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The paper deals with asymptotics of parameter estimators in a general scheme of statistical models
defined on a given probability space with a filtration. On studying the asymptotic behaviour of esti-
mators, defined as solutions certain equations (M-estimators), we systematically utilize the representa-
tion of likelihood ratios in the form of exponential martingales, useful for application of martingale
limit theorems.

The paper is organized as follows: in § 1 main objects and notions are introduced; in § 2 a theorem
is proved concerning asymptotic properties of M-estimators; in § 3 similar problems for alternative
(perturbed) models are studied; in § 4 several examples of particular schemes of models (independent
observations, diffusion processes, point processes) are given. Further, § 5 is devoted to the investiga-
tion of contigual alternatives. In § 6 the global asymptotic behaviour of M-estimators is studied. And,
finally, in the last section (§ 7) some references and short historical notes are given.

Throughout this paper we use the conventional notations of martingale theory (see, e.g., [1,2,3]).

1. MODEL OF AN EXPERIMENT, L-TRANSFORMATIONS, REGULARITY CONDITIONS, REGULAR
M-ESTIMATORS

1.1. Consider a sequence of statistical models b

T 6= (B = (@, F,F",P},P"),5,, 0€OCR!,

where (2",9",F",P") is a stochastic basis for each n=1, i.e. a probability space with a filtration
F" = (%)< <r satisfying the usual conditions. Here (%} Jo<;<r is a right-continuous increasing fam-
ily of o-subalgebras of 9" augmented by sets of zero P"-measure; © is an open subset of R'; the
measures P§ and P" are equivalent for all n=>1 and §€®.

Let P§(t) = P3 |9} and P"(r) = P" |9 be restrictions of the measures Pj and P" to the o-algebra
9 and let p§ = (p3(#))o<:<r denote the likelihood ratio process

i) = 239,
T ap)
1) For brevity, a sequence & = (&), Will be sometimes called an experiment or a scheme of experiments.
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For convenience we assume p}(0) = 1.
As is known, there exists a local P"-martingale Mj = (M3(f))< ;<7 Such that pg, satisfying
Dolean’s equation
dpy(?) = pg(t —)dM3 (1), p3(0) = 1, 1.1)

can be represented as an exponential martingale
1 -
pi = 6(M3) := exp(Mf — <Mp° >)II(1+AMz)e %, (12)
where M° is a continuous part of M, <M > its square characteristic, and AM = M —M_ its jump.

1.2. We shall need the martingale transformation formula under an absolutely continuous change of a
measure. Let (R,% F,P) be some stochastic bases, and Q some probability on ¥ absolutely continuous
w.r.t. P(Q <<P). If meI,(F,P) ¥ and M is a P-martingale such that 40/dP = &), then by the
general Girsanov theorem [1] the process (L-transformation)

AmAM

1+AM (1.3)

is a Q-local martingale (L (m,M)eM,,.(F,Q)).

LmM) :=m—<m°M°>-3

1.3. We call an experiment & regular if the following set of conditions (R) holds:

(R1) For any n=1 and 8 we have Mj e9M*(F",P") (where as usual, M3(F,P) is a class of
square integrable martingales w.r.t. a flow F and a measure P).

(R2) For any n=1 the mapping M’ ":8-—>5_)1L2(F",P")_ is twice continuously differentiable w.r.t. 8 in
the sense of the norm |I|l, and the second derivative M, for all t€[0,T] is continuous w.r.t. § P"-a.s.

L 4

(f me9(F,P), then M|l = E* <M >; = E* M. Everywhere below the dot means the derivative
25200 Lo, M5) = L Lo, 143) et

a0
(R3) For all n=>1 the following series are termwise continuously differentiable:

w.r.t. the parameter 6, e.g. My =

AMj AM;
2(n(1+AM3)—AMG), Z——— ;
(In( 4) 4) 1+AM3
besides
EjS(—) < o0, Ej3(———) <oo0.
"(1+AM:,')2 ® "(1+AM3)2 ®
(R4) Fisher’s information

I} := Ej<L(Mj,M3)>

is finite, positive and #-continuous for all n=>1.
We present now a number of direct implications of the regularity conditions.

PROPOSITION 1.1. Under conditions (R)
a)  The log likelihood Inpj is continuously differentiable w.r.t. 0 for all t, P"-a.s. for all &, and

g = L3, M3). (14

b) At each t the transformations L(M;,M?) and L(X{" »Mp) are continuous w.r.t. 8 P"-a.s. for all w,

1) Myoc(F, P) is a class of local martingales w.r.t. a filtration F and a measure P.



L (Mg, M3)e(F", P}),
L (Mg, M3)e O3 (F",P").

L(Mpy,M3) = L(My,M3)—[L(My,M3)), (15)

where [ . ] is the square variation.

ProOF. The formal differentiation of

Inp§ = ——<M"“>+E(In(1+AM") AMY)
yields
. p_xp_ 13 " AM"AM"
29108 = Mo =55 <My>—2 ——rns (.6)
Now assertion a) follows directly from the estimation
AM"AM% AMj 5
<[2 2(AMjG <o,
1+AM"'[(1+AM3)2( 371 <o
provided
3§5<M’> = 2<My,My> aa.n

for any Mye9(F,P). The last equahty is easily proved. Indeed, by the definition of the square
characteristic the processes my = M} —<My,My> and 2MOM0‘—2<M0,M9> are martingales as

well as the process my = 2M0M 9 ——<Mg>. Hence, (1.7) follows from the uniqueness of a mutual

a0
square characteristic.

By the general Girsanov theorem [2] the continuous component and the jump of a purely discon-
tinuous component of the L-transformation L (m,M) have the form

Am
1+AM a8
with <L¢(m,M)> = <m°>. Therefore assertion b) follows directly from conditions (R2) and (R3).

Finally, by the formal differentiation of the expression L(M;,M?) we obtain assertion c):

9 . e eme o AMI _ P AM"
-é-é-L(M;,Mz)—M; <My My > z-——-—HW <My My >— E(H_W
= L(Mp,M3)—[L(My,M3)). O

Note that the finiteness of the Fisher information in condition (R4) is ensured by conditions (R2) and
(R3), since by (1.8)

L¢(m,M) = m*—<m°,M°>, AL%m,M) =

y

.  nec AM"(S)
I} = Ej<L AI“,M" = E} Mn +E} —
6 o <L(My,M§)>r <My >r ang(“AMs(s)

1.4. In view of (1.4), the maximum likelihood equation (MLE) may be written in terms of an L-
transformation, namely in the following form:

Lr(Mp, M) = 0. (1.10)
This form suggests a natural extension: define the estimator as a solution to the equation

). 1.9



Lr(m§,Mg) = 0 1.11)

where mg,n=>1 is some sequence of §-dependent P"-martingales. Similarly to the classical schemes
(see the examples below) such estimators will be called M-estimators.

Under regularity of the experiment we can naturally restrict ourselves to M-estimators correspond-
ing to the martingale mj (which will be sometimes called the martingale defining the M-estimator)
with properties similar to those of M.

A sequence of martingales defining the M-estimator will be called regular if the following set of
conditions holds (R,,):

(R,1) For any n=>1 and 6O we have mj eOZ(F",P").
(R,2) For any n=>1 the mapping m" :0—9(F",P")
is continuously differentiable in the sense of the norm ||-|| and for all #=0 7y is continuous P"-a.s.

(R,3) For all n=>1 the following series are termwise continously differentiable:
s AmjAMG
1+AM3 °

besides

n .n

ES(— 2 oo, EBS(—_2 <o
IR TN, SRR FYNY '
(Rn4) The quantity
Ij(m) := Ej <L(Mp,M3),L(m§,M3)>1
is finite, positive and #-continuous for all n=1.
PROPOSITION 1.2. Under conditions (R,,) we have .,
b,,) For all t the L-transformations L(my,Mj) and L(mg,M3) are continuous in 6, P"-a.s. and
L (m},M3),L (g, M3) € (F", P})
cm)  L(m,Mj) = L(ring,M5)—[L(Mp,M5),L (m}, Mp)] (1.12)
The proof is similar to that of Proposition 1.1. Note that the quantity I§(m) is finite due to conditions
R, 1) and R,,2), and it can be written in the following explicit form
n Amj (s)AMj (s)
I}(m) = E} <m3",1\f,c> +Ej :
’ ! T 2 T o)
A class of regular martingales defining M-estimator is denoted by .

