4

Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

H.T.M. van der Maarel, P.W. Hemker, C.T.H. Everaars

EULER: An adaptive Euler code

Department of Numerical Mathematics Report NM-R8015 August

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
1946, as a nonprofit institution aiming at the procmotion of mathematics, com-
puter science, and their applications. It is sponsored by the Dutch Govern-
ment through the Netherlands Organization for the Advancement of Research
(N.W.0)).

Copyright © Stichting Mathematisch Centrum, Amsterdam

EULER:
An Adaptive Euler Code

H.T.M. van der Maarel
P.W. Hemker
C.T.H. Everaars

Centre for Mathematics and Computer Science
P.O. box 4079, 1009 AB Amsterdam, The Netherlands

Abstract

In this report the implementation of an algorithm to perform first order accurate Euler
flow computations on a self-adaptive grid is described. The data structure used allows for
multigrid convergence acceleration on locally refined grids, consisting of nested quadrilat-
erals. The discretization and the multigrid procedure are based on Osher’s scheme and
finite volumes.

1987 CR Categories: E.1, G.1.8

1980 Mathematic Subject Classification: 65N50, 7T6N10, 76-04

Keywords & Prhases: adaptive multigrid, Euler equations

Note: This research was performed as part of a BRITE/EURAM project under Contract
no. AERO-0003-C.

1 Introduction

In this report we describe the FORTRAN implementation of an algorithm to perform 2D
Euler flow computations with automatic mesh adaptation. The implementation uses the data
structure as described in [1]. This structure allows multigrid convergence acceleration and the
use of locally refined nested grids.

The data handling routines and the routines for Euler low computation are separate mod-
ules in the code. The former, which set up and handle the data structure, can be used to
implement different computational schemes and are independent of the computational part of
the code. This module is called ‘BASIS’. The module performing the adaptive multigrid Euler
flow computation is called ‘EULER’.

The Euler solver used is based on the solver developed by Hemker and Spekreijse [2]. It uses
a first-order upwind discretization of the steady Euler equations, in a finite volume context.
The numerical fluxes are computed using the P-variant of Osher’s numerical flux function [2].
The system of discrete equations is then solved by a collective point Gauss-Seidel relaxation,
with a multigrid convergence acceleration technique.

First we give a short review of the features of the data structure that are essential for the
present application and a brief survey of the basic computational method. Next we describe
how these two are combined into the adaptive Euler code. Finally a computational example is
shown.

Report NM-RS015
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2 2 REVIEW OF THE DATA STRUCTURE

2 Review of the data structure

2.1 Grids on different levels of refinement

A strict definition of the elements of the data structure is given in [1]. It is assumed that the
physical domain of definition of the problem, Q € IR?, can be approximated by a regular par-
titioning of quadrilaterals and that this set—possibly after some coordinate transformation—
forms a regular set of quadrangles. Each such quadrilateral or quadrangle is called a cell.
The cells and their edges make up the grid which covers the complete, or only a part of the
computational domain. '

We consider different levels of refinement. The coarsest grid is denoted by Q°. Each cell of
the grid Q! on level [> 0 is a member of a division of a cell of 21, into a set of 2 X 2 smaller
cells. The coarse cell of Q'~! is not removed when the four smaller cells are generated, but
it is coexistent with the cells of Q!. Except for the cells of the coarsest grid, Q2°, each cell is
one of the four descendants of a cell on a coarser (lower) level. The cell of the coarser grid is
called the parent and its four descendants are called its kids. In this way all the cells in the
data structure are related to each other in a quad tree structure.

2.2 Coordinates

The grid Q0 of the coarsest level, completely covers the computational domain €. Since each
cell of Q° can have either none or only one neighbouring cell at each side, each cell is determined
by a set of coordinates (2,) € IN?. Then we have: a cell Qf'j € Q! is the eastern neighbour of

Qé—l,j and the northern neighbour of Qﬁ,j_l. A similar numbering is used on levels I > 0. The

coordinates (m,n) of the kids Q.7 of a cell Qﬁ,j on level ! are defined such, that the kids are
41 141 1+1 41
in,zj: sz’+1,2j’ in,2j+1 and in+1,2,‘+1-
In an analogous way the coordinates (7, j) and the level I determine a point of intersection
P},J- of grid lines: a grid point. Grid point Pil’j is defined as the south-western corner point
of Qé,j. Furthermore, this integer coordinate system is chosen such that for Q° the smallest

coordinate in either direction is zero.

2.3 Patches

The grid, which forms the geometric system of the structure, is composed of so-called patches.
To each corner point a patch is associated. A patch consists of the corner point and possibly
a horizontal wall, a vertical wall and a cell. On the other hand, each corner point, each wall
and each cell belongs to some patch. As mentioned before, cells are related in a quad tree
structure. Due to this and the definition of a patch, patches are also related in a quad tree
structure. Just like cells, every patch has a parent patch (except for the very root), and may
have neighbour and kid patches.

Remark 1 The notions ‘patch’ and ‘cell’ should not be confused; they are not the same.

The patches make up the cells. The cell, its southern and western edge, together with its
south-western point are all part of the same patch. The eastern edge and south-eastern point
are part of the eastern neighbour patch, the northern edge and the north-western corner point
are part of the northern neighbour patch. Finally, the north-eastern point is part of the eastern
neighbour of the northern neighbour patch.

If the cell of a patch exists, then the patch is called complete. Then also both walls of the
patch exist. Of course, if a cell exists, then all walls surrounding the cell exist and hence a

2.4 Boundaries 3

complete patch always has a northern and an eastern neighbour. In its turn this neighbour
may be either complete or incomplete.

If a patch is not complete, then it exists because it is needed for one or more of the following
reasons:

e the southern neighbour is complete and the cell of this southern neighbour patch needs
the horizontal wall of the patch as its northern edge, and the point as an end point of its
northern and western edges;

e the western neighbour is complete and the cell of this western neighbour patch needs the
vertical wall of the patch as its eastern edge, and the point as an end point of its eastern
and southern edges;

e the western neighbour of the southern neighbour is a complete patch and the cell of this
patch needs the point as an end point of its northern and eastern edges.

It follows that there is always a set of incomplete patches along the eastern and northern
boundary of a domain covered by the grid.

2.4 Boundaries

The edges of a cell and hence the walls of a patch may be a part of the boundary 8 of the
computational domain €. The grid ', on level I > 0 does not necessarily cover the complete
domain 2. The part of the boundary of the subdomain covered by Q!, which does not coincide
with 812, is called the green boundary. The walls of a patch which resides on a level I > 0, may
be part of such a green boundary.

2.5 Data contents

To each patch a number of data is associated, which together make up the data contents of
the data structure. These are data concerning the walls, the point, or the cell of the patch.

Data concerning the walls are for example the lengths of the walls or their directions with
respect to some reference direction. Data concerning the point of the patch are for example,
its physical coordinates, or the solution components and right-hand sides in a vertex centered
method. Data concerning the cell are for example its area or, in a cell centered method, the
solution components, etc.

2.6 Storage

Here we describe how in the FORTRAN implementation the data in the data structure are
stored. Upon creation, each patch is given an (arbitrary) identification number. All data
concerning a patch are referenced through that number. All data are stored in only three large
arrays: an integer array, a Boolean array and a real array.

e The integer array is called ‘PNTR’ (PoiNTeR). It contains the integer data for each patch.
These data are mainly the patch numbers of the related patches: its parent, kids and
direct neighbours. In the same array three more integer data are stored for each patch:
its topological location. This location is given by the two integer coordinates (2, ;) and
the level I on which the patch resides.

¢ In the Boolean array, which is called ‘PPTY’ (ProPerTY), for each patch a number of
properties are stored. These properties indicate whether the cell and the walls of a patch
exist. They also indicate, whether the walls and the point of the patch are part of the

4 2 REVIEW OF THE DATA STRUCTURE

boundary, or maybe a green boundary, and whether the cell borders the boundary or a
green boundary. Furthermore, there are two Booleans which indicate whether the cell
of a patch needs to be refined or maybe removed from the system, at the next earliest
occasion. Finally, there is one Boolean which indicates whether data locations in the
arrays are assigned to a patch, or whether they are still unused and may be used by a
newly created patch.

e The real data array called ‘DATA’, contains the numerical data which are used and/or
changed during the actual computation. For each patch real data concerning (among
other quantities) the geometry, the solution and the right-hand sides of the discrete
equations are stored.

