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The asymptotic consistency of the bootstrap approximation for generalized quantiles of U-statistic structure
(U-quantiles for short) is established. The same method of proof also yields the asymptotic accuracy of the
bootstrap approximation in this case. Applications to location and spread estimators, such as the classical
sample quantile, the Hodges-Lehmann estimator of location and a spread estimator proposed by Bickel and
Lehmann are given. Our method of proof for the asymptotic consistency relies on an idea of Sheehy and
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1. INTRODUCTION
Let X,,X,,... be independent random variables defined on a common probability space (2,4, P), hav-

ing common unknown distribution function (df) F. Let A(x,, . . . ,X,,) be a kernel of degree m (i.. a
real-valued measurable function symmetric in its m arguments) and let

Hi()=Ph(X,, ..., X»)<y), yeR ’ (1.1)
denote the df of the random variable A(X}, . . ., X,,). Define, for each n=m and real y,

-1
n
H,0)= |, > 2 IhX, ... X)<y) (1.2)
I<i, < --- <i,<n

the empirical df of U—statlstlc structure.

Let, for 0<p<l1, §,=HFr !(p), denote the p-th quantile corresponding to Hp, and let § on = H;'(p)
denote its empirical counterpart. Generalized quantiles of the form §,=H, '(p) are called U-
quantiles. CHOUDHURY and SERFLING (1988) note that §,,—§,, as. [P], as n—oo, and, in addition,
that, as n—o0,

n =) oN(0.0) (1.3)
where

o> =m>§,hr () (1.4)
with

¢, = Var(g,(X1))>0 (1.5)
and
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&XD=EI((X,, ..., X)<§E) | X)—p (1.6)
provided Hy has density 4y positive at &,.

In applications one often wishes to establish a confidence interval for §,=H 7 '(p) and a studentized
version of (1.3) is required. An estimator of the asymptotic variance o> was proposed by CHOUDHURY
and SERFLING (1988). Their estimator was shown to be strongly consistent, but appears to be rather
unpleasant to work with. '

The aim of this paper is to employ bootstrap methods for the construction of a confidence interval
for &, =HF'(p). We establish a bootstrap analog of (1.3), under a slightly more stringent smoothness
condition on Hg. Our proof is inspired by the argument given in SHEEHY and WELLNER (1988). These

authors treat the classical case of the ordinary sample median (i.e. the case pZ%, m=1, h(x)=x)

and obtain an insightful proof of Proposition 5.1 of BICKEL and FREEDMAN (1981). Here we extend
their result to the more general case of U-quantiles of the form §,,=H,, '(p), 0<p<1.

In Section 2 we state and prove the bootstrap CLT for U-quantiles, whereas in Section 2 we estab-
lish the asymptotic accuracy of the bootstrap approximation in this case. Applications to certain esti-
mators of location and spread, such as the classical sample quantile, the Hodges-Lehmann estimator
of location and a spread estimator proposed in BICKEL and LEHMANN (1979) are discussed in Section
4.

2. CONSISTENCY OF THE BOOTSTRAP FOR U-QUANTILES

Let F, denote the empirical df based on X,,...,X,. Define %;,,,:H,',_‘(p), 0<p<Il, where H,
denotes the empirical df of U-statistic structure based on the bootstrap sample X7, . . ., X;. Here and
elsewhere X7, . . . , X, denotes a random sample of size n from F,, conditionally given X, . . ., X,.

Our first main result is as follows:

THEOREM 2.1. Suppose that Hp is continuously differentiable (with density hy) on a neighbourhood of &,
with h F(ﬁp)>0. Then, for almost every sample sequence X,X,...

1 n~ n d
1’ (pn—4m)—N(0,0%) @.1)
with o® as in (1.4).

