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The subject of the paper belongs to the field of numerical solution of time-dependent partial differential
equations. Attention is focussed on parabolic problems the solution of which possess sharp moving transi-
tions in space and time, such as steep moving fronts and emerging and disappearing layers. An adaptive
grid method is analysed that refines the space grid locally around sharp spatial transitions, so as to avoid
discretization on a very fine grid over the entire physical domain. This method is based on the techniques
called static-regridding and local uniform grid refinement. Static-regridding means that in the course of the
time evolution the space grid is adapted at discrete times. Local uniform grid refinement means that the
actual adaptation of the space grid takes place using nested locally uniformly refined grids. These uniform
subgrids possess non physical boundaries and on each of these subgrids an integration is carried out. The
present paper concentrates on stability and error analysis while using the implicit Euler method for time
integration. Maximum norm stability and convergence results are proved for a certain class of linear and
nonlinear PDE's. The central issue hereby is a refinement condition with a refinement strategy that distri-
butes spatial interpolation and discretization errors in such a way that the spatial accuracy obtained is com-
parable to the spatial accuracy on the finest grid if this grid would be used without any adaptation. The
analysis is confirmed with a numerical illustration.
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1. INTRODUCTION

The subject of the paper belongs to the field of numerical solution of time-dependent partial
differential equations. Attention is focussed on parabolic problems the solution of which possess sharp
moving transitions in space and time, such as steep moving fronts and emerging and disappearing
layers. For such problems, a space grid held fixed throughout the entire time evolution can be compu-
tationally very inefficient, since, to afford an accurate approximation, such a grid would easily have to
contain a very large number of nodes, particulary so for problems in two and three space dimensions.
We consider an adaptive grid method that refines locally around sharp spatial transitions so as to

avoid discretization on a very fine grid over the entire physical domain.
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Our method is based on the techniques called static-regridding and local uniform grid refinement,
as previously proposed by Berger and Oliger{4], Gropp[9], Amey and Flaherty[2], Trompert and
Verwer{14], and others. With the term static-regridding we mean that in the course of the time evolu-
tion the space grid is adapted at discrete times. Static-regridding should be contrasted with dynamic-
regridding where the space grid moves continuously in the space-time domain as, e.g, in the case of
the moving finite element method. With the term local uniform grid refinement we mean that the
actual adaptation of the space grid takes place using locally uniformly refined grids. Local uniform
grid refinement should be contrasted with pointwise refinement which leads to truly nonuniform grids.
The idea of the method can be briefly described as follows. Given a coarse base space grid and a base
temporal stepsize, nested local uniform spatial subgrids are generated. These local uniform subgrids
possess nonphysical boundaries and on each of these subgrids an integration is carried out. They are
generated up to a level of refinement good enough to resolve the anticipated fine scale structures.
Having completed the refinement for the current base space-time grid, the process is continued to the
next base space-time grid while the fine grid results computed at forward time levels are kept in
storage so that they can be used for step continuation.

An attractive feature of the static-regridding approach is the possibility of dividing the solution pro-
cess into the following computational procedures: spatial discretization, temporal integration, error
estimation, regridding and interpolation. Depending on the application, these individual procedures
may range from simple or straightforward to very sophisticated. This flexibility is attractive since it
makes it possible to treat different types of PDE problems with almost one and the same code, assum-
ing hereby that the grid and the associated data structure remain unchanged. In this connection we
wish to note that an important part of the developement and coding of static-regridding methods like
ours lies in the grid and data structure. The choice of data structure is important for keeping the una-
voidable overhead at an acceptable level, because at each time step grids may be created or removed
while also communication between grids of adjacent levels of refinement frequently takes place.

The method we analyse in this paper has many similarities with the method constructed in
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Trompert and Verwer{14], in fact, the grid structure, the data structure, the spatial differencing and
the memory use are essentially the same. However, in the present paper we concentrate on analysis
rather than on construction, while using the implicit Euler method instead of the explicit Runge-
Kutta-Chebychev method for time integration. The main aim of this paper is to present a detailed
local error analysis that takes into account all local temporal, spatial and interpolation errors and to
prove stability and convergence for a certain class of linear and nonlinear PDE’s. The central issue in
this analysis is a refinement condition and a refinement strategy that distributes spatial discretization
and interpolation errors in such a way that the spatial accuracy obtained is comparable to the spatial
accuracy on the finest grid if this grid would be used without any adaptation.

The implicit Euler integration method is known to possess very favourable stability properties (see
Dekker and Verwer{5]). A drawback is that this method has only order of consistency one. We wish
to point out that the adaptive grid approach presented here, together with the refinement condition
and the essential parts of the refinement strategy, is not restricted to implicit Euler. Most of it can be
extended to a wide diversity of one-step integration methods such as splitting methods (e.g. ADI and
LOD, see Hundsdorfer and Verwer{10]) and conventional Runge-Kutta and linear multistep methods.
However, this is possible only at the expense of much more complicated derivations and calculations.
Because we first wish to clarify the essential aspects and properties of the refinement condition and
strategy for a simple time-stepping scheme, we confine ourselves in this paper to implicit Euler and
postpone the treatment of alternative, more complicated methods to a later publication.

An overview of the organization and results of the paper reads as follows. Section 2 is devoted to
the problem class discussed in this paper. Our starting point hereby is the method of lines, that is, we
define a class of semi-discrete PDE’s satisfying desirable properties for the analysis to follow (see e.g,,
Sanz-Serna and Verwer{13]). In Section 3 we introduce the tools and the formulation for the mul-
tilevel local uniform grid refinement method. In Section 4 we discuss the maximum norm stability of
this method. We prove an unconditional stability result which is closely related to a maximum norm

stability result of impliéit Euler when applied on a single space grid. Section 5 is devoted to the error
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analysis. In this section we present a detailed examination of the total local error with its component
parts. Furthermore, in this section we introduce the refinement strategy underlying the so-called
refinement condition. This condition enables us to control the contribution of the interpolation errors
in favour of discretization errors. Due to this refinement condition, we are able to prove a conver-
gence result as if we are working on a single fixed grid. This refinement condition is further ela-
borated in Section 6 where it is shown how to implement it for practical use. A numerical illustration
of the error analysis presented is given in Section 7. The numerical results found here are in complete

agreement with this analysis. The final Section 8 briefly discusses our future research plans.

2. THE PROBLEM CLASS
In our method description and analysis we follow the method of lines approach (see Sanz-Serna

and Verwer[13] and the references therein). Consider a real abstract Cauchy problem
ut = L(t9 u)a O <t < T; u(f) 0) = uo(f)s (2'1)

where L represents a second order partial differential operator which differentiates the unknown func-
tion u(x,) with respect to its space variable x in a space domain € in IR, IR? or IR®. The function
u(x, ) may be vector valued and boundary conditions for 0 < ¢ < T are supposed to be included in
the definition of L. The operator L should not differentiate with respect to the time variable ¢.

To the problem (2.1) we associate a real Cauchy problem for an explicit ODE system in RY,
—;TU(t) = Fe, U@®), O0<t<T, UQO=U" 2.2

which is defined by a finite-difference space-discretization of (2.1). Thus, U and F are vectors in IR
representing the values of grid functions defined on a finite-difference space grid w covering the inte-
rior of the space domain. Each component of U and F is vector valued if u is vector valued. The
dimension d is determined by the spatial dimension, the grid spacing, and the number of PDEs in

(2.1). F is determined by the type of grid, by the actual finite-difference formulas and of course by the



precise form of L and its boundary conditions.

Note that we here consider an explicit ODE system which rules out mixed problems of parabolic-
elliptic type as discussed in Petzold[11, 12]. The explicitness of the ODE system also rules out certain
implicit boundary conditions which upon spatial discretization would convert into algebraic equa-
tions. In other words, we consider the standard approach in that boundary values have been elim-
inated and worked into the ODE system. However, since we here examine the implicit Euler method,
the complete algorithm can be extended for application to implicit ODE/DAE systems as considered.

Our method description and error analysis are centered around the ODE system (2.2). We consider
this convenient for the analysis and for the general treatment we aim at. We will now introduce some
notations and a number of assumptions needed for further specifying (2.1) and (2.2). The norm sym-
bol |I.Il denotes the maximum norm on the vector space IR?. We will use the same symbol for the
induced matrix norm and throughout our analysis we will deal only with this maximum norm. We
next introduce the logarithmic matrix norm u[4 ] associated to the maximum norm of the real d X d

matrix 4 = (ay); plA] is given by
P{A] - maxi(a,-,- + 2] # '_|a,~]- |). (2.3)

The logarithmic norm is a useful tool in the stability analysis of certain models of nonlinear, stiff
ODE’s and semi-discrete PDE problems [5]. In this stability analysis, the structure of the Jacobian
matrix F'(t,n) = 9F(t,m)/ 9 plays a decisive role.

