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in which case we can take ¢ = é’—, or there exists a ¢’ such that ? A4F s 7 and ¢[n] = p'[n]. The
symmetric case is similar. d

ProrosITION 5.3.2 syn : PZAH* — PAH* is non distance increasing.
Proor This is a consequence of proposition 5.3.1 and a small adaptation of the appendix. 0

ProposITION 5.3.3 || : PAM* X PAH* — POA* is non distance increasing.
Proor The composition of two N.D.I. mappings is again N.D.L. a

5.4. Denotational semantics

In the previous subsection we showed that | is a non-distance-increasing mapping. So lemmas
4.3.1.3, 4.3.1.4, and 4.3.1.5 hold in the new setting. We can now give the denotational semantics for
the extended language in the same way as we did in subsection 4.3 by substitution of the old || by the

new ||.
ExampLE 5.4.1 Let d(x) = a;(b|c);x and d(y) = a;(c||d);y. Then (< d | x >) contains for
instance :

PN NN
e

S

C

and 9(< d | y >) contains for instance :

L
T W
i . T ™
\‘d/ \d/' \d/' \d/'
but also :
[a——b—-c—~a—-b—-c——a—-b——c——a—-b—-c—-a :|
6. Appendix

In this appendix, it is shown that lemma 4.3.1.3 is a consequence of lemma 4.3.1.1 by applying some
metric techniques.

Lemma 6.1 Let My, ..., M, and M be metric spaces.

Let f: M) X ... X M, - M with Ax;.f (X1, ey Xjy woey X)) 1 M; 57 M.
Then F : 2, (M) X .. X 2, (M,) > 2,(M) defined by

F,, .,A,)={f(a,..,a,)|ae€d,i=1,..,n} satisfies

M .F(Ay, .., 4; ..., A) : P, (M) >" P, (M).
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Proor We have to show that

d(F Ay, ..., 4, ..., Ay), F(Aq, ..., A}y oy Ay) < 7v;-d(4;, A")
or equivalently :

Ve>0:d(F(Ay, ..y Ajy oy Ay), F(Ay, oy Ay oy Ay) < v, -d(4;, A’) + €.
Let x € F(4,, .., 4;, ..., A,). We will show that there exists an y € F(4,, ..., 4, ..., A,) such that
d(x, y) <v;-d(4;, A’})) + € (the other part is analogous).
Since x e€{f(ay,..,a,)|a €A4;,i=1.,n}, there exist ay, ..a, such  that
d(x, f(ay, ..., a,)) <§. By the definition of the Hausdorff distance,

3a',~ € A,,' : d(a,-, a,,') < ﬁ + d(Ai, A,i)’ Takcy = f(a], veny a',-, casy a,,).
Now d(x, ¥) < dx [ @15 s @) + AU @15 555 iy 05 @) [ (@15 00005 Tis ey @)
<d(x, f(ay, .., a,) + v, d(a, a’)

€ €
—d oy (——— 4+ dd, A) <€+ 7y -d, A).
> T (2Y.~+1 A, A7) <e+ vy -d4;, A) O

To show lemma 43.13, let M, =P \{[]}] and M, =M =P and Ilet
f=el(M; X M;): My X My - M. By lemma 4.3.1.1 f satisfies the premise of the lemma with
y1 = land y; = 5. The derived F is equal to e on ZQ#* X PA#* testricted to P,.(M,) X PAN*.
That is, F is restricted in its first argument to pomset-sets that do not contain the empty pomset. The
derived property of F is exactly the one formulated in lemma 4.3.1.3, since ZQ#* is an ultra-metric
space.
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