(1.13)

1.5. In the assertions to the forthcoming sections concerning asymptotic properties of the solutions to
(1.10) and (1.11) it is convenient to express the conditions imposed on the sequences of martingales
(M%) >1 (defining the model) and (m§ ), (defining the estimators) in terms of L-transformations or
the corresponding predictable characteristics. In this connection it is useful to present formulas giving
explicit expressions for the characteristics of L-transformations by means of the characteristics of the
martingales Mz and mj. From (1.8) we can obtain the following facts for P-local martingales
mm’ ,M,M’:

AmAm’ )
(1+AMY(1+AM")
2°. If »" denotes the P-compensator of the jump measure of the process L(m,M), then (for any
integrable function 1) we have

1°. [L(m,M),L(m',M)] = <m‘,m"“>+23

(1.14)



T
- U2 yp am oy
of {«s,x)%(ds,dx) U T apg () o)y P

where {-)»* denotes a dual predictable projection w.r.t. P.
3°. If P-martingales m and M allow integral representations

M, = [ [g(s,xXp—v)dsdx)+ [g(s)dn,
0E 0

m = [ [Wsx)p—r)ds,dx)+ [Ws)dn,,
OE 0

(1.15)

(1.16)

where n is a continuous P-martingale, p an integer-valued random measure on the product [0,T]XE

and » its P-compensator, then for the measure P with dP/dP = & M) we have

L(mM) = [ [¢(s,x)p—P)ds,dx)+ [Ws)dn, —g(s)d<n>),
0E 0

where v is the i’—compensator of the measure p and ¢(s,x) has the form
W5, 0)—s) + )
1+g@s,x)—gls)  1-g(@s)

#s,x) =
with

o) = [He(s}de), 36) = [5x(s)d)
Indeed the validity of (1.17) easily follows from the fact that, on the one hand,

s, B)Ip —s)
1+g(s, B)p —2(s)

AL%(m,M) =

where
D = {(s,w):({s},E) = 1}
with Diraque’s measure p({s},dx) = € (dx) and, on the other hand,

A(S f@ls,xXn—9Xds,dx)) = &5, B)p— $(),
0FE

where

86) = [ols.x)((s).dx) = —H_.
E 1—g(s)
Now, substituting (1.18) and (1.20) into (1.19) we obtain that

ALY (m,M) = Alg*(np—7)]

and, hence, the purely discontinuous part of the martingale L (m,M) is equal to ¢p*(u—7). O

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

4°. If m’ is a martingale allowing the integral representation (1.16) with ¢/(s,x),§/(s) instead of

Y(s,x),Y(s), then
<L(m,M),L(m,M)> = w'*v—zli‘t';(l—aw [ewd<n>,
-2



6
where a, = ¥({s},E) and ¢’ is defined by (1.18) with y/ instead of .
5°. Let
P~Q~P,Q = 6(MyP, P =G&M)P, MMcI(F,P).

Then if m is a P-martingale the transformation of m into a f’-martingale can be carried out in two
ways: either directly using L-transformation, or transforming it first into a Q-martingale and then into
a P-martingale. This is expressed by the following transitivity property of the L-transformation:

L(L(m,M),L(M—M,M)) = L(m,M). (1.22)
Besides the expression

L(m,M,M) := L(m,M)— <L (m,M),L(M—M,M)> (1.23)
isa i’-martingale and

L(mM) = L(m,M)+[L(m,M),L(M —M,M)). (1.24)

Note also that by the uniqueness of the canonical decomposition (of the 1~’-specia1 semimartingale
L (m,M)) we have H

[L(m,M),L(M —M,M)P* = <L(m,M),L(M—M,M)>2.

ReMARK 1. If m is a P-martingale, then w.r.t. a measure Q it is a semimartingale and hence has, gen-
erally speaking, a non-unique decomposition. The L-transformation presents the Q-martingale com-
ponent in one of such decompositions. Another decomposition is obtained by Girsanov’s transforma-
tion

GmM) =m—<mM>.

(G-transformation defines a Q-martingale in a canonical decomposition of a P-martingale m). Note
that both L and G-transformations are one-to-one, hence for every m e OM(F,P) there exists a unique
m eOM(F,P) such that

G(m,M) = L(m,M).
Analogously to (1.11), one might think of the estimational equation of type
G(mg,Mg) = 0 (1.25)

(or some other estimational equation based on a one-to-one transformation, different from L and G),
but this cannot enreach the class of all M-estimators: it is easily seen that this class remains
unchanged. The special role attached in this paper to L-transformation becomes transparent below.
Here we only note the fact that, as it can be seen from Assertion IV of Theorem 2.1, the asymptotic
efficiency of an M-estimator @ is given as the square of the (asymptotic) correlation coefficient

L(m§,M3),L (Mg, M})F;
offd = P} — lim [L(m§,M5),L( It
n-w <[ (m§,M})>r<L(My,M})>r
where mj is martingale envolved in the equation (1.11) defining )
As for the equation (1.25), it corresponds to the classical method of moments, as it easily seen by

taking into consideration that the left-hand side of (1.25) presents nothing less then the martingale m,
centered (conditionally) w.r.t. Pgy.

1) <->2 denotes the square characteristic w.r.t. Q.



2. ASYMPTOTIC PROPERTIES OF M-ESTIMATORS. ERGODIC MODELS AND ESTIMATORS

2.1. As is known the classical proof of the assertions concerning the asymptotic behaviour of M-
estimators as solutions to (1.11) is carried out in two steps: firstly, the required asymptotic properties
are established for the left-hand side of (1.11); secondly, the asymptotic properties of the estimators
(considered as implicit functions) are obtained by linearization.

Following the same scheme, we will utilize in the second part of the proof the following sufficiently
general assertion.

Let for every 8€® sequences of probability measures {Q3}a>1 (@5 ~P") and random variables
{L,(@}n>1 be given, on a measurable space (2,%7) as well as a sequence of positive numbers

{¢n(0)}n>l .
LeMMA 2.1. Let the following conditions hold:
a) For every €O lim ¢,(0) = 0;

n—o

b) For every n=1 the mapping 0—Ly,(0) is continuously differentiable in 0, P"-a.s.
c) For every 0€® there exists a unique point & = &(6) such that

05 — lim ;L) = 0;
(here and elsewhere below Qf — lim¢, = m denotes the convergence in Qf-probability:
03 (18— >p)—0,¥p>0) T
d - Im$OL®) = —¥O)
where y(6) is positive for every 0€©.
o lmimQj( sp 930 L@)~L@)>p) =0

e->0n—>00
for any positive p. . .
Then for every 8O there exists a sequence of random variables 0 = (0,),>1 such that
L lm QL@ =0) = 1;
. gj—1lim@, =¢;
~ n—o00
IIL. if 8, is another sequence of random variables with properties I and 11, then
lim 0f (8, = 6,) = 1
n—»e0

and, finally,
IV. if the sequence of the distributions of $,(6)Ly(8") w.r.t. Qf, denoted here by

Lo; — ¢ (@Ln(@), n = 1,2,..,
converges weakly to some distribution ®, i.e.
Bg; —da(6)La(@)=2,
then
Eg —YOlo7 ' O)X6,—8)] = ©. @1

PROOF. Since we follow the classical Dugue-Cramér scheme for proving this kind of theorems (see,
e.g., Le Breton [5]), we present here its outline only.
1. Using Tailor’s formula we obtain the decomposition

SHO)L,(2) = $7(O)La(0)—( —O)(O) +(z —0)5,(2), 22
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where the remainder term §,(z) is small in the sense that
lim lim QF{ sup 18,(2)|>p} = 0, Vp=>0.
z:|z - |<e

0 n—>c0

2. By (2.2) a sequence Q(n,€) of the subsets of " is constructed according to the formula
U = (0t 1EOLON<TEE,  wp 1,6)1<2D)
z:|z—-V|<e 2

and it is shown that
lim lim QF {Q(n,¢)} = 1
0 n—>c0

and that for any wefl(n,¢) a unique solution 6, of the equation
L,(z) =0

exists in the interval |z —#'| <e.

3 Aset, = YQn, %) and a measurable space
k

@, N2, FHNY,) = @97

are considered. .

Obviously, for any wef, there exists K(w)>>0 such that in the interval |z —§'| <1/k(w) the equa-
tion L,(z) = 0 has a unique %’}-measurablel) solution #;. The desired solution {6,},n=>1 is con-
structed as follows:

0, wefl,,

A

. ~C
" arbitr, wef .