These arrays are passed to a subroutine through the parameter list. They are declared as 2-
dimensional arrays. The first index in the array determines which data are referenced and the
second index determines which patch is referenced. If, for example, we want to know the patch
number of the north-eastern kid of a patch with number ‘p’, we can find this by reading the
data stored in ‘PNTR(NE, p)’. The second index determines to which patch the data belong—
which in this case is patch ‘p’—and the first index determines what datum of the patch ‘p’
is meant—which in this case is the NE-kid (assumed the proper value has been assigned to
‘NE’). For the other arrays this procedure is exactly the same. In the implementation named
constants are used for the first indices (such as ‘NE’ in our example). These named constants
and their values are fixed and can be found in [1].

2.7 The data structure used

In EULER, the computational module of the adaptive multigrid Euler code, subroutines are
provided which act on the data in the data structure, in order to solve the discretized Euler
equations on a locally refined grid. The module BASIS provides subroutines to set up and
maintain the data structure. How to use BASIS, is described in [1].

The subroutines in EULER assume that a data structure has been set up and that one or
more full levels (i.e. levels with grids covering all of 2) have been generated. This can all be
done by using routines from BASIS. In EULER only three subroutines from BASIS are called
directly.

Two of these are the subroutines which generate or remove the four kids of a cell. They
are called ‘MkOfsp’ (MaKeOF{SPring), the subroutine which generates the four kids of a cell
on the next higher level, and ‘RmOfsp’ (ReMoveOF{SPring), the subroutine removing the four
kids of a cell. The former is used each time when new refinements are made.

The third subroutine from BASIS that is called in EULER is the scanning routine ‘Scan’.
This subroutine visits all or part of the patches of the tree. On each patch visited an action
can be taken. When this subroutine is called, the caller can specify:

e which (sub-)tree must be scanned;
¢ the order of scanning;
e on which levels action must be taken;

e which action must be taken.

The subroutine ‘Scan’ is used in almost every task performed by the EULER subroutines. The
action is defined by the user of the data structure, by means of a subroutine which is passed
as an actual parameter to ‘Scan’. Such a subroutine performs a subtask for each patch visited.
The tree is searched from root to top. In [1] ‘Scan’ is given in pseudo-code.

In the case that the actual subroutine given as an argument to ‘Scan’ and the subroutine
that calls ‘Scan’, need to share more data than can be passed through the parameter list of
the subroutines, these data are placed in a named common block. Such a common block is
declared only in the actual subroutine and the calling subroutine.

3 The Euler solver

3.1 Discretization method

Here we describe the method by Hemker and Spekreijse [2], on which the adaptive Euler solver
is based. Both, the discretization and the multigrid solution process are given.
As usual for finite volume methods, the Euler equations are discretized in integral form

$ (Flacosp+gla)sing)ds =0. (1)
-

The state vector q is given by g = (p, pu, pv, pE)T and the functlons f(q) and g(gq) are given
by f(g) = (pu, pu? +p, puv, puH)T and g(q) = (pv, puv, pv* +p, pvH)T, where u and v are
the velocity component in z- and y-direction respectively, p the density, p the pressure, E the
specific total energy and H the specific total enthalpy, given by H = E + p/p. For a perfect
gas we have E = p/p(y — 1) + 1 (u? +v?), where 7 is the (constant) ratio of specific heats. The
domain 0* is an arbitrary subdomam of the computational domain 2, 8Q* the boundary of
Q*, and cos ¢ and sin ¢ the z- and y-component of the outward unit normal on 00*.

The discretization is obtained by subdividing £, into disjunct, non-overlapping subdomains
§; ; (the finite volumes) and by requiring that

f (f(g)cos ¢ + g(q)sing) ds = 0, Vi, . (2)
0;,;

Using the rotational invariance of the Euler equations

f(g) cosd + g(q)sin ¢ = T~ (¢) f(T(4)a), (3)

where T'(¢) is the rotation matrix

1 0 0 0
| 0 cos¢p sing O

T(¢) = 0 —sing cos¢p 0 |’ (4)
0 0 0 1

equation (2) can be rewritten as

f T-1($) {(T($)q) ds = 0. (5)

i3

As finite volumes §; j» arbitrarily shaped quadrilaterals are considered, the subdivision being
such that ©,,, ; and Q; ;,, are the neighbouring volumes of Q;

In this discretization a proper evaluation of the flux vector along 09, ; is crucial for the
success of the multigrid technique. Following the Godunov approach, a.long each cell face the
flux vector i 1s assumed to be constant, and to be determined by a uniformly constant left and
right state, ¢' and ¢”, only. Hence (5) becomes

6 3 THE EULER SOLVER

Fii(gi5) =
T~ Pix1/2.) F(T(iv1/2,:) 112,50 T(Piv1/2,5)9541/2,i Miv1/2,5 =
T~ hio1y2.5)F(T(bio1/2,5)8_1/2,5» T(bi-1/2,)9i—1/2,)li-1/2.5 +
T~ (bij1/2) F(T(di j41/2)8k j4a /20 T(biir1/2)45 511y isi1/2 —
T~ (i j-12) F(T($: j-1/2)8k j_1/20 T($ij-1/2)45 j—1/2)lii-172 =0, (6)

where for example F(T($i11/2,;)4; 1/2,5 T(biv1/2,5)90 11 /2'].) represents the transport of mass,
momentum and energy (per unit length and time) across 8%,), ;, the cell face between (2, ;
and ©Q,,, ;, where liy1/2,j denotes the length of o, 2,5 and ;412 the angle between the
normal on 69i+1/2.j’ pointing from €, ; to ;,, ;, and the positive z-direction.

In the Godunov approach the flux evaluation is identical to the solution of a one-dimensional
Riemann problem. Instead, an approximate Riemann solver is applied, which is the P-variant
[2] of Osher’s scheme. Further, the fluxes are conceived as functions of u, v, c (local speed
of sound) and z = In(pp~?) (entropy), leading to simple algebraic relations for the Riemann
invariants.

The evaluation of a flux across a boundary wall is consistent with the flux evaluation across
an internal wall. E.g. for a boundary wall 692, _, /2,5 01 the left side of the computational domain
we, have the flux function F(§B(d7_19,7); Gi—1/2,;) Where §;_y 5 ; = T($i-1/2,j)91—1/2,5- The
relation ¢g(q7_, /2, J.) (the boundary state) is determined by the type of boundary condition to
be applied: different for sub-/supersonic in-/outflow or solid wall boundary conditions.

Osher’s approximate Riemann solver and the boundary condition treatment are continu-
ously differentiable. This property is exploited in the solution method.

The chqice of the left and right states, such as qﬁ +1/2,5 and g7, /2.5 determines the accuracy
of the discretization. First-order accuracy is obtained by simply taking

l —
iv1y2,; = Tid» 7
. — (7)
Q12,5 = Di+lis

where g; ; and gi1,; are the cell-centered states in , ; and Q;, ;, respectively. In spite of its

suitability for multigrid, two severe drawbacks of the first-order accurate discretization are
e its need for relatively fine grids in smooth flow regions, and
e its strong smearing of discontinuities that are not aligned with the grid.

As a remedy against these drawbacks (besides the use of a higher-order discretization) the
present Euler solver on adaptively refined grids has been developed.

3.2 Solution method

The solution method for the first-order discretized Euler equations uses a multigrid technique.
As the smoothing technique for the discrete equations collective symmetric point Gauss-Seidel
relaxation is applied. Point refers to the property that during the update of the state vector
gi,; all other state vectors are kept fixed. Collective refers to the property that the update of
gi,; is done for all of its four components simultaneously. Further, symmetric means that after
a relaxation sweep, i.e. after an update of all state vectors g; ;j in a given order, a new sweep is
made with the reverse ordering. At each volume visited during a relaxation sweep the system
of four nonlinear equations (6) is approximately solved by Newton iteration, the differential

3.2 Solution method 7

operator applied being (8/du, 8/8v, 8/8¢c, 3/32)T. The most efficient relaxation is obtained
by selecting a large tolerance for the Newton iteration, so that in all but exceptional cases
only a single Newton step is needed. All derivatives that are needed for the relaxation method
are clearly listed in [3]. The relaxation method mentioned is simple and robust and for the
first-order upwind discretized equations considered, it has good smoothing properties.

