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Abstract 

This report presents a novel two-parameter geometric graph, the -y-neighborhood 
graph. This graph unifies a number of geometric graphs such as the convex hull, 
the Delaunay triangulation, and in 2D also the Gabriel graph, and the cirde-based /3-
skeleton, into a continuous spectrum of geometric graphs that ranges from the void, to 
the complete graph. The two parameters provide for a great flexibility in the analysis 
of a set of sites. For specific ranges of the parameters, the corresponding graph can be 
efficiently constructed. 
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1 Introduction 

In the computational geometry discipline, old and new geometric techniques are brought 
together and unified. An example of this is the development in geometric graphs. A major 
unifying effect in computational geometry was brought about by the Delaunay triangulation 
[De1281 Del34], and its dual Voronoi diagram [Vor08] . Old geometric graphs such a.s the 
convex hull and the Euclidean min.imwn spanning tree, and new, parameterized graphs such 
as the a-shape [EKS83] and the ,B-skeleton [KR85] are intimately related to the Delaunay 
triangulation. An even more general graph is presented in this paper: the 1 -neighborhood 
graph. It is a two-parameter graph, unifying the Delaunay triangulation, convex hull and 
t he ,8-skeleton into a continuous spectrum of geometric graphs ranging from the void to 
the complete graph. 

In [KR85] it is said that a geometric graph describes the internal shape of a set of 
sites, when it connects essential neighbors among the essential sites. The external shape is 
desc.ribed when the graph connects essential neighbors among the essential extreme sites. 
In which way sites or pairs of sites are essential is determined by the definition of the graph 
or, when appropriate, the neighborhood. It will be shown that the 1-neighborhood graph 
can describe the internal, as well as the external shape. 
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Before the -y-neighborhood graph is introduced in section 3, the next section gives an 
introductory overview of geometric graphs and some relations between them. Section 4 
gives some examples of the -y-neighborhood graph for specific choices of the parameters. 
Section 5 deals with the computation of the -y-neighborhood graph, and the resulting 
computational complexities. Section 6 finally, shortly explains how the graph is used in 
computational morphology, specifically in finding an external shape for a set of sites. 

2 Overview of geometric graphs 

Some of the graphs mentioned in this section are truly proximity or neighborhood graphs. 
Such graphs join two sites by an edge when a certain neigh.borhood is empty. The neigh­
borhood is called empty if no sites lie in its interior, except when an entire half-space is 
involved. A half-space with its boundary through :i:1 , ... , :i:1c, is called empty if no sites lie 
in the open half-space; sites may lie on the boundary of the half-space except inside or on 
the (k - l)D polygon through zi, . .. , :i:,.. For example in 2D, a half-plane through z 1 and 
:i:2 is empty if the open half-plane is empty, and no sites lie on the line segment between 
:i:1 and :i:2 (but sites may lie on the boundary of the half-plane outside that segment). A 
sphere of infinite radius is also considered a half-space. 

In the following, all distances are Euclidean, and N denotes the number of sites. 

2.1 Definitions 

Closest pairs ( CP). The closest pairs of a set of sites are the pai:rs of sites that have 
the smallest distance to each other, among all pairs. Note that there can be more 
than one closest pair. CF is disconnected, except for N = 2, or when all sites are 
equidistant. 

Nearest neighbors graph (NNG). In the nearest neighbor graph, each site is con­
nected to the site that is nearest. Since all the pairs of sites that are each others 
nearest neighbor contain the pairs with the smallest distance of all, CP ~ NNG. In 
general NN G is disconnected. 

Euclidean minimum spanning tree (EMST). This graph is connected and has no cy­
cles. EMST is spanning in the sense that it connects all sites, and minimum with 
respect to the sum of all Euclidean dist<mces between connected sites. In EMST, ea.eh 
site is connected to its nearest neighbor , and thus NNG ~ EMST. NNG actually is 
a minimum spanning forest, so in the special case that it is connected, it coincides 
with EMST. 

Infinite strip graph ( oo-SG ) . Two sites :z: and y are connected if and only if the infinite 
strip bounded by two parallel planes through :z: and y, that are perpendicular to :z: - y, 
is empty. The EMST must also connect such a pair of sites in order to be connected, 
except when two strips coincide for different pairs of sit es. So in non-degenerate cases 
oo-SG ~ EMST. 

