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ABSTRACT

Z. Fiiredi and D. J. Kleitman proved that if an integer weight is assigned to each edge of a complete graph on
p + 1 vertices, then some spanning tree has total weight divisible by p. We obtain a simpler proof by generalizing

the result to hypergraphs.
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1. INTRODUCTION

The following theorem is due to Z. Fiiredi and D. J. Kleitman [2]. (It was conjectured by A. Bialostocki and

P. Dierker [1], who proved the case when p is prime.)

(1.1) Let T be a finite abelian group of order p, and let w : E(K,,1) = I" be some function. Then there is a
spanning tree T of K, 1 withw(T) = 0.

(K, denotes the complete graph with n vertices; E(G) denotes the set of edges of a graph G; w(T) means

X(w(e): e € E(T)), where the summation isinI".)

We shall give a simpler proof of (1.1). For inductive purposes, it is advantageous to prove a version of (1.1) for

complete uniform hypergraphs, because it is then easy to reduce the general problem to the case when p is prime.

Thus, let V be a finite set. A hypergraphin V is a collection of subsets of V; and it is r-uniform if each of these
subsets has cardinality ». (In this paper, all our hypergraphs will be r -uniform for some r.) If H is a hypergraph,
we denote ( J(e :e € H) by V(H). A hypergraph T is connected if T # & and for every partition (4, B) of V(T)
such that A and B are both nonempty there is a member e € T with e N A, e N B both non-empty. It is easy to
see that if T is connected and r-uniform then | V(T)| <(r — 1)| T| + 1; and if equality holds we say that T is a
tree. (If r =2, this coincides with the usual definition of a tree for graphs, except for trees with < 1 vertex.) If H is

r-uniform, and T c H is a tree, we call it a tree of H; and if V(T') = V(H) we call it a spanning treeof H. If V isa
finite set with | V| >r, we denote by (‘r/) the collection of all 7 -element subsets of V. We shall prove the following

generalization of (1.1).
(1.2) Let T be a finite abelian group of order p, let r 22 be an integer, let V be a set of cardinality p(r — 1) + 1,
andletw : (Y) — I" be some function. Then there is a spanning tree T of (‘r/) withw(T) = 0.

w(T) means Z(w(e):e € T).)

2. THE PROOF OF (1.2)

We require several lemmas. First, we shall need the following, which is a special case of the Cauchy-Davenport

theorem (see [3]). (It can also be proved directly in a couple of lines, as the reader may verify.)



(2.1) Letpbeprime,letA cZ,,andletb,c € Z, be distinct. If 1< |A| <p - 1then

|[{a+b:acA}u{a+c:acA}| >|A].

If T is an r -uniform tree, we say that f € T is a leaf of T if there exists u € f suchthate N f c {v} for every
eeT—-{f}). We call such an element u a root of the leaf e. If T,T’ are trees in (‘r/) with leaves e, e’
respectively,and T — {e } =T’ - (e}, we say that T’ is obtained from T by shifting a leaf. If T, T’ c (‘r/) are trees,

we say that T is shiftable to T’ if there is a sequence

T = Tlr T2 gooey Tk = T'
of trees in (‘r/) such that T;,, is obtained from T; by shifting a leaf for 1 <i <k — 1. This is evidently an equivalence

relation, and in fact all trees in (‘r/) of the same cardinality are shiftable to one another, but we only need a weaker

result, the following.

(22) Letr 22,k 21 be integers, let | V| 2k(r —1)+2,and let voe V. Let T be a tree in (‘r/) with | To| =k.

Then Ty is shiftable to a tree T withvyé V(T).

Proof. We may assume that k > 2, for the result is clear if k = 1. If T is a tree in (‘rl) withvpe V(T)and f is a

leaf of T, we define d (T, f ) to be the unique d > 1 such that there is a sequence
Vo=V1,€1,V2,€2 .., Vg, €4 =f
satisfying
(i) vy, v2,..., vg € V(T) are all distinct, and soare e, €5 ,...,e4 €T
(ii)v;e g for2<i<d,andv; € ¢; for1<i <d.
Let us choose a tree T in (‘r,) such that Ty is shiftable to T and voe V(T), and a leaf f of T, in such a way that

d(T,f) is maximum. Let u be a root of . Since | T| >2 it follows that T has at least two leaves; let £’ be
another leaf, with root u’. Since d(T,f")<d(T,f) it follows that voe¢ f — {u}. Choose v € f — {u}, and let
e=(F"-{uHuv}. NowT'=(T - {f’}) u {e) is shiftable from T and hence from T, and e is a leaf of it, and

if vo¢ f'—{u’} then d(T’,e)>d(T,f), a contradiction. Thus voe f’— {u’}, and since V(T) =V, the result



follows. W

Again,letr 22,k 21andlet| V| 2k(r - 1)+ 1. Wesay that § c_:(‘r,)isa(V,k)-blockerifIS NT| 2@ for

every tree T in (‘rl) with | T| =k. Our third lemma is the following.