We are now ready to list our assumptions we make in further specifying (2.1) - (2.2). These assump-
tions are concerned with, respectively, the class of PDE’s (2.1), the smoothness of their solutions, the
choice of spatial grid and actual finite-differencing, and the stability of the semi-discrete system (2.2):

(A1) The local uniform grid refinement method and the analysis presented are in principle applica-
ble in any number of space dimensions. However, following [14], we will consider the two-
dimensional case while  is supposed to be the unit square, just for simplicity of presentation. With

minor changes the domain is allowed to be composed of a union of rectangles with sides parallel to
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the co-ordinate axes. In fact, as we will see later, refined grids normally are of this shape. In what fol-
lows, we will mostly use the notation u(x,y,?), rather than u(x,?).

(A2) The true solution u of the PDE problem (2.1) uniquely exists and is as smooth as the numeri-
cal analysis requires. Specifically, for our purpose it suffices that, with respect to , u is a C2-function
and, with respect to (x,y), a C*-function.

(A3) Because we employ the notion of local uniform grid refinement, we will invariably use uniform

space grids. Our base grid thus can be written as
= {(x;, y)x; =ih, 1<i<M-1land y; = Jhy, 1< j<N-1} 249

where h, = 1/M, h,, = 1/N and M, N are positive integers. The spatial differencing on this uniform
grid is supposed to be based on 3-point formulas of 2% order consistency. As a rule, we use central
differencing for approximating 1* and 2% order spatial derivatives. For boundary conditions involv-
ing 1** order derivatives, the one-sided 3-point formula is used.

(A4) A constant » exists such that p[F ‘@) <vforallt € (0,T],n € IR? and all grid spacings.
Like (A1) and (A2), this assumption involves a restriction on the class of PDE problems. Of course,
they are made only for the sake of (model) analysis. The local uniform grid refinement method
remains applicable in situations where these assumptions do not hold or cannot be verified. On the
other hand, for interesting classes of differential operators, such as the scalar, nonlinear parabolic

operator
L(t) u) = f 1 (t>x’y) u, (P ](t’xry)ux)x) + fz(t,xd’, u, (P 2(t,x,_V)“y)y), (2'5)

with standard restrictions on the functions f; and p;, one can prove the existence of a constant » (see,
e.g. [5]). The key point here is that » is independent of the grid spacing and that this way one can
also recover the damping property of parabolic operators through a negative logarithmic norm bound
v.

The inequality u[F'(z,n)] < » is to be interpreted as a stability condition, both concerning the ODE

system (2.2) and its implicit Euler discretization
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Un = Ul + 1F@,, UY), n=12,.., (2.6)

where 7 = t, — 1, is the stepsize and U”" is the approximation for U(t,). This inequality enables
us to formulate the following, very powerful stability result for implicit Euler. Consider the perturbed

form
U'=0""+Fe, 0 +r, n=12,.., @7

. . ~n-1 ~ . -
where r” represents an arbitrary local perturbation and U, U" are perturbations to U" !, U™.

We have [5]

1

1 — 7

W - vl < W - v+, on =12, 2.8)

for all 7 > 0 satisfying 7v << 1. Since » is independent of the grid spacing, this stability inequality is
valid uniformly in 4, and 4. Note that for » = 0 we have contractivity for all r > 0, while for » < 0
we even have damping for all 7 > 0. A result closely related to (2.8) will be derived in the stability

analysis presented in Section 4.

3. THE IMPLICIT EULER LoCAL UNIFORM GRID REFINEMENT METHOD

3.1. Outline

We begin with an outline of the method in order to facilitate the presentation in the remainder
(cf. [14]). The regridding technique we employ is based on the principle of local uniform grid
refinement. Although its elaboration readily becomes complicated, the idea behind this principle is
simple. Starting from a coarse, uniform base grid w which covers the entire physical domain, finer-
and-finer uniform subgrids are created in a nested manner in regions of high spatial activity which
cover only part of the domain. A new initial-boundary value problem is solved at each fine subgrid
and the integration takes place in a consecutive order, from coarse to fine. Each of these integrations
spans the same time interval. The generation of the finer-and-finer subgrids is determined by the

local refinement strategy and is continued until the spatial phenomena are described well enough by
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the finest grid.

We will outline all steps taken for advancing the solution at the coarse base grid w at time
t = t,_, to the same coarse base grid at time ¢ = 1, = t,—; + 7. The variable 7 is the temporal
stepsize for the Euler method and #, _; and #, are step points. For clarity we discuss first a single level
of refinement :

(1) Integrate on the coarse grid using steplength 7. Call the accepted values of u on the coarse grid
at time ¢ = ¢, the new coarse u-values and those at time ¢ = £, the old coarse u-values. Both sets
of values are saved.

(2) An integration step is followed by a local refinement step. Using the new coarse u-values, it is
decided where the fine subgrid will be for the current time interval £, < < f,. This is done by
invoking a flagging procedure to determine untolerable cells and a clustering and buffering algorithm
to distribute all untolerable cells over the fine subgrid. This grid may be disjunct. Overlapping fine
subgrids are not allowed in our method and fine subgrids need not be a rectangle. The actual
refinement is cellular and carried out by bisecting all sides of untolerable cells.

(3) Because together with a new grid a new initial-boundary value problem is created, initial and
boundary values must be provided by interpolation. In prescribing new initial values, two different
cases can occur. If a cell was refined in the previous time step from #, _, to #,_;, then we use the fine
grid u-values already available at 1 = #,_; and interpolation is not needed. If a cell was not refined
before, then we interpolate old coarse u-values. For the boundary conditions we can also distinguish
two cases. When a fine grid boundary coincides with the physical boundary, then the given boundary
conditions are used. Otherwise we impose Dirichlet boundary conditions at the grid interfaces where
fine grid cells abut on coarse cells. Because we integrate with the one-step, one-stage implicit Euler
scheme using the same steplength 7 on the fine grid, boundary values are needed only at the forward
time level. These are obtained from interpolating the coarse grid solution.

(4) Next the fine subgrid is integrated from #,_; to ¢, and the new fine grid u-values are injected in

the coarse grid points, i.e., the value of u at f, on the coarse subgrid is taken to be the value of u just



. 9
computed on the fine subgrid. Further, all new fine grid u-values are saved for use in the next time
step from #, to #, ;. The solution at time ¢, is now complete. If #, coincides with the physical end
time T we are finished. Otherwise, we return to step (1) and repeat the algorithm.

Multiple levels are handled in a natural, recursive fashion. After each time step of (4), taken on a
grid of refinement level &, say, a regridding may take place resulting in a grid of refinement level
k +1. In fact, the computational steps follow precisely points (2) - (4) above. Note that all fine grid
results at forward time levels are kept in storage and that for step continuation the most accurate
results are used that are available. It is noted that the refinement process is slightly simpler than in
[14], since we here use the same steplength 7 for all levels encountered within one base time step.

Inherent in the approach we have adopted is that grid information is not passed to the next time
step when starting again from the base grid. This necessarily is a bit wasteful in situations where the
sharp transitions move very slowly, e.g., when approaching steady state. On the other hand, the com-
putational effort for the coarser grids normally will not be large. Further, uniform subgrids allow an
efficient use of vector based algorithms and finite-difference expressions on uniform grids are more
accurate and cheaper to process than on nonuniform grids. In this respect the current approach
should be contrasted with pointwise refinement where arbitrary levels of refinement around any point
are allowed. This pointwise refinement leads to truly non-uniform grids on which usually less points
are needed than on a locally uniformly refined grid. However, an inherent drawback of a truly non-
uniform grid is a more complex and expensive data structure. We refer to Gropp[7-9], Berger{3] and
Ewing[6] for some further discussions on various advantages and/or disadvantages when comparing
the two refinement techniques. We also note that the methods of Berger and Oliger{4] (see also Arney
and Flaherty[2]) are based on noncellular refinement and truly rectangular subgrids which may over-

lap and rotate to align with an evolving dynamic structure.
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3.2. The mathematical formulation

Local uniform grid refinement methods solve PDE’s on the whole domain at the coarse base grid
only and on a part of the domain at finer subgrids. Our method can be interpreted as a sequence of
operations on vectors in IR? with varying dimension d. The dimensions are time and level dependent
because the number of nodes changes per level of refinement and per time step. This constitutes a
problem for the formulation of the method. To bypass this difficulty, the fine grids will be expanded
so that they cover the whole domain. The dimensions are then fixed per level of refinement which
facilitates the derivation of a concise mathematical formulation. It is emphasized that this grid expan-
sion is auxiliary. In actual application only part of the expanded higher level grids is processed
(integration, interpolation, injection).

