

17

Case I : p p'. Say a E p, a' E p' and a AUG(x1z x,)) a'.
If lev(x2) > n then a'[n] = a[n] sop'[n] = p[n] = q[n].
Assume now that lev(x 2)~n. If also lev(x 1)~n then a[n] AUG(xi,x,l)a" with
a"[n] = a'[n]. Let p E q and c/> : a[n] ~ p[n]. Since x 1 and x 2 are incomparable in a we also
have that c/>(x 1) and c/>(x 2) are incom~arable in p so p AUG(p(x,). p(x,))) p', say, and since
/ev(c/>(x 1))~n I\ lev(c/>(x 2))~n, p[n] A G(p(.,,), p(x,))) p" with p"[n] = p'[n]. Since afn] ~ p[n]
we have a"~ p" so a'[n] = a''[n] ~ p"[n] = p'[n]. If now q' = [p'] then q q' and
p'[n] = [a'[n]] = [p'[n]] = q'[n].
The last case is lev(x1) > n and /ev(x 2) n. Then 3x 1': /ev(x 1') = n and a AUG(x,', x,)) a"
and a"[n] = a'[n]. So this reduces this case to the previous one.

Case II : p FUSE) p'. Say a E p, a' E p' and a FUSE(x,. x,)) a'.
If lev(x 1) n and /ev(x 2) n then a[n] FUSE(x1z x,l) a" and a"[n] = a'[n]. Let p E q and
c/>: a[n] ~ p[n]. Since (xi, x 2) is a matching pair in a, we have that (c/>(x 1), c/>(x 2)) is a matching
pair in p so p FUSE(p(x,), p(.,,))) p', say, and since lev(c/>(x 1)) n I\ lev(c/>(x2)) n,
p[n] FUSE(p(x,), p(x,))) p" with p"[n] = p'[n]. Since a[n] ~ p[n] we have a" ~ p" so
a'[n] = a"[n] ~ p"[n] = p'[n]. If now q' = [p'] then q A&F) q' and
p'[n] = [a'[n]] = [p'[n]] = q'[n].
If lev(x1) > n and lev(x2) n then 3x 1': lev(x 1') = n and a AUG(x,', x,)) a" and
a"[n] = a'[n]. Case I "~" "~" gives 3p': p AUG(p(x,'.), p(x,))) p' and a''[n] = p'[n] so
a'[n] ~ p'[n]. If now q' = [p'] then q A&F) q' and p'[n] = [a'[n]] = [p'[n]] = q'[n].
Case lev(x 1) n and lev(x2) > n: analogous.
If lev(x 1) > n and lev(x 2) > n then a'[n] = a[n] so p'[n] = p [n] = q[n].

ExAMPLE 5.2.8 We give a little explanation about lemma 5.2.6 and proposition 5.2.7 for the most
difficult case namely 5.2.6.2.c and the corresponding Case II ">" "~" of proposition 5.2.7. Let
p, p', q, q' be equal to respectively

We have p FUSE) J&.' and p[l] = q[I] and since p'[l] =fa q[l] lemma 5.2.7 guarantees the existence of
a q' such that q q' and p'[l] = q'[1]. Indeed the q defined above satisfies q q' and
p'[l] = q'[l].

DEFINITION 5.2.9

1. syn : [!l(!U(!?A!Ur is defined by syn (p) = { q I p • q }.
2. syn : !?A!Ur !?A!Ur is defined by syn (P) = U { syn (p) I p E P } .
3. II : !?A!Ur X !?A!Ur !?A!Ur is defined by II = syn ° II ow-

The closures are taken to get closed sets and thus elements of !?A!Ur. Moreover, pomsets that contain
infinitely many synchronizations are added in this way (see example 5.4.1).