4. Properties I-III of the sequence {b,,},n =1 easily follow from the form of fl,,. We will briefly remark

on Property IV.
By the decomposition (2.2) we have
|6a(OX L (8)— Lo (@) — YO 6)B, — )| <07 8)18,— 01 15,8 23)

Denote X, = ¢,(0NLn(0)—L,(®)), Y, = v(6)6; @), —) and z, = v(6)~'16,(,)|. Then ine-
quality (2.3) will take the form

| X, — Y, 1<z,|Y,l. 24

It is known (see [6], 2, § 4, Part I) that if X, converges to X in distribution (X, i'1>X) and (24) is
satisfied, then ¥, 2x. O

REMARK 2.1. We will need the following generalization of problem 2 from § 4, Part 1 of [6]. Let
X, X and let the following inequality

X, — Y, <Z,1X,| +U, ()
be satisfied with Z, £,0 and U, %0. Then, obviously ¥, 2X. Now, let

| X, — Y, |<Z,|Y,| +Z,B,, (2:6)

1) the existence of a measurable solution is the well-known fact in the function theory (see, e.g., [S])



with Z, 50 and Z,8, ©>0.Then ¥, %X. Indeed, for any numbers a,b,c and < the inequality

la—bl|<elal+c

1c
1—e ~

implies the inequality la —b| <2e|b|+ O

REMARK 2.2. Unlike [5] we assume here the scheme of series, and we do not restrict ourselves by the
special case of & = 4.

2.2. Specifying the function L,(f), n=1 as the values of the process L(mg,Mj) at t = T (with a mar-
tingale mj €9Mz), replacing Qf by Pj and setting 6'(6) = 0, the assertion of Lemma 2.1 may be refor-
mulated as Theorem 2.1 given below.

We will specify here also the normalizing sequence as follows:

—L
@@ =) .
THEOREM 2.1. Let for every 0€® the following conditions hold:
a) lm ¢,() =0

bl) P§— ;w¢121(0)<L(m3aM5)>T =T

b2) P}~ lim $3(O)IL (m, M3), L (Mo, M)l = ¥(6)

where T'(6) and v(6) are positive Jor every 8€6;
©) Pj— lim¢n(B)Lr(mg,Mf) = 0;
T

d Pj—lim [ [ x*»(ds,dx) =0, for e>0,
=% 0 1xi>e

where v, is the compensator w.r.t. P§ of the jump measure of the process on(0)L (mp, M3);
e lim fim P§{ sup  #7(6)|Lr(m},M5)—Lo(my M7)| >p} = 0

€0 n—o0

Jor any p>0. R
Then for any 8€8 there exists an M-estimator (6,),n=1 with Properties I-11I given in Lemma 2.1
(with Qf = P3,0/(6) = 6), such that

— o108, —0)=>N 0,2,
Lpr —dn  (OX0, —0)=N( 72(0))

PROOF. It can be easily seen that
L(m3,M3) = L (g, M3)—IL(m3,M3),L (Mg, M3)),

and that by virtue of Conditions b2) and c) of the theorem this ensures Condition d) of Lemma 2.1.
Further, Condition bl) of the theorem implies Condition c) of Lemma 2.1 and, finally, by virtue of
the central limit theorem for martingales ([3]) Conditions bl) and a) lead to the convergence of the
distributions £p; — ¢, (6)Lr(m§,Mj) to the normal law N (0,I'(8)). O

2.3. In view of the facts in 1.5, the conditions of Theorem 2.1 can be expressed, if necessary, in terms
of the characteristics of the martingales M3 and mj. Moreover, the sufficient conditions expressed in
this terms are even simplefied. For example, due to (1.15) Condition d) is equivalent to
&) Pi—lim 30X S (b)) DO 1 gy = 0
ST 1HAME(s)” T 1HAMEGs) T T '
Further the following condition ¢’) is suﬂ;lcient for c) to hold:
) . Amy (s)
1 lim p3@)[<mg >r+ 7 _pph=,
c) P n_mfbn(a)[ 9 >T (ng( 1AM ) P 1=0
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This fact easily follows from (1.14) and Lenglart’s inequality [3].
If we assume that the martingales M} and mj are differentiable to the third and second order,
respectively, then condition €) will follow from the set €) of stronger conditions:

el’) lim Iim ¢2()E3{ sup |[L(m,M?),L(M}—M" M})lr]} = O;
0 n—->o0 z:10—z|<e
e2) lim lim $i@)EG( sup _ I[L(nE,MD),L(My, M;)lr— (L (m3, M5),L (M5, M3)]r 1) = O;
. v 4 Y] —
e¥) lim lim ‘2"’"(0),”,3.‘35’.« E§ <L(#},M3)>r = 0.
Indeed, by the definition of the L-transformation we have
La(m}, M)~ Lym3, M3) = Ly(rng — 1y, M§)+[L (v, M), L (M3 — MZ, M)l @7

+(L(m2, M), L(M,, M)l —[L (m},M3),L(My, M})lr).

Now applying successively Chebyshev’s inequality, linearity of the L-transformation and the Cauchi-
Buniakovsky inequality we get

4
n

Py{ sup $2(0)| Ly(ring —rin;, M3)| >p}< pza) Ej{,, sup <€|Lr(rh; —rmy,M})1?)

$a@) . o5 frke
=~ D sup W friidu MY )< pﬁ”’eEsa J Lai:, Mgz
<¢:( € sup Ej<L(wl,M})>

pz z:|0—z| <e 2 r

Evidently, by virtue of (2.7) conditions €’) imply €). O

If martingales Mj and mj admit the integral representation (1.16) with corresponding coefficients
8n(5,%,6), g,(5,0),4,(s,x,8),0,(s,6),0c0 w.r.t. some integer-valued random measure g with the P"-
compensator »,, then Lindeberg’s condition d) can be written in the following equivalent form:

. T (5%, 0)— (s, 6) Yn(5, %, 0)— (s, 6)
an  Py—lme2@) [ [( I X
0 n—c “)/“E/. l +gn(s’x’ @_gn(s’ 0) 1 +gll(s’x’ 0) _gn(s’ 0)
¥a(s,0) (s, 0)
+ T
3§T( 1 '—én(s’ a) )2 {I 1 _gn(s’o)

where »j is the compensator of the measure p w.r.t. the measure P§ and aj(s) = v3({s},E).

|>edn ' (0)}v5(ds, dx)

|>edn ' @)1 —af ()] = 0,

2.4. Conditions b) and c) of Theorem 2.1 are of ergodic nature. Their validity usually follows from the
ergodicity of underlaying processes (see the examples of particular models of statistical experiments
below). In this connection it is convenient to introduce the ergodicity concept for an experiment.

An experiment is called ergodic if the condition

Pj—lim ¢2(0)<L(Mp,M3)>7 = 1.
n—>00

holds.

A sequence of martingales (mj),n=>1 is said to be ergodically related to an experiment if Conditions
b) and c) are satisfied. .

Of course, if the experiment is ergodic, then the sequence of martingales {M; },n=1, defining the
MLE, is ergodically related to this model.

We shall say below that an experiment is strongly regular if in addition to Conditions R1)-(R4) the
following condition is satisfied: Vp>0
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(RS) lim lim P{sup _47(6)| L(Mp,M5)— Lr(M,,M?)|>p} = 0.
A sequence of martingales (m§) will be called strongly regular if Condition €) of Theorem 2.1 is
satisfied.
We will say that an experiment & = (&,),n=>1 satisfies Lindeberg’s condition if

T "
Pi—lme@f [ v dsdn) =0, VeeO,1}
TR 0 x> O
where vL(M"M) is the compensator of the jump measure of the process L(My,M}).

We shall say that a sequence of martingales my = {mj },n=>1 satisfies Lindeberg’s condition if
condition d) is satisfied. We shall restrict below our attention to strongly regular ergodic experiments,
satisfying Lindeberg’s condition. A class of such experiments will be denoted by € If & = (6,)»51€6
then by 9M(C) we denote the class of strongly regular sequences of martingales defining M-estimators,
which are ergodically related to C and satisfy Lindeberg’s condition.

3. ASYMPTOTIC BEHAVIOUR OF M-ESTIMATOR UNDER ALTERNATIVES

31. Let &6 = (6,,),,>le@ be an experiment, a.lternatlve to &, and let M, = {(M"),,>1,069} be the
family of martingales defining the densities {dP5 ()/dP"() = &M} ),0SI<T,n>1,0€8).

We shall investigate the properties (under the alternative measure Pj) of the M-estimator which
solves (1.11) with a martingale my = (m§)p»1 €IUE). To this end we will need certain additional
conditions (see Theorem 3.1 below) which speclfy the behaviour of the sequence of martingales
mg = (m§),>; under the alternative measure Py (the natural requirement mye9MYE) solely may be
insufficient) and also establish the required relation between the experiments & and &.