Sphere of influence graph (SIG). The SIG is introduced by Toussaint [Tou88]. For 
each site :z:, let r"' be the distance to the closest site. The sphere of influence graph 
connects two sites z and y, if and only if the spheres with radii rz and ry, and 
centered at :z: and y respectively, intersect in more than one point. Clearly, each site 
is connected to its nearest neighbor, so that NNG ~ SIG. 
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Relative neighborhood graph (RNG ). Two sites :Z:i and Zj are defined to be relatively 
close if 

d(:z:i,:z:j) :'.5 max{d(:z:i,:z:l),d(:z:j,:z:1)}, for all I ':I i,j. 
For arbitrary :z:,, d(:z:i, Zj) :c; max{d(:z:i, :z:1), d(:z:j, zz)}, if z1 does not lie in the inte­
rior of the intersection of the two spheres centered at :z:i and :z: i and with radius 
d(zi, :Z:j). The intersection is called the r€lative neighborhood, and two sites are rela­
tive neighbors , if t heir relative neighborhood is empty. The RNG connects all relative 
neighbors. In the original definition by [Lan69], the ":'.5" is replaced by a "<", but 
the above definition has become common in computational geometry [Tou80), and 
corresponds to the notion of "empty neighborhood". It is shown in [Tou80) that 
EMST ~ RNG. 

Gabriel graph (GG). The Gabriel neighborhood (named after [GS69)) of two sites :z: 
and y is the smallest sphere through :z: and y, which has radius d(:z:, y)/2. Because 
the Gabriel neighborhood is contained in the relative neighborhood, it is empty when 
the latter is empty, and therefor RNG ~ GG. 

Convex hull (CH). The convex hull of a set of sites is the smallest polytope containing 
all the sites. Indeed this polytope is convex. The CH connects k sites with each 
other if a half-space with its boundary through these sites is empty in the sense 
stated at the beginning of this section. As a result, if k + 1 or more sites on the 
CH lie in a plane, the faces are kept ( k - 1 )-simplicial (a simplex or k-simplex is the 
k-dimensional analogue of the triangle in the plane and the tetrahedron in 3-space, 
having k + 1 vertices). 

Delaunay triangulation (DT). In [Vor08) a partitioning of space into simplices Li is 
defined, which is therefore called an £-subdivision or £-partition. A definition of the 
£-subdivision given by Delaunay [Del28, Del34], defines a simplex to be part of the 
£-subdivision if the sphere through its vertices, which are some sites from S, con­
tains no other sites. The £-subdivision is therefore called Delaunay triangulation, or 
sometimes closest point Delaunay triangulation. In three-dimensional space, we can 
call this a Delaunay tetrahedralization, although in general k-space this subdivision 
is still called a triangulation. 

In the case that more than k + 1 sites lie on a sphere, connecting all these sites 
with each other would generate overlapping simplices. Instead, the DT arbitrarily 
connects sites to generate non-overlapping simplices that fill the space enclosed by 
the convex hull of these sites. A degenerate Delaunay triangulation is therefore not 
unique. 

Clearly an empty sphere passes through the end-points of each edge in a Delaunay 
triangulation. Conversely, if an empty sphere passes through two sites, then there 
is a largest possible empty sphere through these two sites. This sphere either passes 
through k - 1 other sites, or through k - 2 other sites and has an infinite radius. 
In the latter case, the "sphere" is a half-space, and the two end-points lie on the 
convex hull. In both cases the two sites form an edge in the Delaunay triangulation. 
It follows immediately that CH~ DT and GG ~ DT. 

Because the sphere through the vertices of a simplex in th e DT is empty, the two 
spheres through k sites of any simplex, can be regarded as "the Delaunay neighbor­
hood". 
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a-shape. The notion of a parameterized generalized disc is introduced in [EKS83]. Ag.en­
eralized disc of radius 1/a is defined as a disc of radius 1/o: if o: > 0, the complement 
of a disc of radius 1/( -a) if o: < 0, and a half-space if a = O. For an arbitrary real 
a and a set S of sites in the plane, the a-hull of S is defined as the intersection of 
all closed generalized discs of radius 1 /a that contain all the sites of S. Replacing 
circular arcs on the bound ary of the a-hull by straight edges gives the a-shape. This 
definition is easily generalized to higher dimensions, r.eplacing disks by spheres, and 
straight edges by flat triangles. The a-shape is a subgraph of the closest point Delau­
nay triangulation, if a .2: 0, and a subgraph of the so-called furthest point Delaunay 
triangulation if a ::; 0. The 0-shape coincides with the convex hull. 

,B-skeleton. The /3-skeleton is a planar pa.xameterized graph, introduced! in a lune-based 
and a circle-based variant [KR85]. The following definition is a slightly modified 
version of the original, in order to normalize the parameter to lie between -1 and 1. 
The lune-based ,8-neighborhood for two sites :z: and y is 

1. the intersection of two circles of radius d( z, y)/2(1 + /3) that pass through z; and 
y, if /3 E [-1, 0), 

2. the intersection of two circles of radius d(z,y)/2(1- /3) centered at the points 
:z: + (y - :z:)/3/2 and y + (:z: - y),8/2:, if f3E[O,1). 