5.3. The parallel operator is non distance increasing
PROPOSITION 5.3.1 syn : [!l(!U(!?A!Ur is non distance increasing.
PRooF Let p, q E [!l(!U(such that p [n] = q[n]. It suffices to show that
d({p' Ip A&F)• p' }, { q' I q ~• q' }) i-n or equivalently p A&F)• p'
3q' : q A&F) • q' I\ p'[n] = q'[n] and vice versa. This is done by induction on the number of steps
in which p' is obtained from p. Let us denote this by p A&F) k p'. If k = 0 then p' = p, so we can
tak~ q' = q. If p A&F) ~+ 1 p' then 3fk ~uch that p A&F) k Pk A&F) p'. By induction there ~ists
a q' such that q A&F)• q' andpk[n] = q'[n]. By proposition 5.2.7 we have that eitherp'[n] = q'[n],

18

in which case we can take q' = if, or there exists a q' such that if A&F) q' and q'[n] = p'[n]. The
symmetric case is similar. D

PROPOSITION 5.3.2 syn : ~ ➔ ~ is non distance increasing.
PRooF This is a consequence of proposition 5.3.1 and a small adaptation of the appendix. □

PR0Pos1T10N 5.3.3 II : ~ X ~ ➔ ~ is non distance increasing.
PRooF The composition of two N.D.I. mappings is again N.D.I. □

5.4. Denotational semantics
In the previous subsection we showed that II is a non-distance-increasing mapping. So lemmas
4.3.1.3, 4.3.1.4, and 4.3.1.5 hold in the new setting. We can now give the denotational semantics for
the extended language in the same way as we did in subsection 4.3 by substitution of the old II by the
new 11 -
ExAMPLE 5.4.1 Let d(x) = a ;(b li c) ;x and d(y) = a;(c 11 d);y. Then~(< d I x >) contains for
instance:

...]
and ~ (< d I y >) contains for instance :

So~(< d I x IIY >) contains for instance :

. l
but also :

6. Appendix
In this appendix, it is shown that lemma 4.3.1.3 is a consequence of lemma 4.3.1.1 by applying some
metric techniques.

LEMMA 6.1 Let M 1, ... , Mn and M be metric spaces.
Let/: M1 X ... X Mn ➔ M with AX;.j(x1, .. . , X;, ... , Xn): M; ➔Y, M.
Then F : & nc(M 1) X .. . X & 0,(M0) ➔ & 0,(M) defined by
F(A1, ... ,An) = {J(a1, ... , an) I a; E A;, i = I, ... , n} satisfies
M;.F(A J, ..• , A;, ... , An); &nc(M;) ➔Y, &nc(M).

PRooF We have to show that
d(F(A 1, ••• , A;, ... , An), F(A 1, ... , A';, ... , An) ,;;;; Y; · d(A;, A';)

or equivalently :
v't:>0: d(F(A 1, ... , A;, ... , An), F(A 1, .. . , A';, ... ,An),;;;; Y; · d(A;, A';) + t:.

19

Let x E F(A1 , ... , A;, ... , An)- We will show that there exists any E F(A 1, ... ,A';, ... , An) such that
d(x, y) ,;;;; Y; · d(A;, A';) + t: (the other part is analogous).
Since x E { f (a1, .. . , an) I a; EA;, i = 1, ... , n }, there exist a 1, ... ,an such that

£
d(x, f (a1, ... , a,.)) .;;;; 2. By the definition of the Hausdorff distance,

3a'; EA'; : d(a;, a';) ,;;;;
2

t: + d(A;, A';). Take y = f (a 1, ... , a';, ... , an)-
Y; + 1

Now d(x, y),;;;; d(x, f (a1, ... , an)) + d(f (a1, ... , a;, ... , an), f (a1, ... , a';, ... , an))
,;;;; d(x, f(a1, ... , an)) + Y; · d(a;, a';)

((,;;;; 2 + Y; · (
2

y; + l + d(A; , A';)) .;;;; t: + Y; · d(A;, A';). □

To show lemma 4.3.1.3, let M 1 = 9(U(\ {[]} and M 2 = M = 9(U(and let
f = • t (M I X M 21 : M I X M 2 ➔ M. By lemma 4.3.1.1 f satisfies the premise of the lemma with
y1 = 1 and Y2 = 2 . The derived F is equal to • on~ X ~ restricted to &' nc(M 1) X ~.

That is, Fis restricted in its first argument to pomset-sets that do not contain the empty pomset. The
derived property of Fis exactly the one formulated in lemma 4.3.1.3, since~ is an ultra-metric
space.

