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The concept of maximum potential improvement has played an important role in computing lower
bounds for single-machine scheduling problems with composite objective functions that are linear
in the job completion times. We introduce a new method for lower bound computation: objective
splitting. We show that it dominates the maximum potential improvement method in terms of speed
and quality.
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1. INTRODUCTION

A single-machine job shop can be described as follows. A set of n independent jobs has to be
scheduled on a single machine that is continuously available and that can process no more
than one job at a time. Each job J; (i = 1, ..., n) requires a positive integral processing time p;.
In addition, it has a due date d;, at which it should ideally be completed. A schedule defines for
each job J; its completion time C; such that no two jobs overlap in their execution. A perfor-
mance measure or scheduling criterion associates a value f (o) with each feasible schedule o.
Some well-known measures are the sum of the job completion times 2C;, the maximum job
lateness Lo = max) <; <, (C;—d)), and the maximum  job earliness
Emax = max; <; <n (d—Cy).

In this paper, we adopt the terminology of Graham, Lawler, Lenstra, and Rinnooy Kan
(1979) to classify scheduling problems. Scheduling problems are classified according to a
three-field notation a| 8|y, where a specifies the machine environment, 8 the job characteris-
tics, and y the objective function. For instance, 1 |nmit | E p,x denotes the single-machine prob-
lem of minimizing maximum earliness, where nmit denotes that no machine idle time is
allowed.

Most research has been concerned with a single criterion. In real life scheduling, however, it
is necessary to take several performance measures into account. There are basically two
approaches to cope with multiple criteria. If the scheduling criteria are subject to a well-
defined hierarchy, they can be considered sequentially in order of relevance. An example is the
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problem of minimizing maximum lateness subject to the minimum number of tardy jobs, for
which Shantikumar (1983) presents a branch-and-bound algorithm.

The second approach is simultaneous optimization of several criteria. The K performance
‘measures specified by the functions f; (k = 1, ...,K) are then transformed into one single
composite objective function F: € — R, where £ denotes the set of all feasible schedules. We res-
trict ourselves to the case that F is a linear composition of the individual performance meas-
ures. This leads to the problem class (P) that contains all problems that can be formulated as

K
min, ¢ g k}_:l o f(0), (P)

where a = (ay, . . . , ag) is a given vector of real nonnegative weights. The problem of minimiz-
ing a linear function of the number of tardy jobs and maximum lateness, denoted as
1| | 2U;+ L a4, is a member of this class. Nelson, Sarin, and Daniels (1986) present a branch-
and-bound algorithm for its solution.

In addition to solving some problem in (P) for a given a > 0, it may be of interest to deter-
mine the extreme set. The extreme set for given functions f7, . . ., fk is defined as the minimum
cardinality set that contains an optimal schedule for any weight vector a = 0. The elements of
this set are the extreme schedules. If this set has been identified, then we can solve any problem
for these functions by computing the function value for each extreme schedule and choosing
the best. Hence, if the cardinality of the extreme set is polynomially bounded in n, the number
of jobs, and if each extreme schedule can be found in polynomial time, then any problem in (P)
with respect to these functions f1, . . ., fx can be solved in polynomial time.

Suppose that some problem in (P) is 9¥-hard and that one wishes to design a branch-and-
bound method for its solution. In that case, good lower bounds are required. Unil now, virtu-
ally all lower bound computations for problems in (P) are based upon the so-called maximum
potential improvement method. We prove in Section 2 that these bounds are dominated in terms
of quality and computational effort by a much simpler method that we name objective splitting.
In Section 3, we refine the basic objective splitting method.

The problem 1| |EC;+ L yax + E max is our benchmark in comparing the two lower bound
approaches. It is yet an open question whether this problem is 91%-hard. Sen, Raiszadeh, and
Dileepan (1988) develop a branch-and-bound algorithm and derive lower bounds by means of
the maximum potential improvement method. There is an optimal schedule for this problem
without machine idle time, although E,, is nonincreasing in the job completion times. It is
not meaningful to insert idle time, as the gain for E p,, will at least be compensated by the
increase of =C;. We recall the following fundamental algorithms for the three embedded sub-
problems.

THEOREM 1 (Smith, 1956). The 1| | =C; problem is minimized by sequencing the jobs according to
the shortest-processing-time (SPT) rule, that is, in order of nondecreasing p;.