Suppose that for a given time interval [0,7] and a given base grid, / levels are needed to describe
the spatial activity of a solution sufficiently accurately when integrating over the entire time interval

[0,T]. Introduce for k = 1, - - -, [ the expanded uniform grids

o = (O ¥ X% = by, 1<i<2"'M—1and D))

Y = e 1< j<287IN-1),

where N and M are the same integers as in (2.4) and h,x = h,/2*"', h,, = h,/2*7!. Note that
for k = 1 the base grid w; = w given by (24) is recovered. It is assumed that this base grid is
prescribed for the entire time interval [0,7]. Note that « is obtained from w; _; simply by dividing
the current grid sizes so that w;Dwy ;. It is emphasized that in the analysis in the remainder the
number / is independent of time.

The generic notation for a grid function 7 defined at the grid wy is n,. Let NPDE be the number
of partial differential equations contained in the system (2.1). Then the dimension of the grid func-
tions living on wy is d, = NPDEQ*'M—1)(2*"'N—1) so that 7, € IR%. We will denote the

semi-discrete system defined on the whole of w; by

%Uk(t) — FUE), 0<t<T, Uy©) = U (.2)
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However, due to the grid expansion, for k > 1 only part of the components of the ODE system (3.2)
are integrated in reality.

For the communication between grids we need a restriction operator from w; to w; for
k = 1,..,1—1 and a prolongation operator from Wk -1 to w for k = 2,...,1. The restriction operator
is needed for updating a solution at w, by a solution available at the finest level grid ;. The prolon-
gation operator is needed for interpolating a solution at w; _; to the next finer grid wy.

Let Ry denote the restriction operator from w; to w;. Specifically, R,k:IRd’—>le‘ is a matrix with
d; columns and d, rows and the restriction of 7, to w, is carried out with the matrix-vector multiplica-
tion

M = Rymy (3.3)

We apply natural injection at coinciding nodes. Therefore, all the entries of all rows of Ry are zero,
except for one which is unity. For later use we also define Ry = I, with I, being the unit matrix of
order d,.

Let P, _q; denote the prolongation operator from w; _; to wy. This operator Py _ lk:IRd* 'SIR% is a
matrix with dy _; columns and dj rows and the interpolation is carried out with the matrix vector

multiplication
M = Pr_pmk - G4

Each row of P, _y, is associated to a node of wy. For coinciding nodes of w, _; and wy all entries in
this row are zero except for one which is unity. Hence the interpolation leaves the values at coincid-
ing nodes unchanged. For non-coinciding nodes the actual choice of interpolant determines the
entries in this row.

We are now ready to formulate the implicit Euler local uniform grid refinement method. The fol-
lowing formula defines the complete time step from step point #, _; to the next step point z, involving

I levels of refinement:

Ul = RyUF™" + 1F (1, UD), (3.52)
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Ui = D} [RyUp ™' + 7Fi(ty, UDIH (3:5b)

Uk — DD [Pe-uUk—1 + bR,  k=2,...L

Here, U} denotes the approximation to Uy(#,) defined at the whole of the grid w, at time ¢ = #, and
D} and I, are diagonal matrices of order d,. I, is the unit matrix and the entries of D} are either
unity or zero depending whether integration takes place at a specific node or not.

Specifically, the nonzero entries of D} (2 < k < I) are meant to determine that part of w, where
the actual integration takes place. This integration has the fine grid solution DR, Ul ~1 as initial

function and is defined by
DjU; = D} [RyUT ™' + 1Filty, UL k=20l (36

The definition of D} is provided by the actual local refinement strategy. For the time being there is
no need to further specifying Di. In this connection it is worthwile to note that the nesting property
of the finer-and-finer integration domains is hidden in the precise definition of the matrices D%.

The interpolation step is defined by
Ui — DU = Uk — DR [Pe—uUk—1 + bR, k=200, (3.7

where the gridfunction b} contains various time dependent terms occurring in physical boundary con-
ditions. We need to include this gridfunction due to the fact that physical boundary conditions have
been worked into the semi-discrete system. For the analysis presented in the remainder, b} plays no
role whatsoever.

The formulation (3.5) automatically comprises the interpolation of boundary values at genuine grid
interfaces. This follows directly from the observation that for nodes at genuine grid interfaces, the
associated diagonal entry of D} is zero (there is no integration at grid interfaces). Also note that, as a
result of the grid expansion, in (3.7) the interpolation is carried out for all nodal points outside the
integration domain of w,. However, in actual application interpolation only takes place at the refined

subgrids. In Section 6.2 it is shown that this does not interfere with the analysis of the remaining sec-
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tions.
4. STABILITY ANALYSIS

4.1. Preliminaries

Consider, on the analogy of (2.7), for n =1,2,.... the perturbed scheme

0 = Rnff;—] + 1Fy(t,, U7) + 7, (4.1a)
Ui = D} [ReU; ' + 1Fi(t,, U]+ (4.1b)

T = DD (Pe—u U1 + B+ 7%, k=2,
with local perturbations r} and introduce the errors
g =Up — U}, k=1,..1 @.2)

To shorten the formulas, we introduce the auxiliary quantities e, D} and Po: el =0 € R, 1 is
the unit matrix I, of order d;, and Py, is the zero matrix. Then, by subtracting (3.5) from (4.1), we

can formulate the following relations for the errors (4.2):
Zle} = DiRpel ' + Uy — DY)Py ek + ri, n=12,...; k=1,..,1 4.3)
where
i = I, — 1DIM}, 4.9

with M} the integrated Jacobian matrix
1 -~
M} = [P, 80U, + (1 — §)Up)dé @.5)
0

which results from applying the mean value theorem for vector functions.

Assuming Z} to be nonsingular, we can rewrite (4.3) as

ef =Xpeh_y +Tief V + o, n=12,..; k=1,..1 (4.6)
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with
X2 = (Z3) 'k — D)Pi—uo

I} = (Z)™'DiRy, @.n

o = (2D 'k
Note that X7 = 0 and that the operators X}, '} are associated, respectively, to the interpolation and

restriction. A little inspection reveals that we can rewrite (4.6) to the standard form
el = Glel '+ YR, n=12,..5 k=140 4.8)

where the amplification operators G} and the local perturbation terms Y} itself are defined by a

recurrence relation:

Gi =TI7, 4.9

G = X} G-, + T% k=2,...,1
and

¥l = o1, (4.10)

Yr = Xiyi- + ok, k=2,..,L

The error recurrence (4.8) describes the error propagation for all regridding levels. The main interest
lies in the operator G} and the local perturbation ¥ due to the fact that coarse grid values are always
updated by fine grid values. In (4.8) this is reflected by the presence of e} ! which is the error at the
finest grid at the old time value.

The stability of the implicit Euler method in the above is contained the following lemma:
LEMMA 4.1. Let » be the logaritmic norm value defined in assumption (A4) of Section 2. Then, for

k=2,..,1,

1 , Vi < 1ifr >0,
ZznM<{1—m @.11)
1 , Vr>0ifr <0,
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while for £ =1

zn <

L 4.12)
1 —7

PrOOF. The result for k =1 is well known due to the fact that DY is the unit matrix (see [5], p.46).
The premultiplication of M} for k>1 with the diagonal matrix D} has the effect that either entire
rows of M} are put to zero, or are left unchanged. From (2.3) we then can immediately deduce that
for » > 0 the bound (1 — 7»)~! still holds, whereas for » < 0 the zero rows introduce the bound 1.
O

Observe that the replacement of the bound (1 — 7#)~! by the bound 1 for » < 0 implies that in
this case we do no longer exploit the damping property of implicit Euler. For the analysis to follow
this is not essential since we are here merely interested in proving stability and convergence results.