THEOREM 3.1. Let the following conditions hold:
a) for each 6€© we have ¢,(6) and ¢,(0) related as follows

. & (®)
limg,(6) = Oim 22 = c(®)

with 0<c(f)<oo, besides
b (0) = By <L(Mp,M)>r;
c) for each 0,6 €O there exists a function of two arguments A(6,8) such that
~ lim $3O)Lr(m3, Mp) = AG,0)
and for every 0€8 the equation (w.r.t. &)

A@G,8) =0 (3.1)
is umqueb' solved by & = b(0);
d) llm%(o)lq(mb(a), Mi@) = —¥(O0)
where y(0) is positive for every 0€6;
€) lim lim Pj { sup. ¢u(0)|la'(mb(a), M3 )~ Ly(m?,M?)|>p} = 0

>0 n—>c0 z2:|b(0)—z

for any p>0.
Then all assertions of Lemma 2.1 hold with Pg instead of Qf,Lr(m§,My) instead of L,(6) and b(6)
instead of ¢'.
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This theorem is an immediate consequence of Lemma 2.1. O

3.2. Introduce the following conditions ¢’) and d’).

¢) For all 4,6 €0 let
cl’) Py — lim ¢2()Lr(m}, My) = 0;
n->o0

c2’) there exists a function &(0,0’) such that
Py — lim 63(O)ML (i, M5 ), L My — My, Mp)lr = A(@,0)

and the equation

AG.) =0

has the unique solution b (6).
d’). For each 0e©®

dry  Py—lim $2@OLr(n,Ms) = O;
@) Py limeiOIL(miw, Miw). LM, Miw)lr = 1),
Py = lim $X(OIL (s 0, M5 ), L (M50~ Mo, M lr = 12(6)
with
1(0) = 71(6)+12(6)>0.
COROLLARY 3.1. Let conditions a), ¢’), d’), €) be satisfied. Then all assertions of Theorem 3.1 are valid.

The proof immediately follows from the decomposition (1.24) and the formula (1.12).

REMARK 3.1. We may apply the decomposition (1.23) to Ly(mj,Mg), provided there exists the
mutual square characteristic envolved in (1.23). As for ¢), it is satisfied if, for instance,

— lim ¢3@)Lr(m}, M3, Mp) = 0, (32
— lim 93(6)<L(m§, M3 ), L (Mp — M., Mp)>r = A@,0),

where A(6,#) is the function envolved in Theorem 3.1, Condition c).

Using (1.23) we can analogously obtain sufficient conditions for d) to hold.

Further, as in Theorem 1.1, conditions a) - €) can be expressed directly in terms of martingales mj
and Mj or corresponding integrand functions in their integral representation (when these representa-
tions are known of course).

REMARK 3.2. i) The passage from the experiment & to its alternative & leads to a drift b(f) in the
parameter estlmatlon, caused by the fact that the process L,(f) = L(mj,Mj) is not a martingale
w.r.t. the measure Po Now, in Theorem 3.1, Condition c) the shift b(6) of the parameter 4 is deter-
mined which forces the normalized non-martingale component of the semimartingale L, to vanish
asymptotically.

ii) In contrast with Section 2 (see Theorem 2.1) here we do not mention central limit theorems (CLT)
of any kind for estimators, because they might be true only in certain special situations; it can be seen
(see Lemma 2.1, Assertion V) that the main problem here consists in establishing the CLT for the
process L,(b(6)). It is hard to investigate the weak convergence of the second summand in the for-
mula
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LmieMiw) = L(me,Ma)+(L(m3 e, Mpe),L (M — Mg, Mp)].

In the simple examples given below the problem is solved due to the specific character of the model.
ii) Comparmg (2.1) with the expression y(f) in Theorem 3.1, Condition d), we see that the scale
parameter in the distribution of the estimator 8, differs under the alternative: we get the additional
term v,(f) depending on the derivative mg of the martingale mj.

4. EXAMPLES

4.1. Before presenting the examples we recall the standard device of reducmg an experiment with a
fixed fam1ly of distributions and with an infinitely increasing sample size, to a scheme of series. Such
experiment is defined by the set

loc
@,5.F = (%)»0, Po,P) with Pg~P ie. Py(t)~P(?) for all 1=0.

By My = (My(t),t=0) we will denote martingales, defining the densities.
The corresponding scheme of series has the form

= QG F" = (% := §),0<t<T,Pj = Py|F,P" = P|¥F),

with the family of martingales Mj = (M3 (t) := My(nt)),0<t<T. It is useful in such schemes to
express the conditions of Theorems 2.1 and 3.1 directly in terms of martingales
My = (My(1)),t=0,0€8. For example, if ¢; 2(§) = E¢<L(My,Mg)>, is Fisher’s information quan-
tity up to time #, then the first two of the conditions in Theorem 2.1, for instance, take the following
form:

2 L@ =0,
(b1) Po— Emg? O <L(mp, Me)>, = TO)<co.

EXAMPLE 1. Independent Identically Distributed Observations.
Let p and yg be probability measures defined on some measurable space (X,%) and let py~p,
f(x,0) = ——-(x) PutT = 1.

Conmder a sequence of experiments &,,n=>1, with

N | B
@ =X"F =", F = (F := " 0<t<1), Pj = pgX..Xpyg, P" = pX.. Xp
(I-] denotes an integer part). It can be easily seen that for @ = (x1,...,%,)€X"

[ne] (1]
70 = T, M0 = 3¢ 0D,

Besides, if f(x,0) is twice continuously differentiable w.r.t. 8 in Ly(X,®,p), the second derivative
f (x,0) is 0 continuous p— a.s. for all x and

0<I, = f(ﬁ"’—‘”’l)’f(x, O)pldx)<oo, j( oS (e O <co,

then the experiment is regular.
In this scheme one often considers only the subclass 9} C Mg, consisting of martingales mj of the
form
[n]
my = X Wxi,0), ¥ ¥(f),
i=l1

where ¥(f) is a class of continuously differentiable in L,(X, %8, ) functions with
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= Yx, 6)
[ Optde) = 0, [(LE20Tf (e Odr)<co,

[G ey T D)< oo, °<I£’%ﬁ;‘)’—”lf(x,o>n(dx)<w.

The equation (1.11) takes the form

n — n 'P(xi’a) —
Ll(mO’Mz) iglf(xba)

In Theorem 2.1 Conditions a) -d) with ¢, 2() = nl,,

0. @.1)

10 = 1 [LEL 1 gpa)

£(x0
_ 1 x0)f(x0)
7(0) Io f fz (x, 0) f (X, mll(dX),

are verified by the law of large numbers and CLT. If, in addition Condition e) is required, then Asser-
tion IV of Theorem 2.1 coincides with the classical result

— V(b — =N (0, ),
- (0,

Consider now an alternative regular experiment corresponding to the density }(x,ﬂ) and let
ve¥(f)N¥().

The conditions in Section 3 involve the following quantities, written in the explicit form:

AG,0) = IMU . 0) _}(x’ Hu(ax),

fen® "
_ 1 ¥xb@)f(x,b(0)
Ul ¥ laarvryr e CDECON
_ 1 Uxb@X (x,b@)—f(x,0)
720) 1,f b ®) w(dx).

Here we have the following central limit theorem (cf. Remark 3.2, (ii)):
Y 0) [@xb OV (f (.5 6)~2(x, () )
I
where y() = v,(6)+v,(8); it is deduced from Lemma 2.1, Assertion IV - the CLT w.r.t. the measure
P, for the sums

&, — Vn(8,—b@)=>N(,

n n \K nb(a))
Lm0, M5 @) = ém

EXAMPLE 2. Estimation of a drift parameter of a diffusion process.
Suppose that for every n=>1 one observes the process £, with a differential

d&y(t) = ay(t,§,,0)dt +dW, (1), 0<t<T,

and one needs to estimate the unknown parameter 8 (a,(",",6) is a non-anticipating functional).