For the multigrid acceleration the nonlinear approach (FAS) is applied, preceded by nested
iteration (FMG). To apply multigrid, a nested set of grids is constructed, such that a finite
volume on a coarse grid is the union of 2 x 2 volumes on the next finer grid. In the original
method only grids completely covering 2 are considered, whereas in the present case a fine
grid may cover only a subdomain of the domain covered by the next coarser grid.

Let °,...,Q"1, QY Q1 . . QT be a sequence of such nested grids, with Q° the coarsest
and QT the finest grid. Then, nested iteration is applied to obtain a good initial solution on
QL whereas nonlinear multigrid is applied to compute g”, the solution on QL. The first iterate
for the nonlinear multigrid cycling is the solution obtained by nested iteration.

The nested iteration starts with a user-defined initial estimate of q°, the solution on the coarsest
grid ©°. To obtain an initial solution on a finer grid Q'+, first the solution on the coarser grid
Q! is improved by a single nonlinear multigrid cycle. Hereafter, this solution is interpolated
to the finer grid Q'+!. These steps are repeated until the highest level (finest grid) is reached.
The interpolation of a solution on ! used to obtain the initial solution on a grid QM1 is
bilinear.

Let N'g! = 0 denote the nonlinear system of first-order discretized equations on Q'. Then a
single nonlinear multigrid cycle is recurrently defined by the following steps:
1. Improve on £ the latest obtained solution ¢’ by application of p pre-relaxation sweeps.
2. Compute on the next coarser grid 2!~ the right-hand side r!~! = N'-1¢-1 — [I-1 Nlgl)
where g'~! may be an earlier obtained solution on level I — 1 or a restriction of the fine
grid solution, and where I ,l_l is a restriction operator for right-hand sides.

3. Approximate the solution of N'=1¢'~! = r!=1 by the application of ¢ nonlinear multigrid
cycles.

4. Correct the current solution by ¢' := ¢! +1 {_l(ql_l - q‘l,"l), where I~,'__1 is a prolongation
operator for solutions, and q‘l)_l a previously obtained solution on level I — 1.
5. Improve again ¢! by application of ¢ post-relaxations.

Steps 2, 3 and 4 form the so-called coarse grid correction. These three steps are skipped on the
coarsest grid. In general the efficiency of a coarse grid correction depends on the coarseness
of the coarsest grid. (Generally the efficiency increases with the number of grids used.) The
restriction operator I ,l_l and the prolongation operator I, ,l_l are defined by

-1 _ (pl-11y, .1 1 1 1
Tig =01)ii = a0 + i1 ,0; o004 + 210541 (8)
110" Daizi = ([_1d aiv1; = .)
(16" Vaigj1 = (16" Y)2ir1,2j41 = %, -
Defining the grid transfer operators in this way, it can be verified that

N=Yg) = IFINY(T_ g Y), (10)

i.e. a coarse grid discretization of the Euler equations is a Galerkin approximation of the
discretization on the next finer grid. This implies that the coarse grid correction efficiently
reduces the short-wave-length components in the defect.

When we use 0 = 1 we have V-cycles with p pre- and ¢ post-relaxations per level. When
we use 0 = 2 we have W-cycles with p and g pre- and post-relaxations per level.

8 4 THE DATA STRUCTURE AND EULER SOLVER

4 The data structure and Euler solver

4.1 The sequence of grids

At some stage in the adaptive multigrid computation a sequence of grids Q°, ..., QL has been
generated. A grid Q, [> 0, does not necessarily cover all of the domain Q2. Therefore, the
grid Q' consists of a part Q} of refined cells (with kids residing on level I + 1) and a part Q%
which is not refined (does not have kids).

Remark 2 The grid on a level I, 0 < | < L consists of a refined and a non-refined part
Q' =0uql, (11)
where Q4, 0 <1 < L may be empty and where Q;’ is empty.

Remark 3 The grids fo and Q71,0 < I < L, cover the same part of the computational
domain S2.

Definition 4 (Composite grid) For a sequence of grids Q°, ..., QF the composite grid is
Q. = Uiz, .., .2 (12)

Remark 5 In the adaptive computations we are interested in the solution on the composite
grid Q..

4.2 Addressing data

Here we describe the use of the data structure for the Euler solver. All subprograms that ‘read
from’ or ‘write into’ the data structure, have the three data structure arrays (PNTR, PPTY,
DATA) in their parameter list. Their dimensions are declared either as named constants
(FstPtr, LstPtr, FstPpt, LstPpt, see [1]), or they are declared as integer variables in the
common block ‘DatGlb’ (MNOP, MNOD, see [1]).

To solve the discretized Euler equations by the multigrid technique, for each patch we need
storage for the following real data: twelve numbers for respectively the right-hand sides of the
equations, 7!, the current solution ¢' and a previous solution g} of the FAS algorithm, and six
numbers for the geometric data of the grid. The geometric data stored are the components of
the unit normal vectors and the lengths of the horizontal (H-) and vertical (V-) wall.

The real or double precision array ‘DATA’ is used to keep these real data. For each patch
space is reserved and referenced as:

Array element referring to

DATA (PRhsl, patch)
DATA(PRhs2, patch)
DATA(PRhs3, patch)
DATA (PRhs4, patch)
DATA(PQL1, patch)
DATA(PQ2, patch)
DATA(PQ3, patch)
DATA(PQ4, patch)
DATA(PQold1, patch)
DATA(PQold2, patch)
DATA(PQold3, patch)
DATA(PQold4, patch)

right-hand side first equation (conservation of mass);
right-hand side second equation (conservation of z-momentum);
right-hand side third equation (conservation of y-momentum);
right-hand side fourth equation (conservation of energy);

first component of solution (usually u);

second component of solution (usually v);

third component of solution (usually c);

fourth component of solution (usually z);

first component old solution;

second component old solution;

third component old solution;

fourth component old solution;

4.3 Description of the code 9

DATA(PSiH, patch) y-component unit normal on H-wall;
DATA(PCoH, patch) z-component unit normal on H-wall;
DATA(PDsH, patch) length H-wall;
DATA(PSiV, patch) y-component unit normal on V-wall;
DATA(PCoV, patch) z-component unit normal on V-wall;
DATA(PDsV, patch) length V-wall.

Remark 6 Whereas the ordering of the real data for a patch in the array has no intrinsic
meaning, the actual tmplementation is made by named integer constants 1.

4.3 Description of the code
4.3.1 Initialization of technical data

Before any computation can be done, an initialization needs to be made. The technical sub-
routines of the EULER module use a number of constants which only depend on the ratio of
specific heats . These constants are stored in a named common block ‘gammas’. Their values
are initialized by making a call to the subroutine ‘GamIni’ (GAMmalNItialization), which is
declared as

subroutine GamIni(gamma)
double precision gamma

Description of variables:
Input

gamma constant defining the ratio of specific heats «, which for air usually
isy=14.

The common block ‘gammas’ must be declared in the main program to contain twelve double
precision reals.

4.3.2 Construction of geometric data

The geometric data used in the finite volume discretization, consist of the lengths of the cell
faces and the components of the unit normal on the cell faces. The user of the module EULER
can construct the geometric data by making a call to the subroutine ‘MkGeo’ (MaKeGEOmet-
ricdata). This subroutine is declared as

subroutine MkGeo(lev, PNTR, PPTY, DATA)
integer lev

Description of variables:
Input
lev (LEVel) geometric data of the grid on level lev are constructed.

The construction of the geometric data requires the physical coordinates of the grid points of
the grid covering the physical domain. The mapping of the topological coordinates of P}, i to
the physical coordinates (z,y) is problem-dependent. Therefore, the user of the code has to
specify a subroutine, named ‘GetXY’, which delivers the physical coordinates for given integer
coordinates. This subroutine should be declared as

1PRhsl = 1, PRhs2 = 2, PRhs3 = 3, PRhs4 = 4, PQl = 5, PQ2 = 6, PQ3 = 7, PQ4 = 8, PQoldl = 9,
PQold2 = 10, PQold3 = 11, PQold4 = 12, PSiH = 13, PCoH = 14, PDsH = 15, PSiV = 16, PCoV = 17,
PDsV = 18.