The circle-based ,B-neighborhood for two sites z and y is 

1. the intersection of two circles ofradius d(z, y)/2(1 + /3) that pass through z; and 
y, if /3 E [-1, OJ, 

2. the union of two circles ofradius d(:z:, y)/2(1 - ,8), that pass through z; and y, if 
/3 E (0, 1]. 

The /3-skeleton connects those sites whose ,8-neighborhood is empty. When f3 = 0, 
both the lune-based and the circle-based neighborhood coincide with the Gabriel 
neighborhood. Both ,B-neighborhoods contain the Gabriel neighborhood when f3 < 0, 
so that the corresponding skeletons are contained in the GG. When f3 = 1/2 the 
lune-based /3-neighborhood reduces to the r elative neighborhood. When f3 = 1, 
the lune-based skeleton reduces to oo-SG, and the circle-based skeleton to the void 
graph. For /3 = - 1, both oSkeletons reduce to the complete graph if no three sites are 
collinear. The spectrum of ,8-neighborhoods for the whole range of the para.meter is 
illustrated in figure 1. The generalization of the lune-based /3-neighborhood to higher 
dimensions is straightforwa.xd. Nothing is said in [KR85] about a higher dimensional 
circle-based /3-neighborhood. The lune-based /3-skeleton is used for the analysis of 
empirical networks. 

The convex hull and its parameterized generalization, the a-shape, describe aspects of 
the external structure of a set of sites . All other geometric graphs mentioned here describe 
different aspects of the internal structure. The inclusion relations between all these graphs 
is depicted in figure 2. 
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lune 
based: 

circle 
based: 

-1 

CD . . 

' CD 
-1/2 0 1/2 

Figure 1: OveMJiew of the spectrum of planar {3-neighborhoods. 

Figure 2: Dependencies between geometric graphs. a represents the a-shape, f3l the lune­

based, f3c the circle-based {3-skeleton, and -rthe /-graph. The void and the com­
plete graph are omitted. GraphJ +- graph2 denotes graph1 ~ gro.ph2, and graph1 
~ graph2 indicates that the parameterized graph1 reduces to graph2 for specific 

parameter values. 
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2.2 Computational complexities 

The following table lists the time complexities to compute the graphs, and the references 
where these results can be found. 

2D kD 
upper bound reference upper bound reference 

CP 0(NlogN) [BS76] 0(N logN) (BS76] 
NNG 0(NlogN) [BS76] O(N(logN)1c-i) [BS76] 
EMST 0(NlogN) [SH75] O(NZ) [Pri57] 
oo-SG O(NZ) O(NZ) 
SIG 0(NlogN) [Tou88] O(NZ) 
RNG 0(NlogN) [Sup83] O(Na) [Tou80) 
GG 0(NlogN) [MS80) O(N") 
DT 0(NlogN) [LS80] O(Nl+l lc/ 21) [Bro79) + [Sei81) 
CH 0(NlogN) [PH77J O(Nll1c+11121) [Sei81] 
Q'.-shape 0(NlogN) [EKS83] O(N1+11e121) (EKS83] 
..61-skeleton O(N2

), O(Na) (KR85] O(N 3
) 

.Be-skeleton O(NlogN), O(Na) [KR85] 

I do not know a reference for the oo-SG. But since oo-SG ~ EMST, one can examine 
each of the N - 1 edges in the EMST, and check if any site lies in the infutite strip. This 
checlc takes O(N) time, giving a. total of O(N2 ). 

The higher dimensional SIG can be constructed after computing the NNG, by exam­
ining each of the O(N2 ) pairs of sites in constant time, yielding O(N2) total time. The 
higher dimensional GG can be constructed by taking all O(N2) pairs of sites, and examine 
each neighborhood for inclusion of all N - 2 other sites. This results in O(N 3 ) time. 

The planar lune-based ,B-skeleton (denoted by f31 in the table above) is a subgraph of 
the GG when /3 ~ 0. Examining all the O(N) edges of the GG takes O(N) time per edge, 
giving a total of O(N2 ). The planar circle-based {3-skeleton (/3c) is also a subgraph of the 
GG when /3 ~ 0. Checking whether the Delaunay neighborhood of each edge in the GG 
contains the circle-based /3-neighborhood takes constant time, giving order O(N log N). 
The O(N3

) time applies to the case /3 < 0, and results from a brute force algorithm, 
just as the O(N3 ) for the higher dimensional lune-based {3-skeleton (remember that the 
circle-based ft-skeleton has no direct higher dimensional analogue). 