To cover this problem by a general scheme of experiments, set Q" = Com,T = B(Cpo,1))s
F" = (% := o(x:x,,s<t),0<t<T},Pj a distribution of the process £, with a given 6,P" a Wiener
measure. Assume for all n=>1 and €O that
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T T
Ps(faﬁ(s,x,ﬂ)ds<oo) = P”(faﬁ(s,xﬂ)d9<oo) =1
0 0
Then Pj~P" and the local density takes the form

PRE) = expl fan(s,x, O)ds— [a2(s,%,0)ds) = G,(ME)
0 0
where

M) = [otox 0,

is a local P"- martmgale
Further, assume that the following condition is satisfied: for every n the function a,(s,x,.) is twice

differentiable w.r.t. 8 in the sense of the norm ||-|l where a2 = Er f ﬁ(s)ds, with the f-continuous

second derivative for all ¢ P" - a.s. Then M" @) = f a,(s,x, 0)dx,. So the Fisher information takes the
form

T
$72(0) = L,(6) = E} [a(s,x,6)ds
0

Let 0<I,(f)<oo. Under these conditions the experiment is obviously regular and the likelihood equa-
tion takes the form

. T
LI’(M:’M'O') = fén(s9x’0)(dx:—an(s’9x’o)d‘) =0.
0

In view of the fact that any P"-martingale has an integral representation w.r.t. a Wiener process, we
consider martingales defining M-estimators of the form

my(t) = [Yn(s,x, O)dx,,
0

where y,(-,",0) is a non-anticipating functional and the equation (1.11) giving the M-estimator can be
written as

t
f¢,(s,x, O)(dx, — ay(s,x, 6)ds) = 0. @2)

The regulanty of such M-estimator means, for all n, that the function y is continuously differentiable
W.I. t 0 in the sense of the norm |||, with the #-continuous derivative y(¢,x,6) for all ¢t€[0,T] P"-a.s.
T

Bmdm, the values Ej f V3(s,x,0)ds, E} f J2(s,x, 6)ds are finite and positive.

Assume that the followmg condmons hold: for all #€® and for Vp>0
) lim¢,@) = 0;

T
2 Ps—nﬁ_g«bi(o) [¥is,x, 0)ds = T(6);

3) Pj-lim¢() fup,(s,x,o)é,(s,x,o)dv = (6)
where I‘(ﬂ) and 7(9) are positive numbers;

4) P" hm¢,,(0)f¢,,(s,x,0)ds - 0’
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5) lim im¢ 6)E7 f sp 'P..(s,x,Z)dv
lim P} {¢3(6)_ sup _| f¢,(s,x,zXa,(sxz) a,(s,x,8))ds | >p} = 0,

lim lim P ($7(6) sup _| f(¢,(s,x,z)a,(s,x,z) ¥a(6:%, O)in (s, %, 6))ds | >p} = 0.

n—co z:|z -0 <e H

It is easily seen that all conditions of Theorem 2.1 are satisfied and, hence, all assertions of Lemma
2.1 are valid and, besides,

8 (7 OB ) =N @, ?((%

Note, for instance, that conditions 4) and 5) imply conditions c) and €) of Theorem 2.1, respectively.
Now let Py be the distribution of the process §, with the differential

d¢,(t) = a,(t,&,,0)dt +dW,(1), 0<t<T,

and suppose that the corresponding experiment is regular and ergodically related to &, in the sense
that condition a) is satisfied in Theorem 3.1. We are interested in the asymptotic properties w.r.t. Py
of the M-estimator obtained from (4.2). We obtain sufficient conditions for validity of Theorem 3.1 in
the same manner as above. In particular, the drift equation takes the form

T
—nlilg'#i(ﬂ) Jins,x,0Xn(s,%, 8) =y (s,x,O))ds = A6,6) = 0.
It can be easily seen (cf. [S]) that the followmg elem ‘?tary conditions are, in turn, sufficient for condi-
tion e) of Theorem 3.1 to hold; functionals U, exist such that”
W 6x, 01> <Uis,x), k = 0,1,2;la.(s,x,0)|2<Vn(s,x),

1605, %, 0P <VE,x), k = 0,1;im B} [UR (s, x)s <0, k =0,1,2,
n—o0 0

_ T T
lim Eg [ V,(s,x)ds <oo, lim Ej [U(s,x)ds<oco, k = 0,1.
n—>0 0 n—>00 0

EXAMPLE 3. Small diffusion ([7],[8]).
Let the MLE 0T be constructed by means of observations on § with the differential

dé = a(§,0)dt +edW,,& = 0, 0<t<T,
Assuming e—0, we study its asymptotic properties w.r.t. P, where P* is the distribution of £ with the
differential

dé = b(§)dt +edW,, & = 0.

vadently, this problem is equivalent to the problem of constructing the MLE 07- by means of obser-
vations on 7 with the differential

dn, = a (n,,0)dt +dW,, 5 = 0,
and then studying its asymptotic properties w.r.t. the distribution P of 7 with the differential
T = be(n,)dt+dW,, oo = 0,

1) We denote by f*)(x, ) the k-th derivative of a function f w.r.t. 6.
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where
n = &/¢ a(Y,0) = a(eY,0)/¢, b(Y) = b(eY)/e
In this case
. T
Li(Mp,Mp) = [a(Y,,00dY,~a(Y,,0)ds).
0
Following [8] we assume that the function a(x,6) has three bounded derivatives w.r.t. x and 6 , and
b(x) has a bounded derivative w.r.t. xeR'. Introduce the notation xo = (xo(#)),0<t<T for the
solution of the deterministic equation
dx(t)
— o = blxo(®), xo©0) = 0.
t
Denote

T
G@O) = [@@xo@)—b(xo(®)dt,
0
T
10) = [1@’ @xo)+i@,x0E)a6,%0s)—b (xos)ds,
0
TT T )
86 = IO [{ fa@.x0(s))dW, — [[5—a(@:x0(sDNa B, x0(s)
00 0

—b(xo(sDk (S)+&(0,xo(S))[%&(0.xo(S)) - %b (oK ()lds

6" = argminG(6),
where xf) = (xf?(1)),0<t=<T is the solution of the equation

@) = %b(xo(t))xf,‘)(t)dt +dw,, P (©0) = 0, 0<t<T.
Then all conditions of Theorem 3.1 are satisfied, provided the equation (of drift)
A@.0) = fé(xo(s),m(xo(s))—a(xo<s)m)ds =0
has the unique solutiofl and '
fa(xo(swmxb(xo(s»—a(xo(s),m)ds — [ o) #@xs = T@<0.
Then by ':‘hwrem 3.1 '
Py —limér = #(6),

da'(M;-(!) »My@))
e ()]

lim;, —¢'Br—0'@) = limt; -
It can be easily seen that
M), M
limﬁ’,-,;—eeq'( 0] ¥©)
0

= 23@ @)
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But under our assumptions #(f) = 6" = argminG (d). Hence
Py—limbr = ¢,
limg; —€' (07 —6") = 5 —0F") := @),
that is the same result as in [8].

EXAMPLE 4. Multivariate point process.
These processes are defined (see e.g. [3]) by a given sequence (T,£),k=1 of random variables taking
values in (R4 XE) where E is a certain Luzin space with T <Tj ;, being the jump sizes of the &
process. The distributions of the process are defined by a given sequence of regular conditional distri-
butions

Gi(B) = P(Ti+1,$k +1)€BIT;,§,i<K), BeB(R  XE).
The corresponding model of the experiment (in a scheme of series) is defined by the objects:
0 @.F.F) = (Dp,r,BDp,r), B = o(x:x,5<1)),
where D[0,T] is Skorokhod’s space of functions which take values in E;
@) w(O,t]XB) = SI{Ax,€B), BeK(E),

<t

that is the integer-valued jump measure of a coordinate process x;
(iii) the measure P§ which is characterized by the compensator of the measure p, given by

Gy* (dt,dx)
glddx) = DT <t<Ty 4 }—————,
vg(dt,dx) k§0 {Ti k+1} G (7, o)X E)

where Gg’k is the conditional distribution of (Tk .*.\1,&4.1) and Tk = oo{t>Tk_.1 :Ax,?l:O}, fk = Aka.
For all 6€© the assumption P§~P" is equivalent to »j~»" where »} and » are the compensators
of p w.r.t. P§ and P" respectively (see, e.g., [3]). ‘
The martingales Mj have the integral representation (for simplicity we consider here the case
vs({t},E) = 0):

tE dv’
M) = [[(f"(,x,0)— 1)p—r")ds,dx), f*(s,x,0) := d::
0

As for the martingales defining M-estimators, we consider the martingales

(s,x).

t
m3@) = [ [¥(s,x, Opu—v"Nds,dx).
0E
It can be easily calculated, for instance, that

AT T ACEY) PR
L,(My,M5) ({!f"(s,x,ﬂ)(” ). )

an,. = ‘ S —vj ’dxs
L,(m§,M3) {Juf"(s,x,ﬂ)(“ 9)ds, dx)

L My)>, = [ (LD 0 400
<L(mj,Mg)> !!(f(s,x,ﬂ))z 8 ( )

. ' .
[L(m§,M3),L (Mg, M3)}, = [ [£"(s,, 60/ (s,x, O)p(ds,dx)
0E
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I (T, O (i i,9)
= T, < .
k§l et} FUTi 6,0

The regularity of the experiment means that the function f"(s,x,6) is twice differentiable continu-
ously w.r.t. 8 in the Hilbert space

Ly(@ XR 4 XE,3,Mg-)

where M2 is Dolean’s measure of the compensator »" (restriction of the measure "(dt,dx)P"(dw) to a
predictable o—algebra %) so that the integtabi]ity condition can be written as

JACRY)

5,50 Y v (ds,dx)<oo

E" j [fa(s,x, 8)"(ds,dx)< o0, Ef j [EG—
etc.
Similarly, the regularity conditions for the martingale mj can be explicitly expressed in terms of
differentiability w.r.t. the parameter of the function /.