10 4 THE DATA STRUCTURE AND EULER SOLVER

subroutine GetXY(i, j, lev, x, y)
integer i, j, lev
double precision x,y

Description of variables:
Input
1 i-coordinate of the grid point Pt-” IH

j j-coordinate of the grid point P} ;

1,77

lev (LEVel) level I on which the grid point P},J- resides;

Output

z physical z-coordinate, associated with Pil'j;

y physical y-coordinate, associated with Pil,j.

Notice that the quantities ¢ = 72! and 7 = j2~! determine the topological coordinates of a
point in the computational domain, independent of the level I.

4.3.3 The FMG and FAS-algorithm

The nested iteration algorithm FMG and nonlinear multigrid algorithm FAS are described in
pseudo-code in [1]. In the EULER module these algorithms are implemented by the subroutines
‘FMG’ and ‘FAS’. The user of the code can make a call to the subroutine ‘FMG’ after the
geometric data have been provided for all levels available in the data structure and the solution
has been initialized on the coarsest grid (level zero). Initialization of the solution is done by
calling the subroutine ‘SolIni’ (SOLutionINItialization), declared as

subroutine SolIni(lev, ql1, q2, g3, g4, PNTR, PPTY, DATA)
integer lev
double precision qi, g2, q3, q4

Description of variables:

Input
lev (LEVel) the solution is initialized on level lev;

gl-q4 the solution is initialized with the constants q1, ¢2, ¢3, ¢4-

This subroutine ises a named common block called ‘IniC’, which is invisible to the user. Since
the physical quantities are expressed in physical, Cartesian coordinates, in this way a uniform
flow is the initial solution. Next, the FMG-algorithm can be performed, which computes
solutions on the grids from level zero to the finest level, all starting from the initial solution
on level zero. The solutions can be further improved by the FAS-algorithm. The subroutines
‘FMG’ and ‘FAS’ are declared as

subroutine FMG(TopLev, nfas, npmg, nqmg, ncycl, ff,
+ PNTR, PPTY, DATA

integer TopLev, nfas(0:TopLev), npmg(0:TopLev),
+ ngmg (0:TopLev), ncycl(0:TopLev), ff

4.3 Description of the code 11

subroutine FAS(BtmLev, TopLev, npmg, ngmg, ncycl, ff,

+ PNTR, PPTY, DATA)
integer BtmLev, TopLev, npmg(0:TopLev), nqmg(0:TopLev),
+ ncycl(0:TopLev), ff

Description of variables:

Input

BtmLev (BoTtoMLEVel) level of the coarsest grid in the sequence of grids
used in the multigrid algorithm (usually equal zero);

TopLev (TOPLEVel) level of the finest grid in the sequence of grids used
in the multigrid algorithm;

nfas (NumberofFAS) the number of multigrid cycles to be performed on
each level in the FMG algorithm;

npmg number of pre-relaxations on each level;
ngmg number of post-relaxations on each level;

ncycl (NumberofCYCLes) type of multigrid cycle to be performed
neyel(i) = 1 : V-cycle;
neyel(i) = 2 : W-cycle;

[f extra parameter to indicate the multigrid cycle to be used
ff = 0: V- or W-cycle;
ff = 1: V-F- or W-F-cycle.

4.3.4 Relaxation

As smoother for the multigrid process point Gauss-Seidel relaxation is used. For this purpose
the cells on a level are visited in some given ordering and in each cell Qf’j visited, the solution
is updated by the (approximate) solution of eqn. (6). The performance of the point Gauss-
Seidel relaxation can be strongly dependent of the ordering. Generally, we want the ordering
to be such that each cell is visited after two of its neighbours already have been visited (except
maybe for a boundary cell). The subroutine ‘Scan’ visits the cells on a level in such an order.
This allows ‘Scan’ to be used for making a relaxation sweep over the grid on a level. The
actual task to be performed when a cell is visited, is ‘solve eqn. (6)’. The subroutine doing this
is passed as an actual parameter to the routine ‘Scan’, which itself is called by the relaxation
routine.

The direction of the sweep over the grid is determined by the ordering used by ‘Scan’ to
scan the tree. The visiting order of ‘Scan’ is determined by an integer array of length four,
passed to ‘Scan’ through its parameter list. This array contains a permutation of the wind
directions NE, SE, SW, NW. (See [1] for their definitions.) The effective sweep directions are
given in table 1, where we assume that this array is called ‘Order’.

The relaxation algorithm needs some further strategy parameters, set by the user. These
parameters determine whether the relaxation sweep must be symmetric, and when the Newton
iteration solving eqn. (6), must be stopped. The Newton iterations may be stopped either
because the residual of eqn. (6) becomes smaller than some criterion, or when a maximum
number of iterations is exceeded. In order to supply the relaxation with these parameters and
the relaxation order, the relaxation subroutine uses a named common block. This common

12 4 THE DATA STRUCTURE AND EULER SOLVER

Order(1: 4) sweep direction

(SW, SE, NW, NE)
or (SW, NW, SE, NE) from SW to NE corner

(NE, SE, NW, SW)

or (NE, NW, SE, SW) from NE to SW corner
(SE, NE, SW, NW)

or (SE, SW, NE, NW)

(NW, NE, SW, SE) }

from SE to NW corner

or (NW, SW, NE, SE) from NW to SE corner

Table 1: The use of the ordering array to be passed to ‘Scan’.

block is initialized with default values by a call to the subroutine ‘RelIni’ (RELaxationINItial-
ization). The common block is called ‘strat’ (STRATegy) and must be declared in the main

program as

integer MaxNwt, RelOrd(4)
double precision RelTol
logical symm

common /strat/ RelTol, MaxNwt, RelOrd, symm

Description of variables:

RelTol (RELaxationTOLerance) the Newton iteration is stopped when
the sum of absolute values of the components of the residual vector
becomes smaller than RelTol;

MazNwt (MAXimumNeWTon) maximum number of Newton iterations to
be performed;

RelOrd (RELaxationORDering) the relaxation ordering is defined by the
array RelOrd, passed to ‘Scan’ as an actual value for the ordering
array ‘Order’ (see table 1);

symm (SYMMetric) a symmetric relaxation sweep is made when symm=
.true., and a single relaxation sweep when symm=false.

Default values for the parameters that control the relaxation are:

Variable default

RelTol 0.1

MaxNwt 13

RelOrd (SW, NW, SE, NE)
symm true.

The user may change the values of these parameters any time.

4.3.5 Boundaries

In the relaxation, where the system of equations (6) is solved for each Q! ;» fluxes across the
cell faces are computed. A cell face can be any of the three possible walls: an internal wall, a

boundary wall or a green wall.

4.3 Description of the code 13

The flux across an internal wall is computed from the state vectors in the adjacent cells.
The flux across a boundary wall also depends on the type of boundary and on the boundary
condition. These are problem-dependent and must be specified by the user of the EULER mod-
ule. The user must specify a subroutine ‘GetBC’ (GETBoundaryCondition). This subroutine
delivers the boundary condition and the type of boundary. It is defined as

subroutine GetBC(i, j, lev, hor, BdyTp, QB)
integer i, j, lev

double precision QB(4)

logical hor

Description of variables:

Input

i i-coordinate of the point P,-'J, the left end point of the horizontal or
vertical wall (see hor);

j j-coordinate of the point P}

i,j» the left end point of the horizontal or
vertical wall (see hor);

lev (LEVel) the level I of P,-’,J-, the left end point of the horizontal or
vertical wall (see hor);

hor (HORizontal) the boundary condition is requested for the horizontal
or vertical wall
hor = .true. : horizontal wall
hor = false. : vertical wall

Output
BdyTp (BounDarYTyPe) type of boundary parameter (see table 2);

@B boundary condition state vector (as far as it needs to be specified).