THEOREM 2 (Jackson, 1955). The 1| | L oy problem is minimized by sequencing the jobs according
to the earliest-due-date (EDD) rule, that is, in order of nondecreasing d;.

THEOREM 3. The 1|nmit | E ,y problem is solved by sequencing the jobs according to the



minimum-slack-time (MST) rule, that is, in order of nondecreasing d; —p;.

The proof of each of these algorithms proceeds by a staightforward interchange argument.
Note that each of these problems is solved by arranging the jobs in a certain priority order that
can be specified in terms of the parameters of the problem type.

The optimal solution values for these single-machine scheduling problems will be denoted by
=C;, Lax, and Ep,,, tespectively. Furthermore, C(0), L a,(6), and E y,,(0) are the objec-
tive values for the schedule ¢. In analogy, C;(0), L;(0), and E;(¢) denote the respective measures
for jobJ; (i =1, ...,n). Whenever (o) is omitted, we are considering the performance measure
in a generic sense, or there is no confusion possible as to the schedule we are referring to. The
schedules that minimize 2C;, Ly, and E ,, are referred to as SPT, EDD, and MST respec-
tively. In addition, v (-) denotes the optimal objective value for problem -.

2. MAXIMUM POTENTIAL IMPROVEMENT VERSUS OBJECTIVE SPLITTING

Townsend (1978) proposed the maximum potential improvement method to compute lower
bounds for minimizing a quadratic function of the job completion times. Since then, the
method has been extended to problems in (P), including 1| |2C; + Lp,, (Sen and Gupta,
1983), 1| nmit | L o + E max (Gupta and Sen, 1984), and 1| | 2C;+ L,y + E pax (Sen, Raisza-
deh, and Dileepan, 1988). To our knowledge, there is only one publication on objective split-
ting avant la lettre: Tegze and Vlach (1988) obtained an extremely simple, but provably
stronger lower bound for 1|nmit | L pax + E -

Meanwhile, Hoogeveen (1990) and Hoogeveen and Van de Velde (1990) have found
polynomial-time algorithms for 1|nmit |a;L s +02E . and 1| |a;2C;+ayLp,,. The
former problem has O (n) extreme schedules, each of which is found in O (rlogn) time. The
latter problem has O (n 2) extreme schedules, each of which is determined in O (n) time after
appropriate preprocessing. However, it is an interesting issue how to derive lower bounds for
NP-hard problems in (P). The maximum potential improvement method is a cumbersome pro-
cedure. However, by viewing it from a different angle, we derive a closed expression for the
resulting lower bound. It is then immediately clear that the maximum potential improvement
method is completely dominated by the much simpler objective splitting method.

Objective splitting is based upon the observation that

K K

min, g [kzl akfk(@} > 3 o |miny cafklo)],
if 4 =0 for k =1,...,K. The application of this idea to 1| |ZC;+ Ly + E pax yields the
problems 1| |2C;, 1| | Lyay, and 1|nmit | E y,4. Each problem is polynomially solvable, and
we obtain the bound LB = 3C; + L., + Emax. This bound is computed in O(r) time in
each node of the search tree, provided that the SPT, EDD, and MST sequences have been
stored and that we employ a convenient branching strategy.

It is relatively easy to apply the maximum potential improvement method to problems in (P)
for which each embedded single-machine problem has a priority order. The
1| | 2C;+ L pax + E max problem has three: the SPT order for =C;, the EDD order for L,,,
and the MST order for E . Clearly, we have solved an instance of this problem in case these
orders concur; in general though, the priority orders are conflicting.



Suppose we start with the MST schedule, which we refer to as the przmary priority order. The
scheduling cost induced by the MST schedule is 2C;(MST) + Eax + Lnax (MST); this is
obviously an upper bound on the optimal solution value. In addition, we know that any
optimal schedule o must have Epgu(0)=Em,, and =G {(67)+ Lpax(67) <
SC{MST) + L 0, (MST). The maximum potential improvement method assesses the current
schedule with respect to the maximum improvement that can be obtained for each of the per-
formance measures separately. Accordingly, we get a lower bound by subtracting the total max-
imum potential improvement from the upper bound.