(s,x) of the correspondihg

~ d
An alternative experiment can be defined by derivatives f,(s,x,8) = d:;

~n
compensators vg.
5. CONTIGUAL ALTERNATIVES

5.1. Consider a sequence of alternative experiments
&, = (@9 F",Py,P"), n=>1,0c8CR’,

such that for all n=1 and 686, dﬁ; /dP" = 6(1% ), and the martingales Mj and A:IZ corresponding
to the basic and alternative experiments respectively, are related as follows:

L(My,M3) = L(M},M3)+,(6)L (N3, M3), (5.1)

where Nj are some P"-martingales.
Based on the properties of L-transformations, we can represent (5.1) in the following equivalent
form:

My° = M3 +4,(ONF", .2)
AMj = AM} +¢,(6)AN3.

REMARK 5.1. Treating independent identically distributed (ii.d.) observations with the density
f(x,0),xeR',0€6, P. HUBER [9] have introduced the sequence of alternative experiments &, gen-

erated by i.i.d. observations with the density f,(x,8) = f (x,6)+ —\;—_h (x,0) where [h(x,0)udx) = 0.
~ n
(so called ‘contamination model’). In this case

dP, - -
o = Tt = &(M5)
withi{; = 2(}(x,-,0)— 1). Therefore
i<n s
M M3 — L (M3 M3) = S0 —f (i) _ ¢ h(x;,0)
L (M3, Mp)—L( 9 i§u S (x:,0) \/;ignf(xi’a)
= —=L(3,Mj), (.3)

Vn
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where Nj = D\h(x;,0). Hence the sequence of experiments é,, with property (5.1) may be viewed as
i<n

a natural extension of the ‘contamination model’.

5.2. It is well known that in the scheme of ii.d. observations mentioned above, the condition

f ﬁi(i—%)zf (x,0)(dx)<oo implies the contiguity of the sequence of measures (Pg) W.I.t. the

sequence Pj (P )<APE))-
In the lemma given below we present sufficient conditions for contiguity w.r.t. (Pg) of the sequence

of measures (Pg) satisfying condition (5.1).

LEMMA 5.1. Suppose L(N3,M3)e2(F,P}) and let

lim lim P} (¢3(O)<L (N3, M})>r>N) = 0. (5.4)
Then (P3)<I(P}).

Proor. The following necessary and sufficient conditions for (f’; )<I(P§) are wellknown (see, e.g. [4]):

lim lim Py (o3 P5, PH)>N) = 0, (5.5)
Jlim lim 7§ {supa,(s)>N} = 0, (56)

where h(—z,P,,Pz) is the Hellinger process of order 1/2, and a,(s) = pg(f)/p}(t —) where
. _ dPg

Po = dP}

It can be easily seen that

= §(L(Mp —M3,M3)) = &(,(0)L (N3, M3)).

€3 Py, PY)y<5 62 O)<L(N3,M5)>. )
Indeed

h(lz;i’:,ﬂ) = ¢n(0)<L°(N",M5)>+ (2(1—\/1+¢,.(0)AL(N", M7y "

But since (1— V1+x)* =

<x? for x=—1, we have

h65:Po P3)Y<geO)<L (N3, M3)>+-5(So2OXAL (N3, M)P "
<7ORO<L(N3M5)>.
Further
Py(sup ay(s)>N) = Py(sup (1+4,(O)AL (N3, M5))>N)
<P (GupbiOXALNG,ME) >N —D<FL( S SAOXAL(NGM)P >N 1)

By virtue of Lenglart’s inequality for any >0
Py( 3 $hOXAL(NG, M) >N)<-+ Py 3, 3 OXAL (NG, ME)Y™* >n). (58)

s<T s<T
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Now (5.5) and (5.6) follow from (5.4) and (5.8).

5.3. In Theorem 5.1 below we present certain asymptotic properties of M-estimators under contigual
alternatives. As above, consider regular experiments and martingales defining the estimators.

THEOREM 5.1. Let conditions of Theorem 2.1 hold as well as condition e) of Theorem 3.1 with b(f) = 6.
Besides, let condition (5.4) be satisfied.
Then all assertions of Lemma 2.1 are valid with

L,(8) = Ly(m},M3), Q3 = Py, & =6,

and also

lim 8 (47 @6, ~0)~1 " ORO<LE M) LWEM>r) = VO, Dy

PrOOF. By Lemma 5.1 (i’: )<I(P§), hence, conditions a) -b) of Lemma 2.1 are satisfied with

Ln(8) = Ly(m},M3), Q3 = Py, & = 0.

Consequently assertions I-III of Lemma 2.1 are valid.
Further, as in the proof of Lemma 2.1, we can easily obtain the following inequality

| Up—Va| <Z, | Vo | +2Z,B0, (5.9
where
U, = ¢u(6)Lr(m} ,M3,)—(X" —¢5(0)<L(m§,M5),L(N3,M3)>1),
with
X" = ¢,(O)Lr(m3, M), Vi = (605 ' OXB,—0)—2(O)<L(mj, M5),L(N3,M3)>1,
Z, = v\ (09,6
(8,(0) is defined in the course of proving Lemma 2.1) and
B, = 3(O)<L(mj,M3),L(N3,M5)>1.
If now
Py—lim Z,B, = 0, (5.10)

then by virtue of Remark 2.1 the limiting distributions (w.r.t. the measure Pg) of U™ and V™" coincide
and since by Lemma 2.1, Assertion I,

_nl-.-]?olo ¢n(0)L ("’5_ ,M3. ) =0,

it suffices to determine the limiting distribution of the expression

To this end we shall use the following assertion (see [4]): for any n=1 let X" be a semimartingale
w.r.t. measures P" and P" w1t1} the characteristics (B",C",»") and (B c" v) and the modified
second characteristics C" and C ", respectively.

Besides, let M be a Gaussian martinga.le defined on the space (R,%,F,P), with My = 0 and
C = p(M,)z, i.e. a semimartingale with characteristics (0,C, 0). Let D be some subset of R .. Intro-
duce the conditions:

(1) I(x1>q*¥ 20 for every teD,e>0,
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@ cH f»(_,', for every t.

PROPOSITION 5.1. Suppose that (i’:')Q(P;') Jor all teR. Then if conditions (1) and (2) are satisfied we
have
x—3" @y,

where “P3) denotes the weak convergence of the distributions on D.

Note that under conditions (1) and (2) we have (see [4]):
x"—B" Py
We can apply this proposition to the case when
P" =P}, P" = P},
X" = ¢,L(m},M3), M = VTO) W,

where W is a Wiener process.
The process X" w.r.t. the measure Pj is a square integrable martingale with the triplet

B" = _I{|x|>l}*"§;'a Co = GROY<m >, i),

By conditions b) and d) of Theorem 2.1 it is evident that conditions (1) and (2) of Proposition 5.1
are satisfied. Hence

x" - N\ rayw.
Therefore the assertion of Proposition 5.1 implies that

x*—B" "N \rew, (5.11)

where B" is the first characteristic in the triplet of the semimartingale X" w.r.t. the measure i’; Now
we can show that

Py~ lim | By —¢3(6)<L (mj, M§ )L (N3, M5)>7| = 0. (5.12)

Define the semimartingale X by the relation

X' = X"—3AX"I{|AX"|>1). (5.13)
Since X" is a special semimartingale the unique decomposition

X' =M+4" (5.14)

takes place with a predictable A" .
On the other hand, (5.13) leads to

X' = X" —xI{1x| 2 1)y =) — X (11 31) 02,
and, consequently,
M = X"—xI{|x|=1}xpy —r2). (5.15)

Further, applying the traansformation formulas for the triplet of a semimartingale under absolutely
continuous change of a measure we have

B" = B"—¢,(0)<M",L(N},M})>P"
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Hence,
B"—¢2(O)<L(m§,M3),L(N3,M3)> = B"+¢,(0)<X"—M",L(N3,M5)>. (5.16)
By the Lindeberg condition and contiguity (i’; )<1(P7) we have
Py — lim B} = 0. (5.17)
n—>co

Thus to prove (5.12) we have only to show that
Py~ lim 4,()<X"—~M",.L(V§,M3)>r = 0. (5.18)
n—>

From (5.15) we have
x"-M = xI (15151 *(0x —vi).
Therefore
<X"-M'> = x2I{|x| >1}*vpx:- —-E(fo{ Ix| >l}v§*({s},dx))2.
Again, by the Lindeberg condition and contiguity of (Py) w.r.t. (P}) we have
Py —lim <X"—M">; = 0. (5.19)

n—>o0

Further by the Kunita-Watanabe inequality we have
$2(0)<X"—M",L(N},M})>}<<X"—M">r¢3(0)<L(N3,Mj)>1.