Before proving a stability result for the error recurrence (4.8), we make another assumption aimed
at shortening the derivations:

(A5) The logarithmic norm bound » introduced in (A4) in Section 2 is nonpositive. This means that
in the remainder we restrict ourselves to dissipative problems. This restriction is not essential; results
obtained for »<<0 can be extended to the case »>0 by inserting the bound (I — 7)~! for the bound

1 any time the stability inequality [I(Z})~'ll < 1 is used.

4.2. Stability and linear interpolation
In this section we will prove a general stability result for the multilevel adaptive grid method (3.5)
that is similar to the stability result (2.8) for the Euler method applied without adaption.

THEOREM 4.2. Let »<<0 according to (A5) and suppose that linear interpolation is used. Then, for

allv>0and all n =1,
IGHI <1, k=1,..,] 4.13)
k
Wil < X 1F3,  k=1,...0 4.14)

j=1
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and, in particular,
]
lefll < llef 71 + 3 Iz 4.15)
k=1

PROOF. Inequality (4.15) is a trivial consequence of (4.13) and (4.14). Let us first prove (4.13). This is

done by induction with respect to k. Suppose [|G% -, |l < 1. From (4.9) it follows that

IGEII = IX3GE—1 + Till = I(ZF-1) "' QRll < Q%I 4.16)
where

0% = Ik — DPP,-1Gk-1 + DiRy. @.17)
Consider the i Tow of this operator. Suppose (D%); = 1. Then

2101 = ZIRwy| =1, (4.18)
J J

by definition of the restriction operator Ry. Next suppose (Di); = 0. Then

@D = DI Pe-wGi-1)j| < IPe—wGi 11l < IIPe_ylllIGE 11l <1, 4.19)
J

J

by virtue of the induction hypothesis and the norm
1Py —iell=1 (4.20)

of the linear interpolation operator Py _1;,. Combining (4.18) and (4.19) gives [1Q% +1 || and inequality
(4.13) now follows from (4.16). Thc induction proof is finished if we can prove that ||G71| < 1. This
follows immediately from the observation that G| = I'f = @3 'R;.

There remains to prove (4.14). We have 971l < [I7%ll. It then follows from (4.10) that
IRl < IXEHIE -1l + N7kl 4.21)

so that we are finished if we can prove that | X}l < 1. This is trivial due to (4.20) and
I, — Dgll = 1.0

The inequality (4.15) is the counterpart of the inequality (2.8). We may conclude from Theorem 4.2
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that when implicit Euler is stable and we interpolate linearly, our multilevel adaptive grid method

(3.5) retains stability of implicit Euler through the bound Gl < 1

4.3. Stability and higher order interpolation

A drawback of linear interpolation is its limited accuracy. In a genuine application it might well be
preferable to use higher order interpolants (in[ 14] we have succesfully used 4'® order Lagrangian inter-
polation). Unfortunately, in that case we necessarily have [|P; _ || > 1 with the consequence that we
are not able to prove the stability results of Theorem 4.2 when following the above method of proof.
If 1P, — 1]l > 1, then it is possible to prove (a constrained form of) stability by introducing an addi-
tional condition that underlies the intention of interpolating exclusively in low error regions. Unfor-
tunately, this condition turns out to be of no practical use. For the sake of completeness we yet do
present it here.

From (4.8)-(4.10) we obtain,

el = Gle} ™! + Y], @22
where
e = Z(HX")F" 771+ e, (423
j=1i=
2 (H XD ¢! + ¢f. . 4.249)
j=li=

Let us examine expression (4.23). The sum in its righthand side stems from interpolation to level / of
values obtained on grids of level k </, while the single term I'7ef ~! is due to integration on level /.
Since it is the intention of our method to interpolate exclusively in low error regions, it is natural to

examine a condition which implies that this integration term alone determines iG7ef ~I.

k
For this purpose, we first introduce an empty product convention which reads [ X’ = 1,_,,
i=k—1

for k =2,....,I. This convention will be used throughout the remainder of this paper. Using this empty
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product convention, ||G7e} ~1|| can then be written as

H@WW=H@WWM—DMuZ(HXﬂW"‘+M&#ﬂH

j=li=Il—-

= \I(Z])~ q"” lig?l,
where

@qh: = (P- 112( H XM Irep

j=li=I-1

when (D}); = 0, and, since R; = I,

@) = (Y

when (D}); = 1. Hence,

g7l = max{li(; — D)P;- 112( II X7) Thep ~'il, ID7ef 1)

j=li=I1-1

Consequently, if

-1 j+1
I, — DHPi—u S CTI X Ther M < ID7ef I,
j=li=i-1

we have again stability since then

IGye} "Il < ligfll < 11DFe "Il = e} "Il

(4.25)

(4.26)

@427

(4.28)

4.29)

(4.30)

Above we have used the term ’constrained stability’ to indicate that condition (4.29) cannot hold

for arbitrary error vectors e} ~!, without imposing D} = I,. Hence, it is not well possible to explicitly

enforce this condition in a practical computation, let alone the meaningfullness of such an undertak-

ing in connection with the required computational effort and the involved matrices D}. We wish to

have these matrices determined exclusively by spatial accuracy requirements, as we will outline in the

following sections.

Summarizing, for higher order Lagrangian interpolants powerful stability results like those of
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Theorem 4.2 are not available. On the other hand, numerical evidence suggests very strongly that
those higher order interpolants do not cause genuine stability problems in real application. We believe

we owe this to the fact that the method interpolates in low error regions, so that, loosely speaking, a

condition like (4.29) is satisfied implicitly.

5. ERROR ANALYSIS

In this section we present a detailed examination of the total local error with its component parts.
From this examination we deduce the so-called refinement condition which henceforth underlies the
refinement strategy. This refinement condition enables us to control the contribution of spatial inter-
polation errors in favour of spatial discretization errors. Due to this condition, we are able to prove a
convergent result as if we are working on a single fixed grid. Specifically, it will be proved that the
usual convergence behaviour applies and that the accuracy obtained is comparable to the accuracy

obtained with the finest grid if this grid would be used without any adaptation.

5.1. The local level error

Let the gridfunction u(¢) denote the pointwise restriction of the true solution u(x,y,t) to the space
grid w;. Consider the perturbed scheme (4.1). By replacing all U-values by their associated uy-values,
the local perturbation r} becomes the local level error at grid level k. For convenience, we will denote

this local level error also by r}:

e = uk — D} [Ryu} ™' + vFi(t,, uf)] — (CRY)

(Ik - DZ) [Pk_lkuz_l + bZ]a n =1,2,.... 5 k= 1,....,1.

For n = 0,u} = w(t,) and uf}, b} are supposed to be the zero vector. (Any choice will do since
DY = 1,)
The local level error 7} contains the following local error components, the local spatial error

induced by the finite-difference approximation, the local temporal error of the implicit Euler method,
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P4

and the interpolation error. Let us first discuss the different components. They are defined in the stan-

dard way by, respectively,

a(t) = gt—uk(t) — F (t,u(?)) (spatial discretization error) (5.2
Bi(@®) = w () — wt—7) — 'rgt-uk(t) (temporal error) (.3
Yi(®) = w(t) — Px—weux —1(f) — be()  (interpolation error) (54

In (5.4) the gridfunction b,(f) has the same meaning as b} in (3.7). Note that y,(t) = u,(?) due to
the chosen zero value for Pgu} + b}. This auxiliary error cannot interfere our analysis since
D% = I,. Also note that these local errors are completely determined by the true PDE solution
u(x,y,t).

In view of Assumptions (A2) and (A3) made in Section 2, we have

a®) = OhZ0) + Oh50),  heps Byk = 0, (-5

where the order constants involved depend exclusively on higher order spatial derivatives of u and
usually also on certain quantities of the PDE operator. Likewise, in view of Assumption (A2) it fol-
lows that B,(t) = 7C, where the i " component of the gridfunction Cy is the i % component of

— Yd2u, /dt* evaluated at a time ¢ +(x—1)r, 0 < k < 1. If u is a C*-function in ¢, then

2
Bul) = — 7ITw® + O, 70, 56

where the order constants involved depend exclusively on the third temporal derivative. Let g denote

the accuracy order of the (Lagrangian) interpolation. Then

.Yk(t) = ahz,k) + O(h‘)’:,k), k 22)""’15 (5.7)

and here the order constants involved again depend exclusively on higher spatial derivatives of u,
assuming sufficient differentiability. If linear interpolation is used, then Assumption (A2) implies

g = 2 and 2™ order spatial derivatives determine the constants.
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P4

Now, using the relation 4} ~' = Ryu} ! for k=1,..,1 an elementary substitution shows that the

local level error r; can be expressed as
ri = Di(rag + BY) + Ux — DP)yi, n=12..; k=1,.,1 (5-8)

Note, by definition of D}, that D}(ra} + B}) is the restriction of the usual local discretization error
Ta; + B} to the integration domain of the grid wy, while (Iy — D7)y} represents the restriction of

the interpolation error y} to the complement of this domain.