3 The 1 -neighborhood graph 

In this section the 1 -neighborhood graph is defined for arbitrary dimension k. In the fol­
lowing we will use '1-graph', '1( )'0 , 11 )-graph', or simply '1(10 , 1i)' and similar expressions, 
to denote the appropriate neighborhood graph. 

In the definition of the 1-graph we use the following notation: for k ~ 2, r( x1 , ... , z 1c) 
denotes the radius of the smallest sphere through sites z1, ... , z1c in kD space. Thus for 
k = 2, r(z1,z2) equals d(xliz2)/2. 

The neighborhood graph 1(10 ,11 ) is defined for - 1 ~ 10,11 ~ 1, and 1101 ~ 1111· 
In kD space, the graph connects sites zli ... , z1c pairwise (k(k - 1)/ 2 edges) if an empty 
neighborhood N("Y0 , 1 1 ) is associated with these sites, that is defined by two kD spheres in 
the following way: 
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l. the spheres have radii r( x1, ... , Xk)/(l- l 101)1/(k-l) and r( xi, ... , Xk) /(l - h'1 l)1/(lc-l), 

2. if 7 0 71 < 0, the centers of the spheres lie on the same side of th.e plane through 
x 1 , . .. , x k, if/ 0 7 1 > 0 the centers lie on both sides of that plane, 

3. if 7 1 ::; 0, we take the intersection of the two spheres, if 1 1 2: 0, we take the union. 

Note that there can be two neighborhoods if /o and 7 1 are both non-zero, and that t he 
graph connects :z:1 , ... , :z:1c, as soon as one neighborhood is empty. Note further that this 
definition is valid for /o = / 1 = 0. In that case, the two spheres coincide, their common 
center lies in the plane through x1 , . . . , x1c, and the intersection equals the union. 

Fork = 2 the definition involves two sites and two circles, and r(x 1 ,:z:2 ) is scaled by 
factors 1/(1- !Joi) and 1/(1 - [!1) 1. The planar 1(10 , 11) reduces to well known geometric 
graphs for special values of /o and 1 1 : 

• lo = 1 1 = 0. The resulting neighborhood N(O, O} is the smallest circle through x 1 

and x 2 , which is the Gabriel neighborhood. 1(0, 0) is the Gabriel graph. 

• lo= 7 1 = - 1. The intersection of the two half-planes yields the line through :z:1 and 
x 2 . If no three or more sites are collinear, then 1(-l, -1) is the complete graph. 

• lo = 1 1 = 1. The union of the two half-planes gives the entire plane. If no three or 
more sites are collinear, 1(1, 1) is a void graph. 

• /o = - 1, 7 1 = 1 and lo = l, 1 1 = - 1. In both cases the two half-planes lie on 
the same side of the line through x 1 and x 2 • They therefore coincide (more general, 
1( / 0 , -10 ) = 1(- 10 , 1 0 )). The neighborhood is empty if all other sites lie on one 
side of the line through x 1 and x 2 , or on the line, but outside the segment from x1 

to x 2 . That occurs only if x 1 and x 2 lie on the convex hull. Therefore, 1(- l, 1) and 
1(1, - 1) are the convex hull of the set of sites. 

• lo = 7 1 • The graph 1(10 , lo) reduces to the circle-based /3-neighborhood graph. 

The relation of the planar 1 -graph with other geometric graphs is depicted in figure 2. 
Figure 3 gives a graphical overview of the whole spectrum of planar neighborhoods. 

The power l/(k - 1) in the denominator has no essential imp ortance, and could be 
omitted without changing the concept of the 1 -graph. The use of it is made clear in 
(Vel89]. 

In 3D space, the definition of the neighborhood involves three sites and two spheres, 
and r(x1 , x 2 , x 3 ) is scaled by factors 1/(1- 110 1)112 and 1/(1 - 111 1)112 . Because the Gabriel 
neighborhood is the smallest sphere trough two sites, whereas the kD N(O, 0) involves k 
sites, these neighborhoods do not coincide for k > 2. Further, it is not clear how to relate 
the higher dimensional N( 1 0 , lo) to the circle-based ,13-neighborhood, since Kirkpatrick and 
Radke [KR85] do not tell how to generalize it to higher dimensions. Generalization of the 
hme based neighborhood is straightforward, involving two sites in any dimension. The kD 
complete and the void graph however, result from the 7-graph if no k + 1 or more sites 
lie in a (k - l)D plane. T he convex hull equals 1(-l, 1) and 7(1, -1) in any dimension. 
Again, 1(10, -10) = 1(-10, lo)· 
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Figure 3: Overview of the spectrum of planar 1(10 ,11)-neighborhoods, - 1 :::;; 1 0 ,11 :::;; 1, 
and -1 ~ 1 0/11 ~ 1 (rectangles denote half-spaces). 