Now (5.12) follows from (5.17) and (5.19).
Hence by (5.11) and (5.12) we have

X" —2O)<L(m}, M3),L(N, Mz)> "5V VT @) w. (5.20)
To complete the proof of the theorem it remains to show that
P, — lim Z,B8, = 0. (5.21)
n—->o00

Since 13; —lim Z, = 0, (5.21) follows from the boundedness of 8, in probability 13;
n—>o0
We have

1
$2(6)| <L (mj, M3),L(N3,M§)>7| <597 (0X<L(mj,M§)>r+ <L(N§,M3)>1).
Now the required ‘boundedness’ follows from (5.4) and condition b) of Theorem 2.1. [

REMARK 5.2. Taking into consideration the notions introduced at the end of 2.4, Theorem 5.1 can be
restated in the following way:

THEOREM 5.2. Let &€C(m§)eME)NIMYE) and let condition (5.4) be satisfied. Then assertions of
Theorem 5.1 are valid.

Under the additional ergodicity condition that there exists a deterministic ‘second order shift’, the
estimator is asymptotically normal.

COROLLARY 5.1. If under the conditions of Theorem 5.1 there exists a deterministic limit
B(®) := Py — lim y~' @)3(6)<L(m}, M5), L (N3, M3)>1

then
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(=1 J’)_
& {67 (6)0, — O)}=>N (B(6), 71(0)

5.4. Suppose that martingales m§ and M, allow the integral representation (1.10) and the martingale
N also has the integral representation

N3() = / Ga(s, O)dn, + j Jan(s,x, 0)— v)dis,dx).
0 0E

Then L(Ng,Mj) can be represented as (for simplicity the arguments are omitted)
L(N§,M§) = Gyp'(n—gy<n>)+e,*(u—j),

where »j is the Pj-compensator of the measure p and

fp=—tndn G (5.23)
I+g,—g 1-g

Consequently,

<L(m§,M3),L(N3,M§)> = 4, G, <n>+(®, — 8"y, - " ws—36" 1" (1—a1),

where
#' = [y, T = fln(s’xW{s}’d")-

But taking into account an easily verified equahty —%

= 1—ay and equalities (1.18) and (1.23) we
can, finally, derive a formula which establishes the hmlfmg ‘second order shift’
B.(8) = ¢2(O)<L(m} M"),L(Nb',M" )>71
0 ) ~P..g..

= ¢.2.(9)[\I/,.G..'n+ ' — (1—a™)]
1+g,— & l*g,.

3.5. Example 1. Independent identically distributed observations. .
Consider a sequence of alternative regular experiments &, corresponding to densities

fx,0) = f(x,6)+ \/Ta)h(x ,0) with  [h(x,8)u(dx) = 0, @/ x)mdx)<oo. As we know
(P, )<I(Pg) for all O (the conditions of Lemma 5.1 are trivially satisfied; cf. [4]). -

In this case the representation (5.1) takes place with the martingale Nj(r) = > h(x;,0),0<t<1
and the conditions of Corollary 5.1 are trivially satisfied. Indeed, =

h
~lima )<L, M. LOGMG)>, = P lim o [YEID 7 gy
Wx, Oh(x,0)
j T M)

Therefore by the same Coro]lary 5.1

% f 58 TIOYO)
Iy
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Example 2. Estimation of a drift parameter of a diffusion type process.
Suppose that a,(s,x,0) = a,,(s,x,0)+¢,,(0)b,,(s,x, 9),b, are such that

lim hm PO {¢n(o)/bn(s,xaM>N} =0.

Noow n—>

Then (P3)<|(P}) and by formula (5.24)

N T
lim 5, (47 ' )0, —0) v (0302 (0) [ ¥ s, O)by(s,x,6)ds) = N (0, Y%
n—oo 0

Example 3. Multivariate point process.
The drift is calculated here directly by formula (5.24).

6. GLOBAL ASYMPTOTIC BEHAVIOUR OF SOLUTIONS TO AN EQUATION FOR M-ESTIMATOR

6.1. The theorems presented above are of a local character; in particular, Theorem 2.1 does by no
means guarantee the existence of a consistent solution to (1.11). It only states that for every fixed
0 = 6, a solution {0 }sn=1 to equation (1.11) exists such that

P}, — lim 8, = 6,
n—e0

In this connection the question arises whether consistent solutions to (1.11) can be constructed and
moreover, whether one can guarantee the consistency of all solutions to (1.11)?

Below we give sufficient conditions for the positive answer to this question. In the course of investi-
gating asymptotic properties of the solutions to (1.11) both for a fixed model (Theorem 2.1) and
under an alternative (Theorems 3.1 and 5.1) we have used Lemma 2.1. We have specified the function
L,(0) as the L-transformation L,(f) = Ly(m§,Mj3) and the measures Qf and the functions §(f) as
Qp = P§, ¢(6) = 0 and Qf = Pj, #(6) = b(0), respectively. On stipulating conditions a) and ) in
Lemma 2.1 we rely upon the indicated structure of the process L(mg,Mj).

To achieve the aim of this section we have to strengthen only condition c¢) of Lemma 2.1. We
assume below that ® = (a,b) is an interval from R, and for convenience, without loosing generality,
weseta = —ocoand b = +o0.

6.2. For every 0€© consider the set

0= {&,, }ns1:for every n=>1 5,, is a random variable and

S, = A
08— lim $2OL@,) = 0.

Evidently, the set Sy includes the set S, of all solutions to the equation

L,©6) = 0.

THEOREM 6.1. Let the following conditions be satisfied

(supC) there exists a &-continuous function A(8,8") of two arguments 6,6’ €© such that
(A) the equation A(6,8") = O has the unique solution & = &'(6);

(B) for any c,0<c<oo and p>0

nﬁ_ﬂQﬁ(lglllgcltbﬁ(%(O’)—A(ﬂ,l)’)l >p) = 0.

Then
1. the following alternative takes place: if €Sy, then either

05 —nlin;?i,. = 60, 6.1)
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or
Tim 03 {18, 1>c}>o0, 62
for any ¢,0<c<oo;

IL. if, in addition, the following condition holds:
(C*) lim |A@.8)| = c(6)>0,
1#1—>00

and for all p>0
Jlim 03 (gggwi(ﬂ)L..(ﬂ’)—A(&ﬂ’)l >p) =0,

then representation (6.1) takes place.

PROOF. Let
8 = (B)n>1€Ss
and assume that (6.2) is not satisfied. Then a number cy>0 can be found such that
1im 03 (18,1>co) = 0.
We have
03 (162O)LOG,)—A6,8,) >p) <03 {18, 1>co)
+05 {1920V La(0,)— A0,8,)1 >p, 18, | <co)
<Q3{18:1>¢0) + 03 sup 143OL.@)~A@,6)] >p) 0.

On the other hand,
03— im $JOLB,) = 0
and, hence,
Qi — limA@,4,) = 0. 63)

Assume now that (6.1) is not satisfied. Then =0 can be found such that
fim Q3 {16, — 01 >¢}>0.
n—00

By condition (A) for every >0 we have
A = inf 1A(8,6")| >0.

n
@:10—-013¢ 10| <c,
Therefore
Tim 05 (186,61 >89)> Fm 03 {146,6,)1 >4, 18, 1 <o)
> iim 0 {10, —01>¢, 16, 1 <co) >0,
n—>e0
which contradicts (6.3).
Taking into consideration that under condition (C*)

j ,1A(6,68))] >0
0’:0’58\"(![—6,0+¢)| ( 0I)I

and argueing as above, we easily arrive at the last assertion of the theorem. [
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COROLLARY 6.1. L. If conditions a), b), d), e) of Lemma 2.1 and conditions (4) and (B) are satisfied for
any 0€8, then there exists the solution § = (6,),>1 € Sso such that

(/] —"li_{gbn =00 6.4)

for any 6€®. A
I1. Besides, if condition (C™) is satisfied for any 6€®, then any sequence 6 = (0,)n>1ESsor has the same
property (6.4).