(2.3) Letr 22,k 21 be integers, and let |Vl =k(r-1)+1 IfSc (‘r,) is a (V, k)-blocker then S includes a
spanning tree of (‘r/).
Proof. The result holds if k = 1, and so we may assume that k 22 and proceed by induction on k. Since there is a
spanning tree and we may assume that it is not included in §, it follows that D#S # (‘r/). Thus, we may choose -
e,.f € (:,/) with |e nf| =r-landeeS,f ¢S. LetV-(e nf)=V’ If T"isa spanning treeof(‘i_’) then
T’ U (f ) is a spanning tree of (‘r/), andsoS N (T’ U (f})# D, thatis, S’ NT'#D, where $’=§ N (‘:'). Hence
S’ is a (V’, k — 1)-blocker, and so S’ includes a spanning tree T’ of (‘i’), from the induc;ive hypothesis. Then
T’ U {e} c § isa spanning tree of (‘r/), as required. .'

We shall use (2.1)-(2.3) to prove the following, which is the main step in the proof of (1.2).
(2.4) Let p be prime, let k > 1,r 22 be integers with k <p, let V be a set of cardinality k(r — 1)+ 1, and let
w: (‘r/) — Z, be some function. Then either

(i) there are k spanning trees T ,..., Ty with w(T) ,..., w(T}) all distinct, or

(ii) k =2 and there is a monochromatic (V , k — 1)-blocker.
(Asubset S ¢ (‘:) is monochromatic if the restriction of w to § is constant.)

Proof. The result holds if £ = 1, and so we may assume that k >2 and proceed by induction on k. We say that
X cVisjointif | X| =r —1and X =f, N f, for some f,fr€ (‘:) with w(f ) # w(f2). We assume that (i) is

false. We may assume that

(1) Some setX c 'V is joint.



For (‘rl) isa (V, k — 1)-blocker since k >2, and so we may assume that w is non-constant on (‘:), for otherwise

(i) holds. The claim follows.

(2) IfXis joint then k 2 3 and there exists a monochromatic (V =X , k — 2)-blocker.

For let X cV be joint. Suppose that there are k —1 spanning trees T;...T,_; of (V ;X) with
w(Ty) ,..., w(T-1) all distinct. Choose f,f, € (:’) with f1 " fo=X and w(f;) #w(f2). Now T; U {f,} and
T; U {f,) arespanningtreesof(‘:)forISi <k -1,and

[WwT)+w(f):1<i<k -1} U (wT)+w(f):1<i <k -1} 2k

by (2.1). Hence (i) holds, a contradiction. Thus, there do not exist £ — 1 such spanning trees. From our inductive

hypothesis applied to V — X the claim follows.

In particular, from (1) and (2) we deduce that k >3. For each joint set X, let S(X) be a monochromatic

(V —X,k —2)blocker, and let w(e) =g (X) foralle € S(X).
(3) There exists q € Z, such that q(X) = q for every joint set X.

For let Xy, X, be joint; we shall show that ¢(X;)=q(X,). Let X; uX,cZ cV, where |Z| =2r —2. Now
S(X1) is a (V =Xy, k —2)-blocker, and s0 SX) (" 7% is a (V ~Z,k - 2)-blocker. By (2.3), there is a
spanning tree T of (V r—Z) with T c§(X,). Similarly, §(X,) N (V :Z) is a (V -Z,k - 2)-blocker, and so

S(X2)NT #@. Hence S(X;) N S(X,) 2D, and the claim follows.

LetussayatreeTg(‘r/)isbadifITl =k—-landw(e)#q foralle € T.

(4) Iffiisaleafof abadtree T, andf, € (‘:)withIfznV(T—{fl})| <1, thenw(f)=w(f,).

ForletV'=V(T - (f,)). If X ¢V - V’is joint then S(X) N (T - {f,)) # @, which is impossible by (3) since

T is bad. Thus no subset of V — V"’ is joint, and the claim follows.
In particular,

(5) IfTisabadree and T is shiftable to T’ then T’ is bad.



Now by (1), there is a joint set X. If there is a bad tree, then by (» — 1) applications of (2.2), it is shiftable to a

tree T with X NV (T)=O; and by (5), T is bad. But then T N S (X)) # &, a contradiction as before. We deduce

that there is no bad tree, and so {e € (Y) :w(e)=gq}isa(V,k - 1)-blocker. Thus (ii) holds, as required. B
Finally, we use (2.4) to prove (1.2).

i Proof of (1.2).

We proceed by induction on p. If p is prime, then I'= Z, and by (2.4) with k = p, either

(i) there are p spanning trees T ..., T, with w(Ty) ,..., w(T}) all distinct; but then one of them is zero, as

required, or

(ii) for some g € T there is a (V, p — 1)-blocker § such that w(e)=¢q for alle € §; but then § isa (V,p)-

blocker and hence includes a spanning tree T, and w(T') = X(q : e € T) =0 as required.

We may assume then that p is not prime, and so I' has a proper subgroup I, of order p” say. Let I'” be the
quotient group IVI”, of order p” say where p =p‘p”, aﬁd let ¢ : T’ — I'”” be the homomorphism with kernel I'”. For
eache € (‘:), we define w”(e)=dp(w(e)) e I'”. Letr’=p”(r —1)+ 1. Foreach f cV with | f| =r’, we define
w’(f) as follows. From our inductive hypothesis applied to (j; ), I and w”, there is a spanning tree T (f ) of (J: )
such that w”(T(f))=0, that is, w(T(f))e I. We define w’(f)=w(T(f)). From our inductive hypothesis
applied to (:/,), I and w’, there is a spanning tree T of (rv,) withw'(T")=0. LetT = (T (f):f € T");then T is

a spanning tree of (‘r/) and

wil)=Y Y w)= Y w({)=0

feT eeT() feT’

asrequired. W
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