First, consider the maximum lateness criterion, which is the secondary priority order. If we
interchange every pair of adjacent jobs J; and J; for which d;>d; and C;<C}, then we need to
conduct O (n?) interchanges before we have transformed the MST schedule into an EDD
schedule. The actual effect on the objective value by one particular interchange depends on the
interchanges that have been conducted thusfar. It might have no effect whatsoever on the per-
formance of the schedule; this is true if both the maximum lateness and the maximum earliness
remain unchanged. The maximum possible decrease of the scheduling cost, however, is d; —d;; if
o and 7 denote the schedule before and after the interchange, respectively, then the maximum
decrease is realized if L ay(06)=Lj(0), Lmax(m)=L;(7) and E pax (7) = E nax(0). The effect that
the interchange might have on the sum of the job completion times is not considered here and
dealt with separately. Any interchange conducted to transform the MST schedule into the
EDD schedule may improve the maximum lateness by the corresponding maximum possible
decrease. The sum of these is the maximum potential improvement with respect to the initial
lateness L ,,(MST). It is given by

MPI, = > (di—d)).
ij:di>d;, C;<C;
Note that the maximum potential improvement does not depend on the order in which the
interchanges are conducted.

Second, the sum of the job completion times, which is the tertiary priority order, is reduced
by interchanging two adjacent jobs J; and J; with p; >p; and C; < C;. The maximum potential
improvement is then p;—p;, which is also the frue improvement. The maximum potential
improvement with respect to ZC;(MST) is then

MPI; = > @i—p))-
Lj:pi>p;, G <G

The lower bound LBMP! suggested by Sen, Raiszadeh, and Dileepan (1988) for
1| | ZC;+ L pax + E ax is then

LBMPI = E* 4+ (MST)— MPI, + SC,(MST) — MPI.

Since SC,(MST)—MPI3 = SC(SPT) = 2C; and Ly, (MST)—MPI3 < Ly, as we have
systematically overestimated the reduction in maximum lateness, we conclude that

LBMPL = E* 4+ 3C; + L (MST) — MPI, < LBY.

The maximum potential improvement method can be generalized to problems in (P) as fol-
lows. Let 6% denote an optimal schedule for the kth individual objective. Furthermore, let the
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optimal sequence that goes with the kth objective be the kth preference order. The first step is
then to sequence the jobs according to the primary preference order, which gives the upper
bound a; f1(s7)+ >K_, o fk(oI). We then have to transform the primary preference order into
the kth preference order, fork =2, ..., K, and determine the corresponding maximum poten-
tial improvement MPI;. The lower bound is then given by

X
LBMPI = g, f1(07) + X ax(fi(01) — MPI}).
k=2

Note that this procedure requires O (n 2) time for fixed K in addition to the time required to
determine o, for k = 1,..., K. Since fk(o’{)—MPI,C <fk(o;;) for each k = 1, ..., K, we have
the following theorem.

THEOREM 4. For any problem in (P), the lower bound obtained by the maximum potential improve-
ment method is dominated in terms of both quality and speed by the lower bound obtained by the
objective splitting method. [

Consider the following example that is taken from Sen, Raiszadeh, and Dileepan (1988) for the
problem 1] | g ZC;+(1—g)(L max +E ) With0<g < 1.

S| Ja2 T3 Jg
7 14 7 6 7
d; | 20 14 15 17

By means of the maximum potential improvement method, we obtain the lower bound
LBMPI = 644 +9. It is easy to verify that SC; = 73, Ly, = 14, and Emax = 6. This gives the
bound LB?S = 53¢ +20. Note that 53¢ +20 = 64¢ +9 forall g with0 <g < 1.

3. IMPROVING THE OBJECTIVE SPLITTING PROCEDURE

The objective splitting procedure above was given in its simplest form: we separated the com-
posite objective function into K single-criterion scheduling problems. We now propose a
refinement that gives us a lower bound that is at least as good, but requires more time. Our
more general approach allows combinations of objective functions. Let (T'y, ..., Ty) be a par-
tition of the set {1, ..., K}, i.e., the sets T, are mutually disjoint and U 1, ={,....,K}.
For any problem A in the class (P) we clearly have

