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Abstract. We give necessary and sufficient conditions for a given graph embedded
on the torus, to contain edge-disjoint cycles of prescribed homotopies (under the
assumption of a ‘parity’ condition).
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1. Introduction

We prove a theorem on edge-disjoint cycles of prescribed homotopies in an undirected
graph embedded on the torus. It forms a sharpening (integer version) of a theorem proved
in [1] for general compact orientable surfaces.

Let G = (V, E) be an undirected graph embedded on the torus 7', and let Cj,...,C} be
closed curves on T'. We are interested in conditions under which:

(1) there exjft pairwise e(.lge-disjoint cycles C,...,Cr in G so that C; is freely
homotopic to C;, fori=1,...,k.

Here by embedding we mean: without intersecting edges. We will identify an embedded
graph with its image in T. A closed curve on T is a continuous function C : §; — T,
where S; is the unit circle in the complex plane.

A cycle in G is a sequence (v, €1,v1,...,€4,v4) so that e; is an edge connecting v;_;
and v; (= 1,...,d), with vg = v4. In a natural way we can identify such a cycle in G with
a closed curve on T'. We call a collection of cycles pairwise edge-disjoint if no two cycles
have an edge in common, and moreover, no cycle traverses the same edge more than once.

Two closed curves C and € on T are called freely homotopic, in notation: C' ~ C, if there
exists a continuous function & : Sy x [0,1] — T so that &(z,0) = C(z) and &(z,1) = C(z)
for each z € S1. (So there is no point fixed.)

A necessary for (1) is the following cut condition: for each closed curve D on T, inter-
secting G only a finite number of times and not intersecting V', one has:

k
(2) cr(G,D) > Zmincr(Ci, D).

=1

Here we use the notation (for closed curves C' and D):

cr(G,D) := |{z€ 51| D(z) € G},
(3) cr(C,D) = [{(3,2) € S1 x 81| C(y) = D(2)}],
mincr(C, D) := minfer(C,D)|C ~C,D ~ D}.
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Condition (2) is not sufficient for (1), as is shown by the following example, where the
wriggled lines indicate closed curves C; and C; and where the torus arises by identifying
the two segments a and identifying the two segments f3:

o

Figure 1

A second example arises by taking for G' a graph consisting of two vertices, each attached
with a loop (pairwise disjoint and nonullhomotopic), and for C; a closed curve going twice
around one of the loops:

o
1
B ! 8
o
Figure 2



We show that (2) is sufficient for (1) if each C; is simple (i.e., is a one-to-one function),
and the following parity condition holds:

(parity condition) for each closed curve D on T, not intersecting vertices
(4) of G, the number of crossings of D with edges of G, plus the number of
. crossings with Cy,..., Cs, is an even number.

One easily checks that the parity condition implies that each vertex of G has even degree.

Theorem. Let G = (V,E) be a graph embedded on the torus T, and let C,,...,C} be
simple closed curves on T, such that the parity condition holds. Then there exist pairwise
edge-disjoint closed cycles C4, . ..,Cy in G so that C; ~ C; (i=1,...,k), if and only if the
cut condition holds.

(We do not require the C; to be simple — they may have self-intersections at vertices of G.)

Figures 1 and 2 show that we cannot delete the parity or the simple-ness condition. For
general compact compact orientable surfaces the cut condition only implies the existence of
a ‘fractional’ solution to (1).

2. Closed curves on the torus and their crossings

Before proving the theorem (in Section 3), we show an inequality for the function
mincr(C, D) defined in (3). This inequality is essential in our proof, and does not hold
for compact orientable surfaces other than the sphere and the torus.

Let Dy, D3 : S — T be closed curves on T’ with Dy(1) = D2(1). Let D; - D, denote the
concatenation of D and D;. Thatis, D,-D; : §; — T is defined by: (D1-D;)(2) := D1(2?)
if Imz > 0 and (D; - D;)(2) := Da(2?) if Imz < 0. Then:

Proposition. mincr(C, Dy - D;) < mincr(C, D;) 4+ mincr(C, D).

Proof. Identify the torus T' with the product S; x S; of two copies of the unit circle S; in
the complex plane C. For m,n € Z we define the closed curve Cy, , : S — S1 X 57 by:

(5) Cmn(2) = (2™, 2") for z € 5;.

The closed curves C,, ,, form a system of representatives for the free homotopy classes of
closed curves on T'. Now for m,n,m/,n’' € Z:

(6) minCl‘(Cm,m Cm',‘nl) = Idet ( ;nl/ 77:’

) | = |mn’ — m'n|.
To see the Proposition, we may assume that D; = Cpy n and Dy = Cppu n for some
m!,n',m",n" € Z. Then Dy - Dy ~ Cpprymy nt4ny. Hence choosing m,n so that C ~ Cp, !

mincr(C, D; - D3) = [m(n' + n") — (m' + m")n|
< |mn' — m/n| + |[mn” — m'n| = mincr(C, Dy) + mincr(C, D). |

(7)



3. Proof of the theorem

The cut condition clearly is necessary. To see sufficiency, suppose the cut condition is
satisfied, but cycles as required do not exist. We assume that we have a counterexample

G = (V, E) with
(8) Z 2deg(v)

veV

as small as possible. Here deg(v) denotes the degree of vertex v.
We first show:

(9) each vertex of G has degree at most 4.