Upon leaving the subroutine, the type of boundary parameter ‘BdyTp’ and the array ‘QB’,
should contain one of the combinations given in table 2. Here p denotes the pressure, u and
v the velocity components (in physical z- and y-direction respectively), c the speed of sound
and z the entropy function (see section 3.1).

BdyTp QB(1) QB(2) QB(3) QB(4) type of boundary

0 - - supersonic outflow
1 p - - - subsonic outflow

2 u v z - subsonic inflow

3 u v c - subsonic inflow

4 u v c z supersonic inflow
5 - - - - solid wall

Table 2: Boundary conditions and parameters to be set by ‘GetBC’.

14 4 THE DATA STRUCTURE AND EULER SOLVER

4.3.6 Prolongation and restriction (right-hand side)

In the FMG-algorithm the fine gird solution on ! is found from bilinear interpolation of the
solution on the coarse grid '~!. The interpolation is made by a call to ‘Scan’ to visit all
cells on the coarse level. For each cell the solutions in the kid cells are constructed by bilinear
interpolation of the solution in the four coarse grid cells nearest to the kid cell.

In the FAS-algorithm the correction of the solution, qf;l — (g0 i"jl, in the coarse grid cell

Qf;l is prolongated to the finer grid by a piecewise constant interpolation. Similar to the
interpolation of the solution in the FMG-algorithm, the prolongation of the correction is made
by a ‘Scan’ over the coarse grid. In each coarse grid cell the correction is computed and added
to the solution in its kid cells.

The restriction of the fine grid defect is computed as soon as the coarse grid right-hand

side is needed. In a cell Qij € Qlf the right-hand side is
rlo= (N'gY)ij — (T (NP =),

and in a cell Qf-'j € Q! the right-hand side is

o
Tig = %ig-

In steady Euler flow computations we usually have for the source term

si’j =0.
The coarse grid right-hand side in Qﬁ,j € fo is a summation of fluxes across coarse grid and
fine grid walls, and of the fine grid right-hand sides. The right-hand side in Qﬁ’j € QL however,
requires the evaluation of the source term sf’ ..

The right-hand sides are constructed in a ‘Scan’ over the patches that make up the coarse
grid. In each patch visited, actions are undertaken to calculate fluxes and to send them to the
appropriate memory locations reserved in ‘DATA’ for the right-hand sides of the cell and/or
its neighbours. Then also the right-hand sides of the kids are added, or when there are no kids,
the source term is evaluated. This is all done in the subroutine ‘MkRhsP’ (MaKeRightHand-
SidePatch) which is passed as an actual argument to ‘Scan’. The subroutine calling ‘Scan’
with actual argument ‘MkRhsP’ communicate through a named common block called ‘RhsC’.
This common block is invisible to the user. The sending around of the fluxes is such that the
right-hand sides are constructed, using a minimal number of flux evaluations.

Each time when in the FAS-cycle the problem on a level is approximately solved, the right-
hand sides for that level are computed. This allows the possible computation with a changing
source term (i.e. depending on the solution) on Q. The user should then adapt the subroutine
‘MkRhsP’ to his own needs.

Usually for Euler flow computations the source term will be zero. In order to allow possible
applications of the code to compute solutions of the Euler equations with a source term (i.e.
a source term that is independent of the solution), the user must provide a subroutine which
delivers the source terms. The source term sg_j to be delivered for a cell Qél]-, should be an
approximation of the source, integrated over the volume (area) Qi .. The subroutine has to be
provided, even when the source term is zero. The subroutine is called ‘GetSrc’ (GETSouRCe)
and is declared as

subroutine GetSrc(i, j, lev, s)
integer i, j, lev
double precision s(4)

4.3 Description of the code 15

Description of variables:

Input
i i-coordinate of the cell Qf',j;

..
t!]’

j j-coordinate of the cell

lev (LEVel) level I on which the cell €} ; resides;

Output

5 the source term vector in cell 2} ; (integrated over the volume).

4.3.7 Residual

From time to time a user may want to check the convergence behaviour of the computation.
For this purpose, the code is supplied with a subroutine which computes the residual of an
iterate for the discrete equations. Since we are only interested in the solution on the composite
grid Q, the residual is computed only for Qé,j € Q,. The residual is given by

Ri;=si;— (N'g")i;.

The subroutine that computes the residual, first delivers the residual for each cell separately
to the memory locations reserved for the right-hand sides of the equations of the cells of Q,.
The components of (N'g'); ; are sums of fluxes across the cell faces of Qf-.j. The field of residuals
is constructed by making a ‘Scan’ through the data structure, for each patch computing fluxes
when necessary and adding or subtracting them from the appropriate right-hand sides. In this
way a minimal number of flux evaluations is needed to construct the residual field.

After the residual has been computed, another ‘Scan’ through the data structure is made,
to construct the L;- and Loo-norm of the residual field on 2_. Before residuals are summed
(L;-norm) or compared (Loo-norm), the residual is weighted by the volume (area) of the cell.

Since we have for the area Aé’j of a cell 91-1 ;

U gl — Al 1 L1
Agigj = Adiv12j = Azipj1 = Agir12j41 = ZAi,j)

the weighting is done by a multiplication of the residual with a factor 4=, where [is
the level on which the cell resides. (Notice that the computed residual is dependent on the
non-uniformity of the mesh. Nevertheless, a proper measure for the convergence of the com-
putational process is obtained.) In this way we obtain the L;-norm and L..-norm for the four
components of the residual. In addition to these norms the four L;-norms are averaged to
deliver a ‘mean residual’ and the maximum of the four Loo-norms is delivered as a ‘maximum
residual’.

The residual computation is performed by the subroutine called ‘Res’ (RESidual). This
subroutine may be called by the user, whenever the right-hand side data are no longer needed
(e.g. after each FAS-cycle). The subroutine ‘Res’ is defined as

subroutine Res(MaxLev, RMean, RMax, PNTR, PPTY, DATA)
integer MaxLev
double precision RMean(0:4), RMax(0:4)

16 4 THE DATA STRUCTURE AND EULER SOLVER

Description of variables:
Input
MazLev (MAXimumLEVel) a value greater then or equal to the highest

level in the sequence of grids available at the moment ‘Res’ is
called;

Output

RMean(0) (ResidualMEAN) the mean residual, i.e. the mean value of the
Li-norms of the residual over €2;

RMean(i) Li-norm of the i-th component of the residual over Q;

RMaz(0) (ResidualMAXimum) the maximum residual, i.e. the maximum
of the Loo-norms of the residual over _;

RMaz(i) Loo-norm of the i-th component of the residual over ..

This subroutine uses a named common block called ‘ResC’, which is invisible to the user.

4.3.8 Local refinements

The code has been developed to use self-adaptive, locally refined grids. This requires a criterion
to decide whether a cell should be refined further. This criterion is to be specified by the user.
The construction of refinements is divided into two parts:

1. first the cells that must be refined are flagged by setting the property ‘Pregnant’ to .true.
(see [1]);

2. next the tree is searched for flagged cells and refinements are generated.

The first task is done by the subroutine to be provided by the user. This subroutine will have to
use the arrays of the data structure and probably the subroutine ‘Scan’ (see [1]). Based on the
refinement criterion, it should mark a cell ‘Pregnant’, when it needs refinement. For the second
task a subroutine called ‘Refn’ (REFiNe) is enclosed in the EULER module. This subroutine
‘Scans’ the tree of the data structure and at each patch visited it is checked whether the cell
of the patch must be refined and/or the geometrical data of kid patches must be generated.
When the cell must be refined, the solution components for the new kids are found from bilinear
interpolation of the solution on the coarser level. After a call to ‘Refn’ the data structure has
been adapted to the new situation, an initial solution in the new cells has been computed and
the geometrical data for the grid have been generated. The subroutine ‘Refn’ is defined as:

subroutine Refn(BtmLev, MaxLev, PNTR, PPTY, DATA)
integer BasLev, MaxLev

Description of variables:

Input

BtmLev (BoTtoMLEVel) lowest level to be scanned when searching for
flagged cells;

4.3 Description of the code 17

MazLev (MAXimumLEVel) a value greater then or equal to the highest
level in the sequence of grids at the moment ‘Refn’ is called.

