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Case I : p p'. Say a E p, a' E p' and a AUG(x1z x,)) a'. 
If lev(x2) > n then a'[n] = a[n] sop'[n] = p[n] = q[n]. 
Assume now that lev(x 2)~n. If also lev(x 1)~n then a[n] AUG(xi,x,l)a" with 
a"[n] = a'[n ]. Let p E q and c/> : a[n] ~ p[n ]. Since x 1 and x 2 are incomparable in a we also 
have that c/>(x 1) and c/>(x 2) are incom~arable in p so p AUG(p(x,). p(x,))) p', say, and since 
/ev(c/>(x 1))~n I\ lev(c/>(x 2))~n, p[n] A G(p(.,,), p(x,))) p" with p"[n] = p'[n]. Since afn] ~ p[n] 
we have a"~ p" so a'[n] = a''[n] ~ p"[n] = p'[n ]. If now q' = [p'] then q q' and 
p'[n] = [a'[n]] = [p'[n]] = q'[n]. 
The last case is lev(x1) > n and /ev(x 2) n. Then 3x 1': /ev(x 1') = n and a AUG(x,', x,)) a" 
and a"[n] = a'[n ]. So this reduces this case to the previous one. 

Case II : p FUSE ) p'. Say a E p, a' E p' and a FUSE(x,. x,)) a'. 
If lev(x 1) n and /ev(x 2) n then a[n] FUSE(x1z x,l) a" and a"[n] = a'[n]. Let p E q and 
c/>: a[n] ~ p[n]. Since (xi, x 2) is a matching pair in a, we have that (c/>(x 1), c/>(x 2)) is a matching 
pair in p so p FUSE(p(x,), p(.,,)) ) p', say, and since lev(c/>(x 1)) n I\ lev(c/>(x2)) n, 
p[n] FUSE(p(x,), p(x,))) p" with p"[n] = p'[n ]. Since a[n] ~ p[n] we have a" ~ p" so 
a'[n] = a"[n] ~ p"[n] = p'[n ]. If now q' = [p'] then q A&F) q' and 
p'[n] = [a'[n]] = [p'[n]] = q'[n]. 
If lev(x1) > n and lev(x2) n then 3x 1': lev(x 1') = n and a AUG(x,', x,)) a" and 
a"[n] = a'[n]. Case I "~" "~" gives 3p': p AUG(p(x,'.), p(x,))) p' and a''[n] = p'[n] so 
a'[n] ~ p'[n ]. If now q' = [p'] then q A&F) q' and p'[n] = [a'[n]] = [p'[n]] = q'[n ]. 
Case lev(x 1) n and lev(x2) > n: analogous. 
If lev(x 1) > n and lev(x 2) > n then a'[n] = a[n] so p'[n] = p [n] = q[n ]. 

ExAMPLE 5.2.8 We give a little explanation about lemma 5.2.6 and proposition 5.2.7 for the most 
difficult case namely 5.2.6.2.c and the corresponding Case II ">" "~" of proposition 5.2.7. Let 
p, p', q, q' be equal to respectively 

We have p FUSE) J&.' and p[l] = q[I] and since p'[l] =fa q[l] lemma 5.2.7 guarantees the existence of 
a q' such that q q' and p'[ l] = q'[ 1 ]. Indeed the q defined above satisfies q q' and 
p'[l] = q'[l]. 

DEFINITION 5.2.9 

1. syn : [!l(!U( !?A!Ur is defined by syn (p) = { q I p • q }. 
2. syn : !?A!Ur !?A!Ur is defined by syn (P) = U { syn (p) I p E P } . 
3. II : !?A!Ur X !?A!Ur !?A!Ur is defined by II = syn ° II ow-

The closures are taken to get closed sets and thus elements of !?A!Ur. Moreover, pomsets that contain 
infinitely many synchronizations are added in this way (see example 5.4.1). 