So far we have considered fixed values of the 1-parameters. We can also look at the 
largest values of the -y-parameters, for which the corresponding neighborhood is still empty. 
That is the value for which the sphere touches a ( k + 1 )th site, or is either 1 or -1 if there is 
no such site. We define 1([10 , 1iJ, [12 , 1 3]) to be the graph connecting sites z 1 , ... , Xk with 
each other, if the largest 1-parameter values for which the corresponding neighborhood is 
still empty, lie in [10 , -yiJ and [12 , -y3 ] respectively. 

The 1((- l, 1], [0, !])-graph connects sit es x1 , ... , x,. in kD space if there are two spheres 
through these sites, of arbitrary radius, such that the union is empty. This is exactly a 
definition of the Delaunay triangulation, if no more than k + 1 sites are cospherical. If 
there are more thank+ 1 cospherical sites, 1([-l, 1], [O, 1]) connects them all, whereas the 
Delaunay triangulation arbitrarily connects k sites, as long as the resulting (k - l)D-faces 
do not intersect. 

The -y-graph describes the internal structure of a set of sites. But it also describes 
aspects of the external structure. For example, the 1(-l, 1)-graph reduces to the convex 
hull. Also, the next section gives an example in which special /-parameter values give a 
clear external structure. And section 6 will show how it is us-ed to find a boundary through. 
all sites. 

This capability of external structure description somewhat contrasts to the lune based 
,8-skeleton. In this graph, the neighborhood is located between the two sites. The resulting 
graph therefore emphasizes connections between sites, which makes it suitable for network 
analysis. With the 1-graph, the spheres a.re located aside the k involved sites. Especially 
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when the neighborhood is the union of these spheres, the 1-graph is more like (a part of) 
a tesselation. 

4 Example s 

The types of graphs that result from specific choices of the parameters is most cleaTly 

demonstrated with planar graphs. Figures 4, 5, and 6 show planar /-graphs on the same 

set of 20 sites. 

i'(-1,1) = )'((-1, 1), (1,l]) =CH ')([- 1, l],[1/4 , l]) 

i'([- 1,1],[0,l]) = DT ')((-1,1),[-l/4, 1]) 

Figure 4: Planar 1-graphs on the same set of sites, containing more and more edges. 
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Figure 4 shows a sequence of 1([-l, 1], (10 , 1])-graphs. For lo = 1, this yields the convex 

hull. Lowering lo introduces more and more edges in the graph, until for lo= 0 the graph 
coincides with the Delaunay triangulation. When lo gets negative, edges cross each other. 
For lo= -1, the graph would be complete (not shown). 

The graphs in figure 5 all coincide wit h a circle-based ,8-skeleton. The neighborhoods 

N(0.2, 0.2), N(O.l, 0.1), N(O, 0), and N(-0.2, -0.2) get smaller and smaller. The emptiness 

requirement gets less restrictive, so that more pairs of sites are considered as neighbors. 

The ;(O, 0)-graph equals the Gabriel graph. 

n 
) 

"Y(0.2,0.2) "Y(O. l ,0.1) 

"Y(0,0) = GG "Y(-0.2,-0.2) 

Figure 5: A sequence of planar ; -graphs on the same set of sites, reducing to ,8-skeletons. 
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')'((-1,1),(-1,0]) ')'((-1/4, l/4],[-l/4,0]) 

i'([-1,1),(- 1,-0.9)) ')'([-l, l],(-1,-0.95)) 

Figure 6: A sequence of planar 1-graphs on the same set of sites. The neighborhoods consist 

of the intersection of circles. 

Figure 6 depicts graphs that result when only intersections of circles are allowed 

as neighborhood. The graph 1([-l, 1], [-1,0]) connects all pairs of sites that have no 

empty circle through themselves. It it the complement of the Delaunay triangulation. In 

-y([- 1/4, 1/4](, - 1/4, OJ), the intersections are forced to have a certain fatness. On the other 

hand, 7([- l , 1], [-1, -0.9]) allows only thin intersections. The edges now join sites only 

when there is another site close to the edge. In -y([-1,1),(-1,-0.9]) the neighborhoods 

are so thin, that only sites are connected if there is another site almost on the edge. 
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'Y(--0.15,0.3) 

Figure 7: The ;-graph describing an external structure on the planar set of sites after 
{EKS83}. 