7. References
[ABKR89] P. AMERICA, J.W. DE BAKKER, J.N. KoK, JJ.M.M. RUTTEN, Denotational semantics of a

parallel object-oriented language, Information and Computation, Vol. 83, pp. 152-205,
1989.

[AR89] P. AMERICA, J.J.M.M. RUTTEN, Solving reflexive domain equations in a category of com­
plete metric spaces, Journal of Computer and System Sciences, Vol 39, nr. 3, pp.343-375,
1989.

[B88] J.W. DE BAKKER, Comparative semantics for flow of control in logic programming without
logic, Report CS-R8840, Centre for Mathematics and Computer Science, Amsterdam
(1988), to appear in Information and Computation.

[B89] J.W. DE BAKKER, Designing concurrency semantics, in: Information Processing 89, G.X.
Ritter (ed.), Elsevier, pp. 591-598, 1989.

[BBKM84] J.W. DE BAKKER, J.A. BERGSTRA, J.W. KLOP, J.-j.CH. MEYER, Linear time and branching
time semantics for recursion with merge, Theoretical Computer Science 34 (1984) 135-
156.

[BKMOZ86] J.W. DE BAKKER, J.N. KoK, J.-J.CH. MEYER, E.-R. OLDEROG, J.I. ZucKER, Contrasting
themes in the semantics of imperative concurrency, in Current Trends in Concurrency:
Overviews and Tutorials (J.W. de Bakker, W.P. de Roever, G. Rozenberg, eds.), Lecture
Notes in Computer Science, Vol. 224, Springer (1986) 51-121.

[BM88) J.W. DE BAKKER, J.-J.CH. MEYER, Metric semantics for concurrency, BIT 28, pp. 504-529,
1988.

[BRR89) J.W. DE BAKKER, W.P. DE RoEvER, G. RozENBERG (eds.), Linear Time, Branching Time
and Partial Order, Proc. REX School/Workshop, Noordwijkerhout, June 1988, Lecture
Notes in Computer Science, Vol. 354, Springer 1989.

[BR89] J.W. DE BAKKER, JJ.M.M. RUTTEN, Concurrency semantics based on metric domain equa­
tions, Report CS-R8954, Centre for Mathematics and Computer Science, Amsterdam
(1989).

[BZ82] J.W. DE BAKKER, J.I. ZucKER, Processes and the denotational semantics of concurrency,
Information and Control 54 (1982) 70-120.

20

[BoCa88]

[Ga89]

[Gi84]

[Gr81]
[KR88]

[MV89]

[Pr86]

G. BounoL, I. CAsTELLANI, Concurrency and atomicity, Theoretical Computer Science 59
(1988) 25-84.
H . GAIFMAN, Modeling concurrency by partial orders and nonlinear transition systems, in
Proc. REX School/Workshop, Noordwijkerhout, June 1988, (J.W. de Bakker, W.P. de
Roever, G. Rozenberg, eds.), Linear Time, Branching Time and Partial Order, Lecture
Notes in Computer Science, Vol. 354, Springer (1989), 467-488.
J. GISCHER, Partial orders and the axiomatic theory of shuffle, Ph.D. thesis, Stanford
University, 1984.
]. GRABowsKI, On partial languages, Fundamenta Informaticae IV.2 (1981) 427-498.
J.N. Kox, J.J.M.M. RurrEN, Contractions in comparing concurrency semantics, in Proc.
15th ICALP (f. Lepisto, A. Salomaa, eds.), Lecture Notes in Computer Science, Vol.
317, Springer (1988), 317-332. (fo appear in Theoretical Computer Science.)
J.-J.Ch. Meyer, E.P. de Vink, Pomset semantics for true concurrency with synchronization
and recursion (extended abstract), in Proc. MFCS '89 (A Kreczmar & G. Mirkowska,
eds.), Lecture Notes in Computer Science, Vol. 379, Springer (1989), 360-369.
V. PRATT, Modelling concurrency with partial orders, Int. Journal of Parallel Program­
ming 15 (1986) 33-71.