PrROOF. Let i’,, denote the probability measure corresponding to I:“,,. Similarly as in SHEEHY and
WELLNER (1988), we write

1

Pon* Ep—Em)<x) 2.2)

Pyn (Hy\(p)—H; ' (p))<x)

-1
2

P (H, \p)<H;'(p)+xn )

Py (HYH, (o) +xn )=p)

I

= IS"(W;> _l_)n)
where

—L
2

~l-

Wi=n’ (HyH7'@p)+xn )—H,H;'@p)+xn )} 2.3)



with, for each n=m and real y,

Hp)=n"3S - STI0(X,, ... . X)<y) 2.4)

i=1 i,=1

the empirical df of von Mises structure, and

N

D,= n_lz{ﬁ,,(H,,_l(p)-i-xn‘ )—p). , @.5)
We first consider D,. Note that

D,= éz—)m (2.6)
where -

Dy=n {(H,(H, ' (p)+xn _%)—HF(H;‘(pHxn '—]2)} @7

(A )~ HH )

Dy, = n"f{HF(H;‘(p>+xn_lz)—HF<H;‘<p»} 2.8)
and

Da=n " (H,H; (4)—p). 2.9)

1
__To treat D, note first that D,=D,,+O0(n 2) a.s. [P], as n—o0, where D,, is obtained from
D,, by replacing H, by H,, with H, as in (1.2). Suppose without loss of generality that x>0. Clearly,
for n sufficiently large,

Diu|<  sup | |U()—Un(s)l as.[P] (2.10)
|t =s|<xn ? .
s,te
where J is the neighborhood of §, on which H is continuously differentiable, and
1

Up()=n " (Hy(t)— Hi(2)), 1R @.11)

denotes the empirical process of U-statistic structure.
Similarly as in SILVERMAN (1983) it is easy to see that

Di|<(H™'S sup |, |URLy ()= URzy(s) 2.12)
& |t —s|<xn
tseJ

-1
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where, for any given permutation « of {1,2,...,n} Ujz,(¢) denotes the empirical df (evaluated at the
point #) of the [%} independent random variables

h(Xagmj +1ys - - - ,X,,(mj+m)),j=0,1,...,[%]—1, all with common df Hg. Application of relation (2.13)
of STUTE (1982) to each of the n! terms appearing on the r.h.s. of (2.12) directly yields that
1 1

D,,,=0(n——4(ln n)_z) a.s. [P], as n—o0, hence,
1

(Inn)?) as[P], as n—co. (2.13)

al-

D, =0

Here we have used the smoothness of Hr as well as the inequality (2.12).



Next we consider D,. Using again the smoothness assumption on Hy and employing the a.s. [P]
convergence of ip,, to £, as n—o0, we easily obtain from the mean value theorem that

Dy, —xhp(§,)  as.[P], as n—oo. (2.14)

ol

Finally note that D 32 =0(n B ). We can conclude that
D,—xhp(§,) as.[P], as n—>co. . (2.15)

Next we consider the limit behaviour of W}, n=m, m +1,... (cf (2.3)), conditionally given f’,,. Obvi-
ously, given F,, W, is a normalized U-statistic of degree m, with bounded kernel, depending on n, of
the form

ol

L
2

s - xm)= TG, X< txn )= HyEptxn ) (2.16)
Of course Ex W, = Er h, (X7, . .., X;,)=0, as. [P], whereas it is easily checked that

Vary (Wy)~m?Ef gh(Xi)  as.[P], as n—>o0, 2.17)
where

gn(X1)= Ef, (An( X35, X0)| X7)- (2.18)

A simple argument involving the strong law for U-statistics with estimated parameters (Theorem 2.9
of IVERSON and RANDLEs (1989)) directly yields that

Ergn(X1)-§, as.[P], as n—oo, (2.19)
with {, as in (1.5).

At this point we apply the Berry-Esseen bound for U-statistics of degree m of VAN ZWET (1984) to
find that

ol

Supl (W, <x) = @Gxm '8, )| (2220)
Eilg.(XDP  EphX(Xi,...Xp) -+
= 0{( —+ — n ).
~ 2 2 EF,,gn(Xi)
(EF,gn(X1))

Note that, in contrast to Corollary 4.1 of VAN ZWET (1984), the asymptotic variance instead of the
exact variance of W, is employed. It is easy to see that this does not affect the bound (2.20). The
different standardization will give rise to an additional term of type

Ep h3(X1,es X)) -
Ef gn(X7)

L
2

(2.21)

which is already present in van Zwet’s bound. Because 4, is bounded by 1, for all n, and combining
(2.19) with the fact that {,>0, we easily see that the moments appearing on the r.h.s. of (2.20) are
1

O(1) as. [P], as n—o0. Hence the r.h.s. of (2.20) is O (n 2) a.s. [P], as n—o0.