Figure 7 shows a set of sites similar to the one used in [EKS83] to illustrate the a-shape. 
The 1( -0.15, 0.3)-graph t urns out to give a clear boundary, although also internal sites are 
connected. The a-shape, designed to give the boundary of a cluster of sites, yields a single 
inner and outer contour. However, the two -y-parameters give more freedom for finding 
some external structure than the single parameter ,B-skeleton (see [KR85] for a ,B-skeleton 
on the set of sites from [EKS83]). 

Figure 8 at last, shows projections of two stereo pairs of 3D ;-graphs on the same set 
of 30 sites. The 3D -y(O, 0)-graph connects three sites with ea.eh other if the smallest sphere 
through these sites is empty. Note that in 3D, this differs from the Gabriel graph, which 
connects two sites if the smallest sphere through these sites is empty. The picture of the 
1(0, 0)-graph only slightly differs from a typical 3D Delaunay triangulation. This is because 
the triangles that belong to the ;(O, 0) but not to the Delaunay triangulation, can have 
edges that are also edges of other triangles in the ;(O, 0). All edges of a triangle can thus 
be displayed, while the triangle does not belong the graph. In this example, the Delaunay 
triangulation consists of 25 7 triangles {constituting 248 tetrahedra), and the ;( O, O) of only 
150 triangles. The 1([- 1/ 4, 1/ 4], [1/2,3/4))-graph is disconnected, but shows that always 
three sites are connected to each other, if at all. 
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"{(0,0) 

• 
• 

• 

')'(.l-1/4,1141,ll /2,3141) 
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5 Complexity issues 

The following three lenunas tell how 7-graphs are related to each other. They give cues 

how to construct an arbitrary 1-graph. The two subsequent theorema tell how efficiently 

they can be computed. 

Lemma 1. -y("Y0 , 7 1 ) = -y([70 , 1], b 1 , 1)) if -y1 ~ 0. 
Proof. If 7 1 ~ 0, the neighborhood is defined by the union of two spheres. That neigh­

borhood is contained in all neighborhoods that are the union of two larger or equal 

sized spheres, see figure 9. So when N(701 71 ) is empty, the largest parameter values 

for which the neighborhood is still empty, are not less than 'Yo and -y1 respectively. Thus 

1(10, 71) ~ 1(bo11], [11 , l]). Conversely, look at the pairs of sites having parameter val­

ues for which the largest neighborhood is still empty, and are not less than lo and -y1 

respectively. They also have an empty N(f0 , 71 ), so 7(70 ,-y1 ) 27((10 ,1], [11 , 1)). Q 

Figure 9: Shaded area denotes neighborhoods that contain N{!0 , 1 1 ) (lemma 1}. 

14 



Lemma 2. 1(/0, /1) = 1([10. 1], h'1, 1]) U 1(bu l ], [l1ol11]) if /1 ~ O. 
Proof. If 7 1 :::; 0, the neighborhood is the intersection of two spheres. That neighborhood 
is contained in all neighborhoods that are the intersection or union of spheres defined 
by parameters larger than 7 0 and 71. But N(/2 , - 7 2 ) equals N( - 7 2 , -y2 ), specifically for 
7 1 :::; 7 2 :::; 7 0 . N( 7 0 , 7 1 ) is therefore also contained in the neighborhood that are the union 
of spheres defined by paramet ers larger than 7 1 and 1-rol respectively, see figure 10. So 
when N(J0 , 7 1 ) is empty, the largest parameter values for which the neighborhood is still 
empty, are not less than /o and 7 1 , or / 1 and hol· Thus 7(/0 , 7 1 ) ~ 7([!0 , 1], [!1 , l]) U 
7([11, 1], (170 1, l]). Conversely, look at the pairs of sites having parameter values for which 
the largest neighborhood is still empty, and are not less than /o and 71 or 7 1 and hol · They 
also have an empty neighborhood defined by 'Yo and 7 1 , so 7( 7 0 , 7 1 ) 2 7([!0 , l], [71 , 1]) U 
-r(b1, 1), [l-rol, 1)). 0 
Lemma 3. 7([/o,71],[12,/3]) ~ 7([74,/5],(76,/1]) if [-ro,-r1l ~ [!4,/5] and [12,/3] ~ 
be,/1l· 
Proof. Consider the pairs of sites joined by an edge in 1'([1'0 , 7 1 ), [12 , "'YJ]). Their largest 
7-parameters defining an empty neighborhood, lie in ['Yo, 7 1) and [12 , 73 ] . Then they surely 
lie in [/4,/5 ] 2 [10 ,71) and [16,77] 2 [72,/3 ]. So all these sites are also joined by an edge 
in 7((74, /5], [76, /7]), and thus 1(bo, /1), b:z, /3]) ~ 1((74, /5), [76> 77]). Q 