Proor. It suffices to construct a solution 0= (b,,),,>1 for which (6.2) does not take place for any
#e8. For any n=1 and €0 one can choose §; such that

|0, | <ess.inf |?9,, |+e¢ Qg—as.

€S
By Lemma 2.1 for any §€® there exists an estimator ?),, = A,,(H) such that
03 (L (0,() = 0} > 1 (65)
and
0} — lim4,(6) = ¢(0) (66)

For every ¢,0<c<co we have
Tim 0§ (1631 >c}< Fim 0 (1051 >0,L, (B, (@)20) + im 05 (165 =c,L,(6,(8) = 0}<
<imgj (L@ (@070} + lim 05 (16,(0)] +e=c).

The first term on the right-hand side of the last relation tends to zero by (6.5), and the second one
by (6.6). O «

6.3. As in Theorems 2.1 and 3.1 we can stipulate conditions sufficient for (supC) of Theorem 6.1, for
instance, in the case of a fixed model, ie. L,(6) = Ly(mj,M;) where (m§)edE),0'(0) = 0,
0 = Pi.

Note that for every n=>1 and z€® the process L,(z) is a semimartingale w.r.t. the measure P, so
that sufficient conditions for uniform ergodicity w.r.t. the parameter z (condition (supC)) can be
naturally formulated as certain restrictions imposed on the component with finite variation and on the
martingale component of the semimartingale L,(z). We shall give two types of such conditions
corresponding to two decompositions (1.23) and (1.24).

THEOREM 6.2. Let conditions of Theorem 2.1 hold, as well as conditions (B"): for any ¢>0,p>0,
B Tmei@ [ Ej<Lein,M§)>rdz = O;

16-21<c
(B) EmPy( sup_|6RONLOnE,MD),LOME MG, M)lr—A@:2)|>p) = 0.
Then there exists the consistent M-estimator b= {(},,},n =1 such that
Ly —$5 ' 0X0, — 0)>N O.TO)/ ).
PROOF. By the decomposition (1.24) we have
L(m},M}) = L(m;,Mp)+[L(m;,M?),L(M; —M§, Mp)]-
Evidently, it suffices to prove that condition (B) implies
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im P§( sup_ [$3@)Lr(m?,M5)1>p) = 0.
n—c0 lz—-0l<c
Indeed, argueing as in the course of establishing conditions sufficient for Theorem 2.1, we arrive at
the inequality
2 .n
Py( sup | 92O Lr(m, M5)| >p)<—-43(O)c [ <LGn:,Mj)>rdz
lz—6l<c [ Iz

—8|<c

+ﬁ¢:(a>Es <L(mj,M3)>1.

The second term in the right-hand side of (6.7) tends to zero by condition b) of Theorem 2.1. The
assertion of the theorem follows now from Corollary 6.1. O

REMARK 6.1. Typically, it is hard to verify the uniform ergodicity (as condition (B’;) involves the
unpredictable process [L(m},M?), L(M? — M}, M})]). The decomposition (1.23) allows us to present
slightly different conditions (B”): for any ¢>0,p>0
(B") Lm¢i@®) [ E3<Lim!,M,M3)>rdz = 0;

Ea PR TP

(") EmPi( sup_|93@)<L(m!,MD),L(My—M,,M,)>r—A0,2)| >p) = 0,

where I'.(m;',M}',M",) is the derivative w.r.t. z of the martingale component in the decomposition
(1.23) with m = m};,M = M},M = M},P = P}.

6.4. We will check conditions (B) and (B”) in the case of independent identically distributed observa-
tions. Using the notations of § 4, Example 1, we have

[ne)
[L(m?’M:)’L(M;—Ms)]t = .gl«xi,-o’Z)’

where
= Wx2) f(62)~f(x,0)
R T T
B <L, M3)>1 = n [ L5 ),
. [nr]
Lo, M2, M5) = 3 0xio2) ~ W 2)f G, D)
with
_ UMD (62)—Yx%,2)f(x,2)
Wx,2) Pz ,
and

1
AB1) = [@(x,0,2)f (x,O)u(dx) = W<L(m2',ME),€(M3 —M;,M;)>r.
Hence, condition (B",) is trivially satisfied and therefore conditions (B’) and (B"), respectively, take
the form: for any ¢ >0,p>0,

-2
, Y (x,z)
(B"1) |z-af|<cf f(x’a)p(dx)dz<oo,

SN T 1 ] _
@) Enro s | Sow0-06.1>9) = 0
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@) [ [ @2~ [$x2)f (. Op@x) S (x,0p(dx)dz < oo

lz-61<c
One can avoid conditions (B’) by taking into consideration the sufficient condition for uniform ergo-
dicity proposed in [10]: this leads, specifically, to the condition

@) [, sup_ 19x0,2)If G Opd)<co
for each ¢ >0, which is sufficient for (B",).
7. COMMENTS AND HISTORICAL REMARKS

7.1. The general scheme of statistical experiments is considered in IBRAGIMOV and HAS’MINSKHI [11].
The main object studied in this book, is a normalized likelihood ratio
p5+¢,u(T)
Zyu) = ——
W= "am

The method for investigating asymptotic properties of parameter estimators developed originally by
Le CaM [12] and HAJEK [13], is based on a certain behaviour of this ratio or some related parameter
dependent random variables (conditions of the local asymptotic normality (LAN) type, Helder type
w.r.t. the parameter, etc.) (see [27] for a survey of asymptotic theory of statistical decisions).

However, on considering particular schemes of models (ii.d. observations, diffusion processes,
point processes [5, 14, 7, 15, 16, 17, 18]), one needs conditions imposed on local characteristics of the
processes under study (on marginal densities, drift coefficients and intensities of jumps, respectively),
which guarantee the desired behaviour of Zj (u).

Treating separately each special scheme, one quickly notices certain common features of reasonings:
each time the problem is reduced to imposing useful conditions (which are wide enough) on the
characteristics of martingales M} (envolved in the exponential representation of likelihood ratio
processes pj(f),0<t<T). Moreover, the methods of investigating each particular scheme can be
classified in terms developed within special branches of martingale theory (such as the branches treat-
ing functional limit theorems, theorems on absolute continuity and contiguity, etc.)

In the present paper the asymptotic theory of estimation in viewed in this light (in the spirit of the
earlier works [19}-{21]). In order to mitigate technical difficulties we restrict the considerations to the
‘smooth’ case. The regularity conditions imposed on the scheme of models can be considered as a gen-
eralization of the conditions of the classical Dugue-Cramer [22] method.

7.2. Our approach leads naturally to the consideration of Eq. (1.11) for defining general type of esti-
mators, the so called M-estimators. Such estimators were treated by HUBER [9] in studying robustness
under model disturbance. We do not treat the questions risen in this field. Observe nevertheless that
the asymptotic behaviour of M-estimators under model disturbance, investigated here, lies on the
basis for the consequent study of construction problems of the robust estimators (see, e.g., [13], [24]
for robust estimators).

Expressing the main equation (1.11) in terms of L-transformations, we are able to formulate
elegantly our theorems. In the applications, however (see the examples in § 4,5,6), we give integral
representations of the martingales Mj defining the models.

Conclusions about the asymptotic behaviour of M-estimators take a rather complete character at
least under contigual alternatives ( § 5) (in the general scheme of the so called ‘contamination model’
due to HUBER [9]; for particular schemes see, €.g. [25,26]).]

7.3. We devote § 6 to the global asymptotic behaviour of M-estimators. This is motivated by the fol-
lowing observation. Under the undoubted influence of Cramer’s works, the statements concerning the
asymptotic behaviour of the estimators defined as solutions to certain equations, in particular, to the
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likelihood equations, are of a local character (cf. § 2-5 of the present paper) in the sense that for
eached fixed parameter value the existance of a solution to the equation under consideration is stated
which tends to a given parameter value (in other words, the identifiability of a parameter is proved
rather then the existence of a consistent estimator). The consistency of the MLE is usually proved by
the LAN technique where MLE is understood as the maximizor of the likelihood ratio.

From the practical point of view, however, it seems interesting to investigate the consistency of (all)
solutions of (1.11).

In particular cases these problems were treated by WALD, LE CaM, KENDALL and STUART, etc.
PERLMAN [10] presents a short historical review of the problem, as well as sufficiently wide conditions
for the consistency of all solutions of the likelihood equation based on i.i.d. observations.

The sufficient conditions presented in this paper (of uniform ergodicity) are slightly more restrictive
in the classical scheme then those of Perlman. This is caused, actually, by the fact that they are esta-
blished for the general equation (1.11) rather then for its particular case - the likelihood equation.
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