From (2.2), (2.15) and (2.20) we obtain

i)n(n—z (%/:n _%pn)gx) » (222)



_v

L
2 2

=1-®(—D,m™'t, H+0@m )
=®(xo~ ) +o(1)

a.s. [P], as n—oo. This completes the proof of theorem. O

For the special case m =1, h(x)=x,p r];, the classical sample median, SHEEHY and WELLNER (1988)

obtained the same result. It should also be noted that instead of the Berry-Esseen bound (2.20) we
could have used a CLT for a triangular scheme of U-statistics like the one given in Theorem 2.1 of
JaMMALAMADAKA and JANSON (1986). However, for our purpose (see Section 3) it will be convenient
to have the order bound (2.22).

3. ASYMPTOTIC ACCURACY OF THE BOOTSTRAP FOR U-QUANTILES

From (1.3) and (2.1) we know that the bootstrap approximation for a normalized U-quantile is
asymptotically consistent. In this section we investigate the a.s. rate at which the difference between
the bootstrap approximation and the exact distribution of a normalized U-quantile tends to zero, as
the sample size gets large.

THEOREM 3.1. Suppose that the assumptions of Theorem 2.1 are satisfied. Suppose, in addition, that hr

satisfies a Lipschitz condition of order >—12‘ on a neighborhood of §,. Then

1

sup (1 * G —Em)<x)=P(n G —4)<0)|= 0@ 'Inn) (3.1)
a.s. [P], as n—oco.

For the special case m=1,h(x)=x, the classical p-th sample quantile, SINGH (1981) obtained a
1

sligthly better a.s. rate: the factor Inn in (3.1) is replaced by (Inln n)_2 in this case. Whether the same
improvement holds true for U-quantiles appears to be an interesting open problem.

Proor. First note that

A~ L oA, A L. 3
SUp |Py(n* (pn = &) <x) = P " (bn—§) <)< ZTin (32)

i=1

where, for some constant K>0,

Lo .
Iy= sup | |Py(n (&n—bm)<x)—®(xo™")| (33)
|x|<K(nn)?
and
_lM n
Iy=sup | |Py(n  (pn—En)<x)—D(xc™ ") (3.4)
[x|>K(nn) >
and

I,= s2p|P(n_z(ép,, —£,)<x)—®(xo™ ).

We first consider I,,. Going through the proof of Theorem 2.1 we easily verify that
L
sup  |D,—xhp(4,)|=0(n ‘Inn) as.[P], as n—co. (3.5)

|x|<K(In n)T
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Here we have used (see (2.12)) that

sup | |D1a|<(n N~y sup, | |URZ () — Utz ()|
|x|]<K(nn)? @ |t—s|<Kn ?(nn)? " "
tsel

=0(m ‘(nn)*) as[P], n—oo

by application of relation (2.13) in STUTE (1982). Also (2.14) is replaced by the stronger assertion that
L
sup | |Dy,—xhp(§)|= 0 ‘Inn)  as[P], as n—co.
|x|<K(In n)T
For this we used Lemma 3. of CHOUDHURY and SERFLING (1988) and the Lipschitz condition on Af.
Combining (3.5) with (2.22) directly yields

I,=0(m ‘lnn) as.[P], as n—oo. (3.6)

For the quantity I,, we have
L 1
Ly <Py(Epn—bp>Kn *(lnn)’) (3.7)
L 1
+P,¢pm—En<—Kn (lnn)’)

Bl
+2(1—®(K(Inn) 67 ").
_L
The third term is O(n *) by taking K large enough. It remains to estimate the two other terms.
Since the argument is the same for both, we only deal with the first term of the r.h.s. of (3.7). Simi-
larly as in (2.2) we write

P& —b,>Kn ‘(nm)’) (38)

_L
2

= P(H)GEn+Kn (Inn)’)— Hy&u+Kn (Inn)’)

<p—Hy&n+Kn (Inn)’))

Application of Lemma 3.1 of CHOUDHURY and SERFLING (1988) directly yields that for all n
sufficiently large,