Figure 10: Shaded area denotes neighborhoods that contain N(r0 , 7 1 ) (lemma 2). 
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Lemmas 1, 2, and 3 are illustrated in figure 11. According to lenuna 1, 1(1/41 1/2) = 

7((1/4, 1), [1/ 2, 1)) (say Gl) , and likewise 7(-1/4, 1/4) is equal to 7((- 1/4, 1), [1/4, 1]) 

(G2). Lenuna 2 says that 7(0, -1/4) = 7((0, 1), [- 1/4, 1]) U 7((-1/4, 1), [O, 1)) (G3), and 

-y(O, - 1/2) = -y([O, 1), [-1/2, 1)) U -y([-1/2, 1], [O, 1)) (G4). And lemma 3 says Gl ~ G2 ~ 

G3 ~ G4, as illustrated in the figure. 

I l 
~· 

· -... 

\ 
\\ 

y(l/4,112) 

'Y(0,-114) 

• 

Figure 11: Fov.r 1-graphs on the same set of 90 sites. 

'Y(-114, 114) 

'Y(0,-1/2) 

1(1/4, 1/ 2) ~ 1(-1/4, 1/ 4) ~ 1(0,-1/4) ~ 1(0, - 1/2). 
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Theorem 1. Any k-dimensional ')'-graph can be computed in O(Nk+l) time. 

Proof. A brute force algorithm takes all the (~) possible combinations of k sites, and 

checks whether any of the N - k other sites lie in the neighborhood defined by the -y-

parameters. This amounts to 0 ( ( N - k) ( ~)) = O ( N k+i) time. Q 

Theorem 2. For non-degenerate sets of sites, the planar 1([/0 , 1iJ, [12
, 1

3
]) can be com­

puted in O(NlogN) time, and the k-dimensional one in O(N1+fk/2l) time, provided that 

bo, 71] ~ [-1, l] and [12 , 1 3] ~ (0, l]. 

Proof. When b o1'Yil ~ [-1,1] and [12 ,-y3 ] ~ [0, 1), -y((-y0 ,-y1),[t2 ,13 ]) is a subgraph of 

-y([-1, 1], [O, 1]) according to lenuna 3. When the position of the sites is non-degenerate, 

-y([- 1, 1], [O, 1]) is the Delaunay triangulation. After computing the DT, we can check 

whether the ')'-parameter values of each (k-1)-simplex lie in the allowable range in constant 

time. The upper bounds to compute the Delaunay triangulation thus carry over to the 

-y-graph. These are O{NlogN) for 2D, and O(Nl+fk/21) for kD (see section 2). Q 

For the Delaunay triangulation, O(N log N) is optimal. Whether this is optimal for 

the 7-graph, depends on the parameter values. It is clearly not optimal when the 7-graph 

reduces to the void graph. 

Both O(NlogN) and O(N1 +fk/2l) only apply to non-degenerate cases. Because in the 

de7enerate case that all sites lie on a k-dimensional sphere, the size of the output is already 

0 \ e:)) = O(N k). 

6 Application 

The 1-graph can be used to (re)construct a boundary of a set of sites [Vel89]. The sites are 

thought to be measured from the surface of a 2-dimensional or 3-dimensional object. The 

problem is to find a simple closed polygon or polyhedron, passing through all the sites. 

This is also called a Hamilton polygon, or Hamilton polyhedron. 

In order to find a Hamilton polygon or polyhedron, we take 1((-l, l ],[O, l]), and suc­

cessively remove boundary simplices from the hull (initially the convex hull). We go on 

shrinking the hull, until all vertices are included in the boundary. However , by removing a 

simplex we may not introduce an isolated vertex, dangling boundary segments, or a self­

intersecting boundary. The following short description for the phmar case indicates the 

way simplices are selected for deletion. 

A value is associated to all current boundary edges, based on the 1-values of the bound­

ary segments. However, we keep the sign of the 1-values of the boundary edges consistent 

with the following rule: if - 1 ~ 1 < 0, the center of the associated circle lies on the side of 

the boundary segment that is outside the current boundary, and if 0 < 1 :S 1, the center 

lies on the side of the boundary segment that is inside the current boundary. The selection 

of the triangle to be removed is based on the attempt to, informally speaking, change the 

shape of the current boundary not too much, relative to the size of the triangle. Formally, 

we choose the triangle with the largest interior angle at the vertex opposite the boundary 

edge. 
Let us call the radius of the circle through the vertices of the triangle that we consider, 

R, the 7-value of the boundary edge corresponding to that triangle,/, and the two vertices 

on the boundary, :r:1 and :r:2. We abbreviate r(:r:1, :r:2) to r. If 1 2'.: 0, the angle 4> at the 

interior vertex, increases when r/ R increases. If r $ O, </>increases when 2 - rf R increases. 
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The exact relation is given by the sine rule: r / R = sin </J. By definition, r / R equals 1 - 111, 
which is l -1 for a non-negative 1· Similarly, 2 - r/R expands to 1+111, which equals 
1 - -y for a non-positive 1· This results in the following selection rule: 

among all removable triangles, delete the one whose boundary edge has the 
largest value for 1 - 1 (or equivalently, the smallest value for /). 