5.2. A crude global error bound

Denote the global discretization error by (cf. 4.2))

ef = uf — U3, n=0,1,...; k=1,..] 5.9
and assume in the following that the initial errors e} are zero. For any choice of D} the consistency
results (5.5) - (5.8) imply

k= Orhi) + OThl,) + OFP) + Ohdy) + Ok ) (5.10)
for any level k. If we suppose linear interpolation and Assumption (A5), like in Theorem 4.2, then a
straightforward application of inequality (4.15) enables us to write down

lefll < llef =1 + 1IS™Il < ISM + .. + IS™I, n=12,..., (5.11)
where

IS™Il = Oh% 1) + Ok, 1) + OG0 + OR2 ) + O ). (5.12)

Here the coarsest mesh width shows up due to simply adding in (4.15) all normed local level €errors,
including |Ir}ll. Following standard practice we thus immediately obtain at any fixed time point

t, = n7 the global error bound

n: n
lefll < Cim + Cy(h% + B) + C3(— + —‘T’—), (5.13)

T

where h, = h, ,, hy = h,, and C,, C,, C; are positive constants independent of stepsize and



22

mesh sizes. We note in passing that in the above 7 is taken independent of n. Obviously, inequality
(5.13) can also be derived for variable stepsizes if we put ¢, = 7, + -+ + 7, = n7 and suppose
7; = ) as 70, n—>00 with ¢, fixed and j =1,....,n.

The first two terms in this bound are due to the temporal integration and spatial discretization.
These terms will vanish if the mesh sizes and stepsize tend to zero independently of each other, thus
reflecting the unconditional convergence of the implicit Euler method when applied without adapta-
tion. On the other hand, if no relation is imposed between 7 and 4, h,, then the third term can grow
unboundedly as 7, hy, k, — 0. This term is due to the interpolation. Hence, eventhough we have sta-
bility and consistency, this result shows that unconditional convergence cannot be hoped for.

Fortunately, this conclusion is not as bad as at it looks like. By not specifying the matrices D
and, subsequently, by adding norms of the local level errors, we have simply supposed arbitrary
integration domains at all levels of refinement. This necessarily must lead to a crude error bound like
(5.13). In actual application, the computations should be organized in such a way that the interpola-
tion only takes place in low error regions so that the interpolation error contribution is virtually
absent. This poses the task of setting up a more precise error analysis and subsequently the design of

a local refinement strategy aimed at a suitable selection of the matrices Dj.
5.3. Local and global errors
According to (4.8), the global error e} satisfies the recurrence relation
ef = Gle} '+, n=12..; k=L.. (5.149)

where {7} is the local error defined by the recursion (cf. (4.10), (4.7))

N VA (5.15a)
V= XWEo + (2D, k=21 (5.15b)

Hereby, the operators G}, X} and Z} are supposed to be propertly redefined (replace all U-values by

their associated uy-values). It is of importance to realize that the local error Y} is essentially different
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from the local level error r}. While the latter is associated to the single k' level, Y} is associated to
all levels up to this k™ level which follows immediately from (5.15). This recursion governs the propa-
gation of each local level error when introducing higher-and-higher levels.

Elaborating this recursion gives, for k =1,....,/,

k j+1
=73 ('Hkx;') @), 5.16)

j=li=

It is convenient to split Y} into its temporal and spatial part denoted by, respectively, Y}, and ¢} ,.

Hence, we write

11’2 = 4‘”’:.! + ‘PZ,S’ kzls--"aL (5.17)

and it follows from (5.8) that the temporal local error is given by

k j+1
o= 3 ATXD @) "Dy 5.18)
j=li=

and the spatial local error by

k P+ 1
i, = zl(hx,") @)Dl + (U, — DIyyT] (5.19)
j=1i=k

Let us first examine the temporal local error. Since the same temporal stepsize is used at all levels
and B} does not depend on mesh sizes, we have
Bt = RyB}, k=1,..,1 (5.20)

Substitution into (5.18) yields

k j+1
Ve = S IXD @)~ 'DjRyB; (5.21)

j=li=k
and inspection of the right-hand side operator reveals that this operator is just the amplification

operator G} featuring in (5.14); see the recursion (4.9). In conclusion, the temporal local error 7,

satisfies
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‘Pi,l = GZB;’, k: ls---'al- (522)

We next examine the spatial local error. Using the definition of X7 given in (4.7), we rewrite (5.19)

as
. k=1 j+1 .
Vi, = (ZD 7 'Ux — DPPe—w 2 ( IT X (Z) 7 '[*Dje + (I; — Djvjl + (5.23)
j=1i=k—1
(ZD " Y[7Drek + (Ix — DIV
= (ZY YDia} + (Ix — DPPRl, k=10
where

pi =0, (5.29)
k=1 j+1 .

pi=vi+ P DCTI XD @) 'ItDja] + d; — DY)l k=21
j=1i=k-1

In (5.23) the spatial local discretization error D}a}} committed on the integration domain of grid wy is
separated from the spatial local error part (I — D})p} defined outside this domain. Hence, p} col-
lects all spatial error contributions defined on the lower level grids «; (1 < j < k—1) including
discretization error &} and interpolation error v}, together with the interpolation error y; defined on
the grid w;. This separation enables us to formulate the so-called refinement condition that ensures
that when a new grid level is introduced, the spatial local accuracy outside its integration domain will
be smaller than or equal to the spatial accuracy on the integration domain itself. This distribution of
local space errors is desirable due to the fact that we never return to grid points lying outside a
current integration domain (integration domains are nested).

The refinement condition, which is to be interpreted as a constraint on the matrices Dj, thus is

taken to be

1(Z2) " 'rD}a}ll = —1—||(zz)‘1(1k — DPpill, n=12..; k=2..]1 (5.25)
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where ¢ > 0 denotes a threshold factor to be specified later. If (5.25) is true, then all spatial local

errors Yy satisfy
Wkl < A+o)ll(Z7)'D}a}ll (5:26)
and combining (5.14) with (5.17), (5.22) enables us to present the global error inequality

lekll < IIGRIlllef ~II + IIGEB}II + 527

A+olZH~"Diafl, n=12,..; k=1,..,1

The importance of the refinement condition (5.25) is reflected by the fact that in (5.27) the interpo-
lation error contribution has been removed. This is in agreement with our goal of developing a local
refinement strategy that generates refined subgrids such that the accuracy obtained on the final finest
grid is comparable to the accuracy obtained if this finest grid would be used without adaptation. Con-
dition (5.25) will be further elaborated in Section 6. Note that it suffices to consider (5.25) only for
k =1, since it suffices to consider (5.26) and (5.27) for k =1.

We should comment on the threshold factor c. Inequality (5.27) suggests to choose ¢ close to zero.
However, if we take ¢ very small, the effect will be that the greater part of the diagonal entries of D}
are put to unity in order to satisfy (5.25). This of course has the effect that the integration domains
will become quite large. On the other hand, if we take ¢ very large, then (5.25) is easier to satisfy but
more levels will be needed to reach a certain desired level of accuracy. The actual choice for ¢ may

differ per problem. We will discuss this point later again (in Section 7).

5.4. Convergence and linear interpolation
If we suppose linear interpolation and Assumption (AS5) like in Section 5.2, then (5.27) can be

rewritten as
llell < llef =Ml + BRI + Q+e)rlladll, n=12,..; k=1,..,] (5.28)

so that, following the same derivation as carried out for (5.13), for the highest level / the global error
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bound
le}ll < Cy7 + Co(1+0)h%;, + H) (5.29)

results where C; and C, are positive constants independent of stepsize and mesh sizes. This error
bound is unconditional in the sense that it assumes no relation between stepsize and mesh sizes and,
according to our above mentioned goal, the smallest mesh widths A, and h,; show up. We have
recovered an error bound similar té the standard error bound for implicit Euler when applied on grid

w; without adaptation.