The removal of previously generated refinements is also allowed. Similarly to the generation
of refinements, refined cells are removed in two steps:

1. first cells to be removed are flagged by setting the property ‘Sentenced’ to .true. (see [1]);

2. next the tree is ‘Scanned’ and for each cell visited, its kids are removed if they are all
marked ‘Sentenced’.

The first task should be done by a user-defined subroutine which uses the data structure arrays
(see [1]). The second can be done by calling the subroutine ‘UnRefn’ (UNREFiNe), provided
in the EULER module. This subroutine is declared as:

subroutine UnRefn(BtmLev, MaxLev, PNTR, PPTY, DATA)
integer BasLev, MaxLev

Description of variables:

Input

BtmLev (BoTtoMLEVel) lowest level to be scanned when searching for
flagged cells;

MazLev (MAXimumLEVel) a value greater then or equal to the highest
level in the sequence of grids at the moment ‘Refn’ is called.

After calling this subroutine the kids of a cell have been removed if all four kids were flagged
as ‘Sentenced’, and the data structure has been adapted accordingly. The space left by the
removed patches becomes reusable space and will used by new patches.

4.3.9 Summary

So far we described the subroutines which can be called by a user to perform self-adaptive
multigrid computations for Euler flow problems. This description includes the subroutines
available in the module, as well as the subroutines that are problem-dependent and should be
provided by the user.

First we summarize the subroutines which are to be called by the user, and which are already
provided in the EULER module. It is assumed that a structure has been set up already by the
subroutines available in the data structure module BASIS (see [1]).

GamlIni initialization of named common block ‘gammas’ (see section 4.3.1);

RelIni initialization of named common block ‘strat’ with default values
(see section 4.3.4);

MkGeo construction of geometrical data of the grid (see section 4.3.2);
Sollni initialization of the solution (see section 4.3.3);
FMG the nested iteration algorithm (see section 4.3.3);

FAS the nonlinear multigrid algorithm (see section 4.3.3);

18 4 THE DATA STRUCTURE AND EULER SOLVER

Res computation residual field and L;- and Leo-norms of residual ﬁeld
(see section 4.3.7);

Refn refining of cells flagged ‘Pregnant’ (see section 4.3.8);

UnRefn removal of cells flagged ‘Sentenced’, if all kids of the same parent
are flagged (see section 4.3.8).

In case of more complex problems the user may want to write his own subroutines ‘MkGeo’ and
‘SolIni’, to introduce more complex geometries or more sophisticated initial approximations.

Next follows a summary of the subroutines to be provided by the user. We distinguish
subroutines that use the data structure and those which are independent of the data structure.
The subroutines that use the data structure are:

e a subroutine to mark cells ‘Pregnant’ (see section 4.3.8); in the
example in section 5 this subroutine is called ‘RFlags’ (Refine-
mentFLAGS);

e a subroutine to mark cells ‘Sentenced’ (see section 4.3.8).

The subroutines which must always be specified by the user and which do not use the data
structure are:

GetXY subroutine to map the coordinates in topological space to coordi-
nates in physical space (see section 4.3.2);

GetBC subroutine to provide the boundary conditions for the problem (see
section 4.3.5);

GetSrc subroutine to provide possible source terms for the problem (see
section 4.3.6).

The named common blocks that must be declared in the main program, are

gammas common block containing constants for the technical subroutines
of the code (see section 4.3.1);

strat common block containing strategy parameters for the relaxation
(see section 4.3.4).

Finally, we summarize the named common blocks that are used by some subroutines for the
communication between the subroutine calling ‘Scan’ and the subroutine called by ‘Scan’.
These common blocks are invisible to the user. We give their names, so the user will not
accidently use the names for possible user-defined common blocks.

IniC common block used in the initialization of the solution;
RhsC common block used in the computation of the right-hand side;

ResC common block used in the computation of the residual.

An example of the user-defined subroutines, summarized above, is provided in the example in
the next section.

19

5 Example

In this last section we show an application of the code developed. The problem we consider is
a shock reflection problem. We take 2 = [0,4] x [0,1]. The exact solution consists of constant
fields in three areas as shown in Figure 1.

Boundary conditions for the problem are on the western edge: supersonic flow in z-direction,

0 @ ®

Figure 1: Example: Shock reflection. In each area 1,2,3 the exact solution is constant.

with M = 2.9, u = 1 and p = 1; northern edge: subsonic inflow such that 1 = 29°; eastern
edge: supersonic outflow; southern edge: boundary wall.

The coarsest grid is a 6 x 2 grid. This coarsest grid is twice uniformly refined. The resulting
24 x 8 grid is locally refined. A refinement cycle is made after each four FAS V-cycles. Then
in this case the residual is about 107*. A cell is refined when a first undivided difference of
the density with the neighbour cells is larger than 0.06. The composite grid and the grid on
the levels two to five are shown in figures 2-6 respectively. Iso-level plots for the Mach number
and density, computed on the composite grid of figure 2, are shown in figures 7 and 8.

The exact solution is computed by the call to subroutine ‘Exact’. This solution is used
to determine the correct boundary conditions in area two of the computational domain (see
figure 1), such that ¢ = 29°.

Refinement flags are set by subroutine ‘RFlags’. Before ‘RFlags’ is called the Mach number
M and density p are computed from the solution components u, v, ¢ and z. This is done by
subroutine ‘StatSF’, which delivers M and p to the memory locations of the first and second
old solution, respectively. Therefore, the subroutine ‘RFlags’ is called with ‘PQold2’ as actual
parameter, indicating that the values stored in these memory locations are used to set the
refinement flags. After a call to ‘StatSF’ the locations indicated by ‘PQold2’ contain the
density.

A subroutine which sets flags for the cells that may be removed, should be constructed
similarly to the flag setting routine ‘RFlags’.

e
— 1
lr ===
=) H FH H HHH
> 10 EE I == L
o == T HH
== HHH HH H
T I+
1
s I 11
0. 1.0 2.0 3.0 4.0
X

Figure 2: Self-sadaptive, locally refined grid Q, of example problem.

20 5 EXAMPLE

e
o
» 0
o
)
0. 1.0 2.0 3.0 4.0
x
Figure 3: Grid 02, the highest full level of example problem.
Qe
o
>0
o
() T
0. 1.0 2.0 3.0 4.0
X
Figure 4: Grid Q2 of example problem.
e
o ===
> QA
o
d T T
0. 1.0 2.0 3.0 4.0

b
Figure 5: Grid Q* of example problem.

21

0. 1.0 2.0 3.0 4.0
X

Figure 6: Grid Q° of example problem.

0. 1.0 2.0 3.0 4.0
x
Figure 7: Mach number distribution of example problem; levels 1.9-2.9, step 0.1.

e

-
o
>0+
S /
d T T T
0. 1.0 2.0 3.0

be
Figure 8: Density distribution of example problem; levels 1.0-2.6, step 0.1.

4.0

Here we give the listing of the main program, the user-defined subroutines for this problem
and auxiliary subroutines such as the subroutine setting the refinement flags.