1

(Inn)_2)<p—ﬁ,,(£p+—§n__z(lnn)7) 3.9

_L
2

)4 —I_J,,(ép,, +Kn

a.s. [P], provided we take K large enough. A simple argument involving Corollary 2.1 of HELMERS,
JANSSEN and SERFLING (1988) and the a.s. closeness of H, and H, gives us (with C,, as in the corol-

lary)

K —5

p—Hy(+on (nn)?) (3.10)

_ 1

<P_HF(§;:+§" (lnn)_2)+C,,,n_

1

(nn)’ +0(n~")

~l=
|-

a.s. [P]. The smoothness assumption of the theorem directly implies that

p—HF(£p+§n—_Z(lnn)_2) G.11)



L
2

——%hp(gp)n (nn)’(1+0(1))  as[P], as n—co.

L .
Together (3.9), (3.10) and (3.11) yield that p—H,,(gp,,+Kn 2(lnn) ’ )<<0, for all n sufficiently large,
a.s. [P], provided we take K large enough

We can now apply an exponential bound for U-statistics with bounded kernels of HOEFFDING
(1963) (see also SERFLING (1980), p. 201) to find that

L
2

PyHGp+Kn (nn)')— HyGu+Kn (nm)’) (3.12)

<p—H,Ep+Kn (nn)’))
<exp{——[——]n—‘1nn1<2h HE))
=o(n ) as[P], as n—oo,

provided K is taken sufficiently large. This together with (3.7) and (3.8) implies that

-1
2

I,,=0(n ) a.s[P], as n—o0. (3.13)

Hence I, is of negligible order for our purposes. It remains to consider /3,. Clearly, as n—oo,

-4
2

I =suplP(n G —§)<x) — ®xo” =00 ), (3.19)

i.e. the Berry-Esseen bound for U-quantiles is valid. To check (3.14) is an easy matter in view of the
classical proof of a Berry-Esseen bound for ordinary sample quantiles (see, e.g. SERFLING (1980), p
81-84). We have to apply instead of the Lemma on p. 75 of SERFLING (1980), the exponential bound
of HOEFFDING (1963) for U-statistics with bounded kernels. Also a Berry-Esseen bound for U-
statistics is needed.

Combining (3.6), (3.13) and (3.14) with (3.2), we find that the theorem is proved.

4. APPLICATIONS
In this section we indicate briefly applications of our results to the problem of obtaining confidence

intervals for §,= H E‘(p). Let u% =o'(1 —%). The normal approximation (1.3) yields an approxi-

mate two-sided confidence interval

-1
2

Gn—n ouu g,,,,+n zanu%) 4.1
for §,. Here o,, denotes a consistent esumator (e.g., the one proposed by CHOUDHURY and SERFLING
(1988)) of the asymptotic variance o>. Clearly, the error rates corresponding to the upper and lower
confidence limits in (4.1) will depend on the rate at which 6, approaches o”.

A bootstrap based confidence interval for &, is given by

1 1
-~ _'_2 . A -'_2 .
(gpn —hn Cn 1 —-—;—’ gpn —h cn,% (42)

where c},‘% and c,',vl_% denote the %-th and (1——%)—th percentile of the (simulated) bootstrap
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approximation. It is easily verified that the upper and lower confidence limits in (4.2) have error rates
1
e

equal to —‘2"— +O0(n Inn).

We discuss a few specific examples of U-quantiles. In the first of these we take m =1, h(x)=x and
obtain the classwal p-th sample quantile §,,=F, (p), 0<p <1. Our second example is obtained by

taking p=—, m=2, h(x,x3)= (x;+x;)/2. In this case §_,, ‘(‘—) becomes the well-known

Hodges-Lehmann location estimator. In the third and final example we take p=— 2> m=12,

h(xy,x2)=|x| —x,|. In this case &2,, =H, ](—2) reduces to an estimator of spread proposed by BICKEL
and LEHMANN (1979).

A further investigation into the relative merits of the normal and bootstrap based confidence inter-
vals (4.1) and (4.2) for U-quantiles appears to be worthwhile. The authors hope to report on these
matters elsewhere.
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