5.5. Convergence and higher order interpolation

As pointed out in Section 4.3, for the case of higher order Lagrangian interpolants powerful stabil-
ity results like those of Theorem 4.2 are not available here. We must instead rely on the impractical
condition (4.29). On the other hand, if this condition applies for any occurring gridfunctions e} ~!
and B! so that IG}e} Il < llef 'l and IG}B7 Il < IIB7 "I, then the improved error bound
(5.29) is valid because in the derivation of the refinement condition (5.25) and the global error ine-
quality (5.28) no a priori choice was made for the interpolants. Assuming that higher order interpola-
tion in low error regions does not severely damages stability, as is strongly supported by our practical

experience, it thus makes sense to impose the refinement condition (5.25) also in the case of higher

order interpolation.

6. THE REFINEMENT CONDITION

6.1. Determining the integration domains
The refinement condition (5.25) needs first to be elaborated into a workable form before it can be
implemented for determining the integration domains. To begin with we rewrite the error p} intro-

duced in (5.24) as

k=1 j+1
P =7+ Py 2 IT XD (Z)7'1Dja] + ¢.1
j=li=k-1
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k=1 j+1
Pr—ue 2 ( H XD@n~'a; - oy, 2<k<l
j=2iZk-1

Note that the summation index j of the second sum may start with ;=2 due to the fact that

1 = I,. Next, we rewrite the first sum as

Py 2( H X") (Z)~'1Dja) = 62

j=li=
Py w(Zi 1) "D} _yaf g +

k=1 j+1

Pr_u X ( H X") . V4 1)_17D7’—1¢¥}’—1 =
j=21i=

P w(ZE-1) "D} _qal_, +

k=1 j+1
P X ( XH@p~'a; - D;)Pj—lj(zf—l)_]TD;—l0‘;’—1,
j=2i=k-1

and substitute this expression into (6.1). It then follows that Pk can be written as

pl =0, 6.3)

PR =N + Pp_y 2( 1‘[ XN (ZH~ 1(1 — DAL, k=2,...1
j=2i=k—-1

where

A=y

T+ Pj_,j(Z;'«_,)“"rD;'-_,a}_l, J=2,00l 6.9
The error function A} contains the interpolation error at level J and the prolongation of the spatial
discretization error of level j —1 to level j. The derivation below now rests upon monitoring the error
function (Z})~'(I, — D} k)pk occurring in (5.25) through monitoring all error functions (I; — DAY,
J <k, occurring in (6.3).

The idea is to select the matrices D7 such that the error functions (I i — D})A]} become sufficiently

small. This makes sense because if C; = 1, C;, = 1 are stability constants such that



28

j+1
lZn~ ' < €5, Il TI XM < Cy, ©.5)

j +
k-1

then
IZD) ™ Uk — DRI < C3(1 + IPe_li(k —2)C3Co)maxy<; <k I(; — DPAJIL (6.6)
Hence, if the matrices D7 are selected such that

C3(1 + 1P, —wlitk —2)C3Comaxocj <k I(Z; — DPAGI < 6.7

@D 'Dialll,  k=2,...1

then the refinement condition (5.25) is satisfied.
In general, the stability constants C3 and C4 are unknown. However, if the dissipativity Assump-
tion (AS) is satisfied, then the constant C3 < 1. Furthermore, if we use linear interpolation, then

IP, —1/l=1 and also C,4 can be put equal to one so that (6.7) simplifies to

maxy<; <kl — PPN < S IZD T DRl k=2l 6.8)

If (A5) does not hold or higher order interpolation is used, then the constants C3 and C4 may be
larger than one, but not with a considerable extent. C; shall in general be of moderate size in view of
the excellent stability behaviour of implicit Euler. Our practical experience with 4™ order Lagrangian
interpolation is that this higher order interpolation is unlikely to yield instability problems, thus indi-
cating that also [IX}%Il, and hence C,, are of moderate size. These considerations make us decide to
proceed with (6.8) and to use it also in situations where (A5) may be violated and/or higher order
interpolation is used.

In actual application it suffices to impose the refinement condition for & =1 only, so that (6.8) can

be replaced by
maxoci <l = DPNIl < 727120 D] e . 69)

In order to satisfy this condition, estimates of
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k= Yk + Pe_w(Zi_1) 'tD} _1a} _, (6.10)

have to be computed. To create an extra safety margin, we replace (6.9) by the slightly more conser-

vative condition

C

maxo<k <ill(lxe — DL < T I(ZP)~'+D}agll, 6.11)
where, componentwise, {7 is defined as

€ = 1G] + |Pr-ulZh-1) "tDF _yaf_ 1)) (6.12)
Finally, we replace (6.11) by

I = DREN < 755 1@D 7" Dfagll, k=2, 6.13)

which is the refinement condition that will be implemented.

This condition will determine the integration domain of wi. Let 2} denote this integration domain
and recall that when a node belongs to Q7, the corresponding diagonal entry of D} is equal to one
and zero otherwise. Suppose that the maximal level number / and the (estimated) value of
c(l=1)7NI(Z7)"'+D}a}ll are known and that a solution at Q% _;, k<, has just been computed.
Prior to the integration step on level k, our task is then to determine Q%. Mathematically, we thus
must define D} such that (6.13) is satisfied, preferably in such a way that the area of Q7 is as small as
possible. The actual selection of Q} is carried out by a flagging procedure which scans level-k grid

points. A point is then flagged if, using appropriate estimates,
@B > 751D eDjag . 6.14)

Hence, for such a point the corresponding diagonal entry (D}); = 1 and for non-flagged points we
define (D}); = 0. This way the refinement condition (6.13) is satisfied.

In conclusion, we only interpolate if

c
-1

| OB | + | Pe—u(ZE 1) '7Df 10} )| < 1(ZH~"wD}af . (6.15)
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Hence, the solution at a node of grid w; is interpolated only if the sum of the moduli of the interpola-
tion error and the prolongated spatial discretization error multiplied with 7, is smaller than the max-
imum of the spatial discretization error at the finest grid multiplied with tc(/ — 1)~ !. In all other cases
interpolation is avoided and an integration is carried out. No doubt this imposes a severe restriction
on the size of the interpolation errors. On the other hand, this restriction is also natural because when
going to a higher level within the current base time step, we never return to a grid point where the
solution has been interpolated and this means that the interpolation error committed will be carried

along to the next base time step. This no return is a direct consequence of the nesting property of the

integration domains which we discuss next.

6.2. Restricted interpolation and the nesting property

At this point we introduce the nesting property of the integration domains. Recall that this pro-
perty, being hidden in the actual definition of the matrices D}, has played no role in the foregoing
analysis. It is stipulated that in our actual application the nesting is enforced by means of the flagging
procedure, viz. this procedure scans only level-k points lying within the previous integration domain
Q7 _,, instead of the whole of w;. A direct consequence is that, different from (3.7), the interpolation
is carried out only for level-k points within € _,. Here we will justify this deviation caused by what
we call restricted interpolation (see also the remark at the end of Section 3.2). We will make plausible
that this restricted interpolation is in fact allowed by the inequality (6.15) where still interpolation
over the whole of w, is assumed.

The error function ¢} contains the vector of moduli of the components of the prolongation of
(Z%_) 7D} _, af _,. This spatial error is defined at level kK —1 and, by definition of Dj -, has zero
components outside 2% —;. Hence, these error components are all taken into account in the flagging
procedure for determining Q% which scans only level-k points within @} _;. For the interpolation error
v%, which lives on the whole of wy (grid expansion), the situation is different. Because we only scan

level-k points within % _;, here the deviation arises. However, the restricted interpolation is allowed



if for all level-k points outside Q7 _; the interpolation error satisfies

c
-1

|G| < I(Z7)~ =D} afll, (6.16)

because then points outside Q% _; will not be flagged if the interpolation step (3.7) would be carried
out on the whole of w,. Recall that |(Pk_1,((22_])_‘1-D2~1a2_1),~| = 0 outside F _;. In other
words, if (6.16) holds outside Q% - ;, then the integration domains found with the restricted interpola-
tion over Q% _; are equal to the domains found if the interpolation would be carried out on the whole
of wy, which is in accordance with the method description (3.5).