22 5 EXAMPLE

program shrefl

c Program to compute SHOCK REFLECTION problem
c The size of the space claimed for the data structure is given in
c the global variables:
c MNOP : Maximum Number Of Patches
c MNOD : Maximum Number Of real Data for a patch
c
c The user declares the actual values by:
integer MNOPac, MNODac
parameter (MNOPac = 8000, MNODac = 18)
c (vhere the constant values may be adapted by the user).
c These parameter values are used in the actual declarations
c of PNTR, PPTY and DATA. Further these parameters are communicated
c to the data structure program through the call of the routine
c ’DatIni’, where the data structure is initialized.
c A copy of the include file ’basis.i’,
c except for the arrays PNTR, PPTY and DATA
integer FstPtr, LstPtr,
+ LV, XX, YY, PT,
+ NE, SE, SW, NW, NN, EE, SS, WW,
+ FstPpt, LstPpt,
+ Compl, WallH, WallV,
+ BdyPnt, BdyWaH, BdyWaV, BdyCel,
+ GrnPnt, GrnWaH, GrnWaV, GrnCel,
+ Prgnt, Sntncd, Dead,
+ Nil, RtPtr
parameter (FstPtr =-3, LstPtr = 8,
+ LV =-3, XX =2, YY =1, PT =0,
+ NE =1, SE =2, SW =3, NW =4,
+ NN =5, EE =6, SS =7, WW =8,
+ FstPpt = 1, LstPpt =14,
+ Compl = 1, WallH = 2, WallV = 3,
+ BdyPnt = 4, BdyWaH = 5, BdyWaV = 6, BdyCel = 7,
+ GrnPnt = 8, GrnWaH = 9, GrnWaV = 10, GrnCel = 11,
+ Prgnt =12, Sntncd =13, Dead = 14,
+ Nil = 0, RtPtr = 1)
integer MNOP, MNOD,
+ RtLv, LstSpa, NOP, SizeX0, SizeYO, NrmOrd(4)
common /DatGlb/ MNOP, MNOD,
+ RtLv, LstSpa, NOP, SizeXO, SizeYO, NrmOrd
c The arrays for the data structure
integer PNTR (FstPtr:LstPtr, 0:MNOPac)
logical PPTY (FstPpt :LstPpt, 0:MNOPac)

double precision DATA(1:MNODac, O:MNOPac)

c

23

Copy of the include file ’euler.i’

integer PRhs1, PRhs2, PRhs3, PRhs4,

+ PQ1, PQ2, PQ3, PQ4,

+ PQold1l, PQold2, PQold3, PQold4,

+ PSiH, PCoH, PDsH,

+ PSiV, PCoV, PDsV

parameter(PRhsl = 1, PRhs2 = 2, PRhs3 = 3, PRhs4 = 4,

+ PQ1 =5, PQ2 =6, PQ3 =7, P4 = 8,

+ PQoldl = 9, PQold2 = 10, PQold3 = 11, PQold4 = 12,
+ PSiH = 13, PCoH = 14, PDsH = 15,

+ PSiv = 16, PCoV = 17, PDsV = 18)

Constants related to the ratio of specific heats gamma

double precision gamma, ogam, otgam, gamml, hgamml, ogammi, togmi,

+ gogml, oggml, gampl, togpl, gmogp
common /gammas/ gamma, ogam, otgam, gamml, hgammi, ogammi, togmi,
+ gogml, oggml, gampl, togpl, gmogp

Strategy parameters for the relaxation

integer MaxNwt, RelOrd(4)
double precision RelTol
logical symm

common /strat/ RelTol, MaxNwt, RelOrd, symm
The highest and lowest level

integer MNOL, LNOL
parameter (MNOL = 20, LNOL = -12)

Grid dimensions on level 0O

integer nx0, ny0
common /mesh/ nx0, nyo0

Exact solution

double precision ul, vi, ci, z1, u2, v2, c2, z2, u3, v3, c3, z3,

+ psi, delta, sigma, xr, yr
common /exct/ ul, vi, c1, z1, u2, v2, c2, z2, u3, v3, c3, z3,
+ psi, delta, sigma, xr, yr

Remaining declarations

integer nfas(0:MNOL) , npmg(0:MNOL), nqmg(0:MNOL),
+ ncycl(0:MNOL), ff,

+ level, nlevel, ifas, nnfas, iref, nref,

+ i, k, BasLev

double precision uini, vini, cini, zini,
+ Mi, R1, M2, R2, M3, R3, pi, RMx(0:4), RMn(0:4),
+ RMax(0:100), RMean(0:100), ScMx, ScMn, RefCr

24 5 EXAMPLE

external MkOfsp
c
c Main program statements
c
pi = 4.0d0*atan(1.0d0)
c Grid dimensions on level O
nx0 = 6
ny0 = 2
c Number of fully refined levels and number of
c levels initially available
nlevel = 3
c Highest full level available
BasLev = nlevel - 1
c Number of FAS-cycles in FMG-algorithm and
c between each refinement cycle
nnfas = 4
c Number of refinement cycles
nref = 3
c Refinement criterion
RefCr = 0.60d-1
c FMG and FAS parameters
do 10 i = 0, MNOL
nfas(i) =1
npmg (i) 1
ngmg(i) =1
ncycl(i) = 1
10 continue
ff =0
c Initialization of the data structure
call DatIni(MNOPac, MNODac, PNTR, PPTY, DATA)
c Initialization of common block gammas

call GamIni(1.4d0)

20

Initialization of relaxation parameters
call RelIni

Construction of data structure for rectangular topology,
up to and including level O

call MkRec(nxO, nyO, PNTR, PPTY, DATA)
Construction of data structure up to and including ’BasLev’

do 20 level = 0, BasLev - 1

call Scan(RtPtr, NrmOrd, level, level, MkOfsp, PNTR, PPTY, DATA)

continue
Problem definition

Incoming flow

ul = 1.0d0
vi = 0.0d0
Mi = 2.940
R1 = 1.040

Incoming shock angle
psi = 29.0d0%pi/180.0d0
Computation exact solution

write (6, ’(a)’) ’ Exact solution:’
call Exact(psi, ul, vi, M1, R1, u2, v2, M2, R2,
u3, v3, M3, R3, delta, sigma)

xr = 1.0d0/tan(psi)
yr = 0.0d0

write (6, ’(a, 4f16.8
write (6, ’(a, f16.8
write (6, ’(a, 4f16.8
write (6, ’(a, 4f16.
write (6, ’(a, fi6.
write (6, ’(a, f£16.8
write (6, ’(a, 2f16.8

~
-

e}

N W W W)
-

A L S R R A W)
-

> ui,vi,M1,R1:’, ul, vi, M1, R1
’ psi :’, psi*180.0d0/pi
’ u2,v2,M2,R2:°, u2, v2, M2, R2
u3,v3,M3,R3:’, u3, v3, M3, R3
? delta 17, delta*180.0d0/pi

-

~

-

o]

-

’) ? refl.point :’, xr, yr

cl = sqrt(ui*ul+vixvi) /M1
z1 = log(ci*c1/(gamma* (R1**(gamm1))))
c2 = sqrt (u2*u2+v2*v2) /M2
z2 = log(c2*c2/ (gamma* (R2** (gamm1))))
c3 = sqrt (u3*u3+v3*v3)/M3
z3 = log(c3*c3/ (gamma* (R3**(gamm1))))

Initial solution

’ refl.angle :’, (sigma-delta)*180.0d0/pi

25

26

o0 o0o0n

30

uini = uil
vini = vl
cini = ci1
zini = z1

Construction geometric data
do 30 level = 0, BasLev
call MkGeo(level, PNTR, PPTY, DATA)
continue
Initialization solution on level O
call SolIni(0, uwini, vini, cini, zini, PNTR, PPTY, DATA)

FMG-algorithm

call FMG(BasLev, nfas, npmg, ngmg, ncycl, ff,

+ PNTR, PPTY, DATA)

Computation residual after FMG-algorithm
call Res(BasLev, RMx, RMn, PNTR, PPTY, DATA)

RMax(0) = RMx(0)
RMean(0) = RMn(0)

FAS cycles

do 40 ifas = 1, nnfas
call FAS(O, BasLev, npmg, ngmg, ncycl, ff,

+ PNTR, PPTY, DATA)

40

50

60

call Res(BasLev, RMx, RMn, PNTR, PPTY, DATA)
RMax(ifas) = RMx(0)
RMean (ifas) = RMn(0)

continue

Values for scaling residuals

ScMx= RMean (0)
ScMn= RMean (0)

Possibly scaling of residual
do 50 k = 0, nnfas
RMean (k)= RMean (k) /ScMn
RMax (k) = RMax(k)/ScMx
continue

Printing of convergence history

write (6,’(a)’) ’ convergence history:’
write (6,°(a)’) ? RMean RMax’
do 60 k = 0, nnfas
write (6, ’(i4, 2e11.4)’) k, RMean(k), RMax(k)
continue

5 EXAMPLE

Refinement cycles

do 200 iref = 1, nref
ifas = iref#nnfas
Storing Mach number and density in old solution memory locations
call StatSF(BasLev, nlevel-1, PNTR, PPTY, DATA)
Setting of refinement flags
call RFlags(BasLev, nlevel-1, RefCr, PQold2, PNTR, PPTY, DATA)
Construction of refinements

call Refn (BasLev, nlevel-1, PNTR, PPTY, DATA)
nlevel = nlevel + 1

FAS-cycles on adaptively refined grid

do 100 k = 1, nnfas
call FAS(O, nlevel-1, npmg, ngmg, ncycl, ff,

+ PNTR, PPTY, DATA)