5.3. The parallel operator is non distance increasing 
PROPOSITION 5.3.1 syn : [!l(!U( !?A!Ur is non distance increasing. 
PRooF Let p, q E [!l(!U( such that p [n] = q[n ]. It suffices to show that 
d({p' Ip A&F)• p' }, { q' I q ~• q' }) i-n or equivalently p A&F)• p' 
3q' : q A&F) • q' I\ p'[n] = q'[n] and vice versa. This is done by induction on the number of steps 
in which p' is obtained from p. Let us denote this by p A&F) k p'. If k = 0 then p' = p, so we can 
tak~ q' = q. If p A&F) ~+ 1 p' then 3fk ~uch that p A&F) k Pk A&F) p'. By induction there ~ists 
a q' such that q A&F)• q' andpk[n] = q'[n]. By proposition 5.2.7 we have that eitherp'[n] = q'[n], 



18 

in which case we can take q' = if, or there exists a q' such that if A&F) q' and q'[n] = p'[n ]. The 
symmetric case is similar. D 

PROPOSITION 5.3.2 syn : ~ ➔ ~ is non distance increasing. 
PRooF This is a consequence of proposition 5.3.1 and a small adaptation of the appendix. □ 

PR0Pos1T10N 5.3.3 II : ~ X ~ ➔ ~ is non distance increasing. 
PRooF The composition of two N.D.I. mappings is again N.D.I. □ 

5.4. Denotational semantics 
In the previous subsection we showed that II is a non-distance-increasing mapping. So lemmas 
4.3.1.3, 4.3.1.4, and 4.3.1.5 hold in the new setting. We can now give the denotational semantics for 
the extended language in the same way as we did in subsection 4.3 by substitution of the old II by the 
new 11 -
ExAMPLE 5.4.1 Let d(x ) = a ;(b li c) ;x and d(y) = a;(c 11 d);y. Then~(< d I x >) contains for 
instance: 

... ] 
and ~ (< d I y > ) contains for instance : 

So~(< d I x IIY >) contains for instance : 

. l 
but also : 

6. Appendix 
In this appendix, it is shown that lemma 4.3.1.3 is a consequence of lemma 4.3.1.1 by applying some 
metric techniques. 

LEMMA 6.1 Let M 1, ... , Mn and M be metric spaces. 
Let/: M1 X ... X Mn ➔ M with AX;.j(x1, .. . , X;, ... , Xn): M; ➔Y, M. 
Then F : & nc(M 1) X .. . X & 0,(M0 ) ➔ & 0,(M) defined by 
F(A1, ... ,An) = {J(a1, ... , an) I a; E A;, i = I, ... , n} satisfies 
M;.F(A J, ..• , A;, ... , An); &nc(M;) ➔Y, &nc(M). 



PRooF We have to show that 
d(F(A 1, ••• , A;, ... , An), F(A 1, ... , A';, ... , An) ,;;;; Y; · d(A;, A';) 

or equivalently : 
v't:>0: d(F(A 1, ... , A;, ... , An), F(A 1, .. . , A';, ... ,An),;;;; Y; · d(A;, A';) + t:. 

19 

Let x E F(A1 , ... , A;, ... , An)- We will show that there exists any E F(A 1, ... ,A';, ... , An) such that 
d(x, y) ,;;;; Y; · d(A;, A';) + t: (the other part is analogous). 
Since x E { f (a1, .. . , an) I a; EA;, i = 1, ... , n }, there exist a 1, ... ,an such that 

£ 
d(x, f (a1, ... , a,.)) .;;;; 2. By the definition of the Hausdorff distance, 

3a'; EA'; : d(a;, a';) ,;;;; 
2 

t: + d(A;, A';). Take y = f (a 1, ... , a';, ... , an)-
Y; + 1 

Now d(x, y),;;;; d(x, f (a1, ... , an)) + d(f (a1, ... , a;, ... , an), f (a1, ... , a';, ... , an)) 
,;;;; d(x, f(a1, ... , an)) + Y; · d(a;, a';) 

( ( ,;;;; 2 + Y; · ( 
2

y; + l + d(A; , A';)) .;;;; t: + Y; · d(A;, A';). □ 

To show lemma 4.3.1.3, let M 1 = 9(U(\ {[]} and M 2 = M = 9(U( and let 
f = • t (M I X M 21 : M I X M 2 ➔ M. By lemma 4.3.1.1 f satisfies the premise of the lemma with 
y1 = 1 and Y2 = 2 . The derived F is equal to • on~ X ~ restricted to &' nc(M 1) X ~. 

That is, Fis restricted in its first argument to pomset-sets that do not contain the empty pomset. The 
derived property of Fis exactly the one formulated in lemma 4.3.1.3, since~ is an ultra-metric 
space. 
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