Although we do not give a strict mathematical proof, the following argument shows that inequality
(6.16) is very plausible with the restricted interpolation procedure. Note that without restricted inter-
polation (6.16) is a trivial consequence of (6.15) and that we must show that (6.16) is plausible with
the restricted interpolation since this is enforced. First we recall that 27 coincides with the entire phy-
sical domain. Hence for k =2 there is no restricted interpolation so that for all level-2 points outside

7 inequality (6.16) is trivially satisfied. Next consider the case k =3. Now the interpolation is res-
tricted to level-3 points within 23. Since for all level-2 points outside 7 inequality (6.16) is satisfied,
it is very plausible to suppose that this is also true for all level-3 points outside 23, in view of the con-
sistency of the interpolation (level-3 interpolation errors are smaller than level-2 errors). Further, by
construction of 23, (6.15) is satisfied for all level-3 points within 23 and outside 3, and so is (6.16).
In conclusion, it is plausible to suppose that (6.16) is satisfied for all level-3 points outside Q7 when
using the restricted interpolation for k =3. For k =4 and so on this argument can be repeated.

To sum up, we have made plausible that when carrying out the restricted interpolation during the
solution step from ¢, _; to #,, the same matrices D} are found as if interpolation would be carried out
over the whole of the expanded grids. This means that in theory the multilevel method (3.5) is applied
with the matrices D} determined by the local refinement strategy of paragraph 6.1. Interpolation on
the whole of the expanded grids is of conurse possible but also very costly and, as shown above, redun-

dant.
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7. NUMERICAL EXAMPLE

This section is devoted to an illustration of the foregoing error analysis. Our goal here is to numeri-
cally illustrate that by imposing the refinement condition the usual order behaviour is recovered and
that at the same time the spatial accuracy obtained is comparable to the spatial accuracy on the finest

grid if this grid would be used without adaptation.

7.1. Implementation aspects

Before presenting results of actual numerical tests, we first discuss a number of implementation
aspects and remarks of practical interest. These mainly serve to show how the refinement condition is
implemented and are furthermore helpful in judging the experiments. We do not discuss the very

technical issues of the data structure and memory use (see [14]).

() The fixed-level mode.

In the foregoing error analysis the number of grid levels / is supposed to be a priori chosen and
fixed for all times. For a chosen base grid and an appropriate value of /, which need both be selected
on the basis of spatial accuracy requirements, at each base time step the flagging procedure then will
generate / — 1 integration domains according to the refinement condition (6.13). This mode of opera-
tion is called the fixed-level mode. The convergence experiments reported here are performed in this

fixed-level mode.

(I) The flagging procedure.

On top of the flagging procedure implementing (6.14) some safety measures have been built. Any
node for which (6.14) is true is flagged together with its eight neighbours. Next, to create an extra
buffer, all sides of cells with at least one flagged corner node are bisected. This means that a buffer
zone of two coarse or four fine meshwidths is used around any untolerable node. Hence the minimal
number of nodes in a column or row of any subgrid is nine, assuming that the minimal number of

internal points in a row or column of the base grid is three. Near boundaries, physical and internal
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ones, the buffering slightly differs. Although in theory this buffering could be omitted, in practice it is
wise to create a buffer zone around untolerable nodes because the estimation of higher spatial deriva-
tives featuring in a and v} is prone to inaccuracies due to numerical differencing,

After the flagging procedure, a cluster algorithm groups all untolerable nodes together to form the
newly defined integration domain. It is noted that possible subdomains of the new domain cannot
overlap and that we do not connect subdomains which are lying close together since this leads to
extra bookkeeping. For the same reason the local refinement does not distinguish between co-ordinate
directions. This necessarily leads to some waste of points if a high gradient region aligns with a co-
ordinate direction (cf. [14], Figure 8.2).

The threshold factor ¢ occurring in (6.14) must be specified. In view of the global error result (5.28),
¢ should preferably be taken sufficiently small so as to achieve that the spatial accuracy obtained is
indeed nearly equal to the spatial accuracy obtained without any adaptation. On the other hand, the
smaller ¢ will be chosen, the more points will be flagged and hence the safer the local grid refinement
will be (the extreme choice ¢ =0 would imply global refinement). This means that ¢ is available as a

tuning parameter for the local grid refinement. In the experiments reported here we simply use the

default value ¢ =1.

(IIT) The estimators for af, v and Z} _,.

The use of (6.14) requires estimates of spatial interpolation and discretization errors. For 2<k </
we must estimate interpolation error y; and the prolongated spatial discretization error
Py _1(Z% -1)"'D} _,a} _,. Further, an estimate of the spatial discretization error (Z})~'D}a] com-
mitted at the final /™ level must be available at all lower levels. Because we use local uniform grids,
the estimation of these errors can be realized cheaply and accurately.

Consider the local spatial discretization error

ot = L0, — Fultr mit) @



34
and let p be the order of consistency (in this paper p =2). The estimation technique we apply is very
common and based on the use of a second spatial discretization of a higher order p. Let F denote the

associated operator and

o d -

ag = Euk(t)l o, — Filty, w(t,)) 7.2
the associated local error. Elimination of %uk(t) |, from (7.1) yields

of = Filta utn)) = Filty t(tn)) + & (7.3)
If p = p +1, then we may neglect a, for estimation purposes so as to obtain

o} & Filty, w(tn)) — Filtn u(ty)) (7.4

as an asymptotically correct estimator for a}. The benefit of using uniform grids now lies in the fact
that F is easily constructed. At internal nodes our F provides 4'® order accuracy (standard symmetri-
cal differences), while at nodes adjacent to physical or internal boundaries 3" order accuracy is real-
ized (standard one-sided differences).

The benefit of using uniform grids is also reflected in the estimation for the interpolation error v
(cf. (5.4)). Our algorithm provides two options, viz. standard linear interpolation of 2° order and
standard Lagrangian interpolation of 4% order. In the case of linear interpolation, we thus need to
compute spatial derivatives u,,, etc., while in the 4™ order case spatial derivatives like u,,,, show up.
For both options the error estimation procedure can be straightforwardly implemented (to save space
we omit details here).

We wish to emphasize that in spite of its simplicity standard linear interpolation may become
disadvantageous due to the low order of accuracy. Inspection of the various terms in (6.14) suggests

to compare the following order relations:

P —u(Zh—1) ' Dhraf 1) = T(ORLi) + ORSL)), (7.52)

I(Zp)~'+D]afll = 7(@k%) + AR3D), (7.5b)
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Op = O(hi,k) + w(hf,‘k), 27 order linear, (7.5¢)

OB = Oh% ) + Ahyx), 4" order Lagrangian. (7.5d)

Essential for this comparison is that in the discretization terms (7.5a), (7.5b) the stepsize 7 is con-
tained. Consequently, it is the interpolation error that readily will govern the local refinement if 7 is
very small, and particularly so when the interpolation is linear. The comparison is clearly in favour of
the 4 order interpolation. For example, if 7, h,y, k), are of comparable size, then the comparison
based on (7.5a) and (7.5d) predicts that the interpolation error will hardly play a role in the local
refinement. Instead, now it is the local space discretization error that will govern the local refinement.
It should be emphasized, though, that in this comparison the size of the unkown order constants has
not been taken into account. This means that in actual application the comparison between the vari-
ous terms may work out differently.

Our numerical example problem is linear. Hence the operator Zj_, featuring in
Zr-) "D el is simply the implicit Euler matrix that is also used to compute the solution vec-
tor D} _,U% _,. The computation of the error term (ZZ-1)"'D}_,a}_, then can be carried out in
the same way as that of the implicit Euler approximation (solution of a linear system using the avail-
able factored form of the matrix).

There remains to describe how we estimate the righthand side term ||(Z})"!DJa}|l of (6.14) for
2<k<I—1. Here we exploit the asymptotics of the spatial discretization. Since the meshwidth of

level k is half that of level k& + 1, we make invoke the relation
I(Z)~'Diall =~ 27700\ (ZD) " 'Diafll,  I=k+], (7.6)
for k=1,2,.... . In theory it suffices to do this only once, namely for k =1, but since for larger values

of k this estimation will become more and more accurate, it is done for every k.

(IV) The use of implicit Euler.

Due to its favourable stability properties, implicit Euler is a very robust integration method. A
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drawback is that this method is able to provide only limited accuracy in time due to its consistency
order one. Another important point of practical interest is the implicitness. Implicitness leads to
overhead costs for solving systems of linear or nonlinear algebraic equations. In the more common
method of lines approach, based on sophisticated stiff ODE solvers, one invariably attempts to reduce
this overhead by using old Jacobian matrices over considerable numbers of integration steps with the
same stepsize. This way the costs of the numerical algebra can be reduced easily and no doubt the
practical experience with these solvers is, in this respect, excellent. However, for a multilevel local
refinement algorithm implicitness has a larger impact.

