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Summary

By using properties of up- and downcrossings of the sample functions of the
work load process and of the attained waiting time process for a G/G/1
queueing model it is shown that both processes have the same stationary dis-
tribution, if such distributions do exist.
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Sakasegawa and Wolff [1] show by using sample function arguments that for
the FIFO G/G/1 queueing model the workload process v, and the attained
waiting time process 7, possess the same stationary distribution, if such distri-
butions exist. However their proof is some what artificial (see their use of
preemptive LIFO).

A direct proof proceeds as follows. Consider a busy cycle ¢ with n the
number of customers served; T, . ..,T, are the service times of these custo-
mers, Wy, . . . ,W, their successive actual waiting times, i is the idle time, so
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The attained service time 7, at epoch ¢ is by definition the time between ¢ and
the arrival epoch of the customer being served at epoch ¢. In the figure below
the sample function of the work load process v, and the corresponding 7,-
process during the busy cycle ¢ are shown, with n=4.
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Define for v=0,
d(v):= # downcrossings of v,, 0<t<c with level v,(*)
wv):= # upcrossings ,, v, O0<t<c ,, s  ¥,(0) @
&(v):= # upcrossings of g, 0<t<c ,, s V(%)
w(v):= # downcrossings ,, n,,0<t<c ,, s ¥,(0). ©)

Note that in the figure d(v)=3; the upcrossings are there indicated by o, the
downcrossings by *. It is immediately evident from the geometry of the sam-
ple functions, cf. [2], [3], that with probability one, for v=0,

d(v)= w), 8(v)= w(v), @
wv) = é(v); )

and
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)= 3 [<nds, 80)= 5 [u<v)dr, ©
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where we use the notation
[ -]
O <N=ly,<, and [ <)t = [ <y, =204, ™
0 0
for the indicator function and the integral. Since
[ c
i= ([O<v)dt}, o+ = {[@<v)dt}, =0+, ®)
0 0

integration of (6), using the boundary conditions (8) yields, via (4) and (5),
that with prob. 1,

Jo<vyr= [ <v)dt, v=0. )
0 0

Because
W <v) = 1=(v>v),

we have from (9)

/(Vr =v)dt = _/("lt =v)ds,
0 0 i

which is theorem 1 of [1].

For the GI/G/1 queneing model with the conditions:
i. E{c}<oo,
ii. ¢ has not a lattice distribution;
the stochastic mean value theorem, cf. [3], [4], applies, i.e. the v,-process has a
unique stationary distribution and for v, a stochastic variable having this dis-
tribution holds

Pr{ve, <v} = ——E{ f(v,<v)dt} v=0, (10)

E{}

For the same conditions it is s1m11arly shown that the #,-process possesses a
stationary distribution and for %, a stochastic variable with this distribution
holds

Pr{n, <v} = = E{ ](m<v)dt} an

E{ }
Consequently from (10) and (11),
N ™~ Yoos

a result obtained in [S]. By using again the properties of up- and downcross-
ings it is readily shown that for the G/G/1 queue the limits for T—o0 of
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L (v,<v)dt and -l-f(ip,<v)dt, v=0,
T, UH

both exists with probability one and are equal with probability one (note that
the number of upcrossings and that of downcrossings in an internal (0,7)
differ by at most one).
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