Suppose to the contrary that vertex v has degree 2d > 6:

€24 €23-1

Figure 3

Replace it by:

Figure 4

where there are d — 2 parallel edges connecting v’ and v”. For the new graph G’ again
the cut condition holds (as we may assume that the cut D does not intersect the ‘new’
edges in Figure 4, since we can make a detour through the original edges without increasing

4



cr(G', D)). However, for G’ the sum (8) has decreased (since 224~ + 22d-2 4 24 < 22d) So
in G’ cycles as required exist. This directly gives cycles as required in the original graph G,
contradicting our assumption. This shows (9).

We next show that in each vertex v of G of degree 4 the following holds. Consider a
neighbourhood N ~ C of v not containing any other vertex than v:

Figure 5

Here Fy,..., Fy stand for the intersections of faces with N. Then there exist a closed
curve D : §; — T\ V such that:

(i) D contains a subcurve contained in N connecting F; and F3;

(ii) ex(G,D) =T mincr(C;, D).

=1

(10)

Suppose such a curve does not exist. Replace N as in Figure 5 by:

1 2
v |}
v"
4 °3
Figure 6

Since any packing of cycles as required in the new graph G’ would yield a required
packing in the original graph G, and since for G’ the sum (8) has decreased, the cut condition
does not hold for G'. That is,



k
(11) cr(G', D) < ) mincr(C;, D)
=1
for some closed curve D not intersecting any vertex of G'. We may assume that D does
not traverse v. Let p be the number of (pairwise disjoint) subcurves of D contained in N
and connecting F; and F; (in one direction or the other). As cr(G’, D) < c(G, D) we know
p > 1. Choose D so that p is as small as possible. We show p = 1. Assume p>2.
Let P be any curve in N from F; to F3 not intersecting v, v’ or v”, and only crossing e;
and e;. Then we may assume that:

(i) D=P-D;-P- D, where D; and D, are paths from Fj to F,
(12) or (ii) D = P-D,-P~!. D, where D, is a path from F; to F3,and D, is a
path from F; to Fy

(P~! denotes the path reverse to P). If (12)(i) holds, then (using the Proposition):
cr(G', D) = cx(G', P - Dy) + cr(G', P - D,)
k

> miner(C;, P- D) + Zmlncr(C,, P-Djp) > mecr(C’,, D),

=1 =1 =1

(13)

since P-D; and P - D, are closed curves containing fewer than p subcurves in N connecting
F1 and F3
If (12)(ii) holds (again using the Proposition):

cr(G' D) > cx(G', Dy) + cr(G, Dz)
> Z mincr(C;, P- Dy - "1) + mecr(C,, D,) > mecr(C,, D),

=1 i=1 =1

(14)

since D1 and D, are closed curves containing fewer than p subcurves in N connecting Fy
and Fj.

Both (13) and (14) contradict (11). So p = 1. Hence cr(G’, D) = cr(G, D)—2. Therefore,
by (11), ex(G, D) < 24 Y% mincr(C;, D). It follows by the parity condition that D satisfies
(10).

Now by the ‘homotopic circulation theorem’ in [1], the cut condition implies the existence
of a ‘fractional’ packing of cycles. That is, there exist cycles

(15) Ci1,...,C1,4,,C21,..., Cotzr -1 Chpay- - -y Ch,ts
in G and rational numbers
(16) ALy s AL A2, ey A2 tgse - ARy - - oy Akt > 0
satisfying:
(i) Ci;~C; (i=1,..,kj=1,...,¢t),
b

D) i = i=1,...,k),
(17 (ii) Z,\, 1 (i=1 )

(iii) ZZ,\,,XC»:(e) <1 (e € E).

i=1 j=1



Here x€(e) denotes the number of times cycle C' traverses edge e.

We may assume that no C; ; after arriving in a vertex v via an edge e, it immediately
returns over the same edge e backwards.

We show:

for each 1, 7, if C;; arrives in a vertex v via edge e, say, then next leaves v

(18) via the edge opposite to e.

(If e1, €2, €3, €4 are the edges incident to v in cyclic order, then e; and eg are called opposite;
similarly for e; and es.) To see this, suppose that cycle Cy,; say, contains ...,e1,,€,...
(where v, e1, e2, €3, €4 are as in Figure 5). Let D : S; — T\ V be a closed curve satisfying
(10). We may assume that D crosses e; and e, successively.

However, since C1,1 contains ...,e;,v,€z,..., we know

(19) cr(Ch,1, D) > miner(Cy 1, D).

This gives the contradiction

k
er(G,D) > YY) Nijer(Cij, D)

k
> Z Z z\,-,,-mincr(C,-,,-, D) = E mincr(Cg, D)
=1

=1 j=1

This proves (18). It follows from (18) that any two of the Ci4,...,Ckz, are pairwise
edge-disjoint or are the same (up to cyclic permutation and reversion). (No C; ; makes more
than one orbit of a cycle, as it is homotopic to a simple closed curve C;.) This implies that
we can select from C 1,...,Ck,, pairwis‘e edge-disjoint cycles as required.
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