A more detailed description, including the 3-dimensional case, is given in [Vel89] . 

The method described so far does not always succeed. In the first place, the shrinking 
operation can get locked, although the initial graph does contain a Hamilton polygon. This 
happens when there are no more removable edges, while not all the vertices are included 

in the boundary yet. Secondly, there exist non-degenerate non-Hamiltonian Delaunay 

triangulations (Dil87], and thus 7((-l, l], (0, 1])-graphs. Meth ods based on shrinking from 

the Delaunay triangulation therefore guarantee no success. 
In both cases, the solution is to shrink from a 1((-l, 1], [10 , 1])-graph, for some lo< O. 

Such a graph contains more edges. The extra t riangles will have smaller interior angles at 
the vertex opposite to the boundary edge, than overlapping tr iangles from 1((-l, 1], (0, 1]). 

They offer more choice in selecting a boundary edge for deletion. For a /o small enough, 

1((- l, l], ["to, l ]) will be Hamiltonian (the complete graph 1([-l, 1], [-1, 1]) = 1(-l, - 1) 
always contains a Hamilton polygon), and locking of the shrinking process will not occur. 

Figure 12 shows a Delaunay triangulation from [Dil87], that contains no boundary 

through all the sites. The three other 1 -graphs. make it feasible to find such a boundary. 

y([-1,l],[0,l]) '){[-l ,l],[-0.1, l ]) 

y([-1,l],[-0.2,1]) 'Y([-1,1],[-0.3, 1 )) 

Figure 12: Planar non-Hamiltonian Delaunay triangulation (after {Dil87)}, and three Hamil­

tonian 1-graphs. 
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7 Conclusions 

In this paper we have introduced the 1-neighborhood graph. The 7-graph describes the 
internal structure of a set of sites. It has been shown briefly that it can also be used to 
find the external structure, specifically a simple boundary through all sites. The inclusion 
hierarchy CP ~ NNG ~ MST ~ RNG ~ GG <;;;; DT has been extended: DT ~ 1 -
graph. The /-graph provides for a general framework in describing neighborhood graphs. 
It unifies the convex hull, the Delaunay triangulation, and. in 2D also the Gabriel graph 
and the circle-based /3-skeleton, into a continuous spectrum ranging from the void to the 
complete graph. 

The neighborhood N(/0 ,71 ) is defined only for 1 0 ,11 E [- 1,1], and h ol ::::; iJ1 1 Fork 
sites and specific parameters /o and 71 , there can be two neighborhoods, since the spheres 
can be interchanged. The sites are connected if at least one of the two neighborhoods is 
empty. We could also use the parameters l1ol ~ 11 1 1 and completely specify the position 
of the spheres, for example /o specifies 'the left', and 1 1 'the right' sphere. We feel no the 
urge to do so, because there is in general no need to specify a preference for one direction. 

We have shown that the 1((10 , 1 1 ], [12 , 1 3 ]) can be constructed efficiently if it is a 
subgraph of the Delaunay triangulation, that is, when (-y0 , 71 ) <;;;; [- 1, 1 ], and [1'2 , 1 3 ] ~ 
(0, l], and the Delaunay triangulation is non-degenerate. Programs have been developed 
that construct the /-graphs. They have been written in the prograrnmin.g language C, on 
a UNIX workstation. All the example graphs in this paper have been generated by these 
programs. 

There are several directions for further research. The most urgent is the development 
of output sensitive algorithms. Of course for / < 0, the worst case size of the /-graph is 
O(N3 ), but an algorithm having a time complexity that depends on the size of the output 
can probably do better than O(N3 ). Also for/> 0 an output sensitive algorithm can be 
profitable, since the size of the 1-graph may be sub-linear in N. 

Little is known from stochastic geometry about probabilistic properties of geometric 
graphs (some results are known about the DT [Mil70], the GG, and the RNG [Dev88]). 
Insight in the expected number of edges in the /-graph may lead to the development of 
efficient algorithms for the average case. 

A final research suggestion is the construction of /-graphs on sets of weighted sites. 
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