less in the extreme combinations with n = 200 or
m = 20.

n| m- 2 3 4 5 6 8 10 12 15 20
20 1 7 5 7 4 4 3 6 7 9
30 7 4 4 4 7 6 4 7 4 4
40 5 6 3 3 8 9 4 9 5
50 7 4 5 7 7 6 6 10 8 9
60 4 8 7 6 8 4 5 9 8 9
80 2 5 7 6 9 6 8 6 9 7
100 9 4 5 6 5 6 8 8 9 9
200 6 7 6 7 9 7 8 8 8 10

TABLE 10. Number of times (out of 10) the duality-based approximation algorithm
performed at least as good as the other approximation algorithms.

6. CONCLUSIONS

The R | | Cpmax problem is a highly practical scheduling problem for which we have proposed a
branch-and-bound and an approximation algorithm. The branch-and-bound algorithm
manages to solve relatively large instances to optimality within reasonable time limits. The
approximation algorithm is based upon a simple, intuitively appealing but effective idea for
local search: heuristic duality-based search in conjunction with iterative local improvement.
Measured from computational experiments, it performs best in comparison with other approx-
imation algorithms for instances that are beyond the reach of an optimization algorithm.
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