There are two points worth mentioning. The first point is that at any base time step refinement
takes place at different levels, resulting in a different Jacobian per level the order of which usually
differs per base time step. This virtually impedes the profitable use of old Jacobians, unless it is
decided not to adapt grids at any base time step, but instead per prescribed number of these steps.
We consider this as part of an overall strategy that can easily be placed on top of the existing one. In
our experiments we adapt grids at any base time step since our main aim with these experiments is to
illustrate the convergence analysis together with the refinement strategy. However, when dealing with
real applications, it is most likely to be more advantageous to omit adaptation at any base time step,
just for efficiency reasons. The second point is that the Jacobians do not posses a regular band struc-
ture, since the integration domains 2} normally have an irregular shape. Unlike the first, this point is
intrinsic to the local refinement method. In our current research code the Harwell sparse matrix solver
MA28 is used. This solver is well suited to cope with the structures we meet, but is rather time con-
suming for the present application. It is likely that standard iterative methods can be applied at lower
costs. Once more, our experiments focus on illustrating the foregoing error analysis and important

efficiency aspects have been set aside.
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7.2. The example problem
This test example is hypothetical and due to Adjerid and Flaherty[1]. We have also used it in a

convergence experiment in [14]. The equation is the linear parabolic model equation
U = Uy + uy, + fxp,1), 0<x,y <], t >0, 7.7

and the initial function at ¢ =0, the Dirichlet boundary conditions for >0 and the source term S are

selected so that the exact solution is
u(x,y,0) = exp[—80((x — r()? + (v — s@)?)], (7.8)

where
r@t) = %[2 + sin(m)], s@) = %[2 + cos(mt)]. 79

This solution is a cone that is initially centered at (%,%) and that symmetrically rotates around the
center (%,%) of the domain in a clockwise direction. The speed of rotation is constant and one rota-
tion has a period of 2. This problem is not a very difficult one in the sense that the spatial gradients
of the solution are not very large, that is, the cone is not very steep. However, the problem is suitable
to subdue the local grid refinement method to a convergence test. Observe that the semi-discrete ver-

sion of this problem satisfies the dissipativity assumption (AS).

7.3. Convergence experiments

We have carried out two identical convergence experiments. In the first experiment linear interpola-
tion has been used and in the second 4" order Lagrangian. In both experiments the solution is com-
puted four times over the time interval 0<<z <2, always using a uniform 10 x 10 base grid and a con-
stant stepsize 7 in time. In the first computation / =1, in the second / =2 and so on. Since per compu-
tation the smallest meshwidth is halved, 7 is simultaneously decreased with the factor 22 in view of
the 1** order of implicit Euler. Hence, in line with our convergence analysis, per computation the

maximal global error should also decrease with the factor 22.



38

T no. of interpolation t
levels P 0.50 1.00 1.50 2.00
2.00000 1 0.16447
050000 5 linear 003232 003214 003213 0.03213
. 4% order | 0.03169 0.03149 0.03148  0.03148
0.12500 3 linear 001127 001127 001127 0.01127
' 4% order | 001133 0.01133 0.01133  0.01133
003125 4 linear 000259 0.00259 0.00259  0.00259
. 4% order | 000276 0.00276 0.00276  0.00276

TaBLE 7.1. Maxima of global errors restricted to the base grid.

no.of | . lati single t
T levels | MterPOlAtion | o4 | 050 1.00 1.50 2.00

200000 | 1 10x10 0.16447
5 linear 003876 0.03890 0.03891 0.03891

0.50000 4% order 003929 0.03945 0.03946  0.03946
20x20 | 0.03865 0.03881 0.03882  0.03882

5 linear 001369 001369 001369 0.01369

0.12500 4 order 001376 001376 001376 0.01376
40x40 | 001389 0.01389  0.01389  0.01389

4 linear 0.00340 0.00340 0.00340  0.00340

0.03125 4% order 0.00359 000359 0.00359  0.00359
80x80 | 0.00347 000347 0.00347  0.00347

TABLE 7.2. Maxima of global errors restricted to the finest domain.
Comparison with errors on a standard uniform grid.

For a sequence of time points Table 7.1 shows for the two experiments the maxima of the global
errors restricted to the base grid. This table clearly reveals the expected order behaviour. The errors
of the /=4 runs are about a factor 4 smaller than the corresponding errors of the /=3 runs. Note
that there is hardly a difference between the corresponding errors, showing that, as anticipated by our
strategy, the choice of interpolant has no notable influence on the error. At this point we emphasize

that in spite of the relatively large values for 7, the spatial error dominates the global errors shown in
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t=0.5 t=10

[

t=1.5 t=2.0

FIGURE 7.1. Linear interpolation. Integration domains for the /=4 run at four different times. The
size of the integration domains decreases only slowly with the number of levels. This is due to the fact

that the cone is not very steep. At the end time ¢ =2.0 the number of nodes amounts to 121, 425, 813
and 1917, respectively.

this table. For example, using 7=0.125 instead of 7 = 0.5 in the / =2 run, the same global errors are

found (they deviate in the 3™ or 4 decimal digit). In other words, conclusions on the spatial error
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t=05 t=10

t=15 t=20
FIGURE 7.2. Fourth order interpolation. Integration domains for the / =4 run at four different times.
At the end time ¢ =2.0 the number of nodes amounts to 121, 425, 813 and 1361, respectively.
behaviour induced by the local refinement algorithm can be drawn from this table.
Table 7.2 shows the maxima of the global errors restricted to the finest integration domain in use.

This table also contains the maxima of the correponding errors for this grid used without adaptation
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(uniform). Note the striking correspondence between the errors. These results convincingly show, at
least for the current example problem, that the use of the refinement condition ensures that the spatial
accuracy obtained is very much comparable to the spatial accuracy on the finest if this grid is used
without any adaptation. The threshold factor ¢ =1 apparently has no influence on the error. We owe
this to the fact that the refinement condition has been derived from errors bounds.

The use of the two different interpolants is expressed in the slightly different integration domains
shown in Figures 7.1 and 7.2. As expected, at the higher levels linear interpolation gives rise to some-
what larger domains. This means that the use of linear interpolation is more expensive. Note that
with linear interpolation the shape of the cone is more accurately reflected in the domains than with
4" order interpolation. As a rule, 4® order interpolation is to be preferred as it leads to smaller
domains. Note that for both interpolants the moving domains accurately reflect the symmetric rota-

tion of the cone, which once again nicely illustrates the reliability of the implemented refinement con-

dition with the various estimators.

8. FINAL REMARKS AND FUTURE PLANS

Noteworthy is that in spite of the overhead due to the regridding and error estimation, in the / =4
run with linear interpolation our FORTRAN research code spent approximately 85% of the total
elapsed CPU time in the integration routine (1620 sec. measured on a SUN/SPARC station 1). Only
2% was spent by the regridding routines and 6% by the estimation of the spatial discretization errors
together with the involved back solves. The high percentage spent by the integration routine is due to
using the sparse matrix solver MA28 whose application is no doubt expensive here. Needless to say
that for real applications the efficiency of the time stepping scheme in connection with the spatial
adaptation and static regridding should be a point of serious concern. As mentioned before, in the
successful convergence experiments discussed above this issue has been set aside.

In our future research in this field we plan to pay serious attention to time stepping efficiency.

Using the refinement strategy of this paper as a starting point, the plan is to examine the application
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of methods possessing a higher order in time. Natural candidates belong to the class of Runge-Kutta
and linear multistep methods. It should be stressed, though, that fully implicit methods can only be of
serious advantage if the numerical algebra issue can be satisfactorily solved. In this connection split-
ting methods of the ADI and LOD type (see [10]) may therefore provide an attractive alternative to
fully implicit ones, although they are usually less accurate in time. Another point of serious practical
concern is to apply methods not only in fixed-level mode, but to have also the possibility to vary the
number of levels. This might be useful for the computation of solutions which, for example, steepen
up in time like the combustion problem in [14]. For such problems, the application of a variable
number of levels should be combined with the use of variable temporal stepsizes. Preferably, the

complete adaptation then should be monitored by estimators of temporal and spatial errors in such a

way that there is a balance between the two which aims at minimizing the waste of computing time.
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