+
100

call Res(nlevel-1, RMx, RMn, PNTR, PPTY, DATA)
RMax(ifas+k) = RMx(0)
RMean (ifas+k) = RMn(0)
RMean (ifas+k) = RMean(ifas+k)/ScMn
RMax (ifas+k) RMax (ifas+k) /ScMx
write (6, ’(i4, 2e11.4)’) ifas+k, RMean(ifas+k),
RMax (ifas+k)
continue

200 continue

210

Print solution
do 210 k = 1, NOP
call ShowS(k, PNTR, PPTY, DATA)

continue

end

User subroutines

subroutine GetXY(i, j, lev, x, y)
integer i, j, lev
double precision x, y

This subroutine delivers the physical coordinates

27

28 5 EXAMPLE

c ’(x,y)’ of the grid point with topological coordinates
c ’(i,j)’ and level ’lev’.
c This version is meant for the shock reflection problem.
integer nx0, nyo
common /mesh/ nx0, nyo0

double precision xmin, xmax, ymin, ymax, dx, dy, dx0, dy0

c Physical area
xmin = 0.0
xmax = 4.0
ymin = 0.0
ymax = 1.0
c Cell width on level O
dx0 = (xmax - xmin)/float (nx0)

dy0 = (ymax - ymin)/float (ny0)
c Cell width

dx = dx0/float (2**1lev)

dy = dy0/float(2**lev)
c Physical coordinates

x = float (i)*dx

y = float (j)*dy

end
c

subroutine GetBC(i, j, lev, hor, BdyTp, QB)

integer i, j, lev, BdyTp

double precision QB(4)

logical hor
c This subroutine delivers the boundary condition for a
c boundary wall (horizontal or vertical dependent on ’hor’)
c of a boundary wall with left end point ’(i,j)’ on level ’lev’.
c The type of boundary is determined by ’BdyTp’.
c This version is meant for the shock reflection problem.

double precision ui, vi, ci, z1, u2, v2, c2, z2, u3, v3, c3, z3,

+ psi, delta, sigma, xr, yr

common /exct/ ul, vi, c1, z1, u2, v2, c2, z2, u3, v3, c3, z3,

+ psi, delta, sigma, xr, yr

if (hor) then
c Horizontal boundary wall

if (j .eq. 0) then

Solid wall boundary

BdyTp = 5

QB(1) = 0.0

QB(2) = 0.0

GB(3) = 0.0

QB(4) = 0.0
else

Subsonic inflow boundary

BdyTp = 2
QB(1) = u2
QB(2) = v2
QB(3) = z2
QB(4) = 0.0
end if
else

Vertical boundary wall
if (i .eq. 0) then

Supersonic inflow boundary

BdyTp = 4

QB(1) = uil

QB(2) = v1

QB(3) = ci

QB(4) = =z1
else

Supersonic outflow boundary

BdyTp =
QB(1)
QB(2) =
QB(3)
QB(4)

non o
[=lN el elNe o]
o O OO

end if

end if

end

subroutine GetSrc(i, j, lev, s)
integer i, j, lev

This subroutine delivers the source term for the

29

30 5 EXAMPLE

c cell with topological coordinates ’(i,j)’ on level ’lev’.
c This subroutine is for the general case: Euler flow
c with source terms equal 0

integer k

double precision s(4)

do10k=1, 4

s(k) = 0.0
10 continue
end
c
c Auxiliary subroutines
c
subroutine ShowS(patch, PNTR, PPTY, DATA)
include ’basis.i’
include ’euler.i’
integer patch
c This subroutine prints the solution in the cell of
c patch ’patch’ on standard output.
if (PPTY(Compl, patch)) then
write(6, ’(a, 3i5, 4e11.4)’) ’ i, j, lev, sol: ’,
+ PNTR(XX, patch), PNTR(YY, patch), PNTR(LV, patch),
+ DATA(PQ1, patch), DATA(PQ2, patch),
+ DATA(PQ3, patch), DATA(PQ4, patch)
end if
end
c
subroutine RFlags (FrmLev, ToLev, RefCr, comp
+ PNTR, PPTY, DATA)
include ’basis.i’
include ’euler.i’
integer FrmLev, ToLev, comp
double precision RefCr
c This subroutine Scans the patches on level ’ToLev’ to find
c which should be refind. Refinement depends on the criterion
c ’RefCr’
integer cmp

double precision cr
common /RFlagC/ cr, cmp
external RFlagP

cmp = comp

0000000

cr = RefCr
call Scan(RtPtr, NrmOrd, FrmLev, Tolev, RFlagP, PNTR, PPTY, DATA)

end

subroutine RFlagP(patch, PNTR, PPTY, DATA)
include ’basis.i’

include ’euler.i’

integer patch

This subroutine determines an error estimate of the

solution at patch ’patch’ by the difference

in one of the solution components.

If the difference is larger than criterion ’cr’ then

the patch is marked pregnant.

It is assumed that the component to be used for refinement
detection is stored in the memory locations identified by ’cmp’.

logical hor, ver
parameter (hor = .true., ver = .false.)
integer cmp

double precision cr, cmp
common /RFlagC/ cr, cmp
integer NNb, END
double precision D(PRhs1:PRhs4)

if (PPTY(Compl, patch) .and. PNTR(NE, patch) .eq.Nil) then

NNb
ENDb

PNTR(NN, patch)
PNTR(EE, patch)

Determine difference in component and
set refinement flag when necessary.

call Diff (NNb, hor, D, PNTR, PPTY, DATA)
PPTY(Prgnt, patch) = (abs(D(cmp)) .gt. cr)
if (.not.PPTY(Prgnt, patch)) then
call Diff(ENb, ver, D, PNTR, PPTY, DATA)
PPTY(Prgnt, patch) = (abs(D(cmp)) .gt. cr)
if (.not.PPTY(Prgnt, patch)) then
call Diff(patch, hor, D, PNTR, PPTY, DATA)
PPTY(Prgnt, patch) = (abs(D(cmp)) .gt. cr)
if (.not.PPTY(Prgnt, patch)) then
call Diff(patch, ver, D, PNTR, PPTY, DATA)
PPTY(Prgnt, patch) = (abs(D(cmp)) .gt. cr)
end if
end if
end if

end if

end

31

32 REFERENCES

References

[1] P.W. Hemker, H.T.M. van der Maarel and C.T.H. Everaars, BASIS: A Data Structure for
adaptive multigrid computations, CWI Amsterdam, Report NM-R9014, 1990.

[2] P.W. Hemker and S.P. Spekreijse, Multiple Grid and Osher’s scheme for the Efficient So-
lution of the Steady Euler Equations, Appl. Numer. Math. 2, 1986.

[3] S.P. Spekreijse, Multigrid Solution of the Steady Euler Equations, CWI-tract 46, Centre for
Mathematics and Computer Science, Amsterdam, 1988.

CONTENTS 33

Contents
1 Introduction 1
2 Review of the data structure 2
2.1 Grids on different levels of refinement 2
2.2 Coordinates e e e e e e e e, 2
2.3 Patches e e e 2
24 Boundaries e e e e e 3
25 Datacontents e e e e e e e e e 3
2.6 Storage e e e 3
2.7 Thedatastructureused 4
3 The Euler solver 5
3.1 Discretizationmethod 5
3.2 Solution method 6
4 The data structure and Euler solver 8
4.1 Thesequenceofgrids uuuiieni.. 8
42 Addressingdata 8
4.3 Descriptionof thecode. 9
4.3.1 [Initialization of technicaldata. 9
4.3.2 Construction of geometricdata 9
4.3.3 The FMG and FAS-algorithm 10
4.3.4 Relaxation 11
435 Boundaries e e 12
4.3.6 Prolongation and restriction (right-hand side) 14
43.7 Residual 15
438 Localrefinements. 16
439 Summary e e e e e 17

5 Example 19