H K
vy (A) = 2 mina c9Q 2 akfk(ak)} = 2 (0973 [fk(ﬂ;c):l =LB OS.
1

h=1 KET, k=

This idea can be refined even further, since it is not obligatory to match each performance cri-

terion fj, with only one set 73. Hence, let us relax the assumption that (Ty, . . ., Ty) is a parti-
tion of {1,...,K}, and let oy, denote the fraction of fi that is assigned to 7;. We must have
that 2, oy, = o for each k = 1,..., K, and also that ay; =0, since the composite objective

function associated with the set T}, has to be nondecreasing in each of its arguments, for
h =1, ..., H We can compute the lower bound for given values of ay; as
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v(05)= X |mingeg X oufi(0)|. (08)

h=1 keT,

An interesting question is how to determine the values of ay; that maximize the lower bound
v(OS). This problem, referred to as problem (D), is to maximimize

v(0S) D)
subject to

H

Eakh———ak fOI'kzl,...,K,

h=1

o, =0 fork=1,...,K, h=1,...,H.

A sufficient condition for solving problem (D) in polynomial time (for fixed K) is that the
extreme set for each problem induced by 7, (2 = 1, ..., H) can be determined in polynomial
time. In that case, there is only a polynomial number of extreme schedules involved, and prob-
lem (D) can then be formulated as a linear programming problem with a polynomial number
of constraints and variables. Let N (k) be the number of extreme schedules for the problem
associated with 7j, (h = 1, ..., H), and let 0,4 denote the jth extreme schedule for the prob-
lem associated with Tj. There are at most 2* —2 sets T, (| 7| < K and T}, 5= @). The linear
program is then to maximize

w

subject to

H .
w << E akhfk(oj(h)) fOI'j(h):l,...,N(h),h:1,...,H,

h=1k €T,
H
zakhzak fOI'k—_—l,...,K,
h=1
=0 fork=1,....K, h=1,...,H.

In general, it would be unreasonable to presume that each of the possible 25X —2 sets T,
would result into a polynomially solvable problem; it may be a formidable challenge to iden-
tify those that will. If we touch upon a problem that appears to be hard to solve, then we may
relax the assumptions by allowing preemption. (L.e., the processing of jobs may be interrupted
and resumed at a later moment in time; this is denoted by pmin). This may be useful with
respect to the computational complexity, but also with respect to the lower bound quality. The
latter follows particularly from the following theorem.

THEOREM 6. The optimal objective value of 1|pmin |SK_ axfy is greater than or equal to
Sayfi(ok), where oy is the optimal value for 1| | f (k =1,...,K).

PROOF. The proof follows from the observation that oy also solves 1|pmtn | fi, if f is either
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monotonically nondecreasing or monotonically nonincreasing in the job completion times. [l

If we apply the refined objective splitting procedure to 1| | 2C;+ L a5 + E max, then, except
for the obvious single-criterion problems, we have to consider three problems:
1] |y 2Ci+ oy Lax, 1|nmit |a;EC;+ayE nay, and 1|nmit | @) Lye, + 02 E pay. Hoogeveen
(1990) presents an O (n*logn) time algorithm for 1|nmit | @)L oy + 0 E ay to find the O (n)
extreme schedules, and Hoogeveen and Van de Velde (1990) present an O (n*) time algorithm
for 1||e;ZC;+ayLy,,, which has O(n %) extreme schedules. For the problem
1|nmit |a;Z2C;+ayE o, there is only a polynomial-time algorithm available if a; = o,
(Hoogeveen and Van de Velde, 1990). The complexity of the case a; <a, is unknown. How-
ever, 1|nmitppmin|a;2C;+ayE y,, is solvable in O(n*) time and has O(n?) extreme
schedules.

If we reconsider the example, we find that there is one extreme schedule for ZC; and L,
with 2C; = 73 and L ,, = 14; there are two extreme schedules for L ,,, and E,,, with values
L =14 and E . =7, and L, =17 and E ,, =6; there are three extreme schedules for
E ax and ZC; if we allow preemption with values E,, =6 and 2C;=96, Ep,,=7 and
2C;=174, and E ,,, =9 and ZC; =173, respectively.

The lower bound that is obtained by the improved objective splitting method depends on the
parameter ¢. Suppose ¢ =~ Then we obtain LB’ = 4] and LB%® = 46+.. It is easy to verify
that the improved objective splitting method gives 47+ as a lower bound. This bound is tight,
since the optimal sequence (/ 3,/ 3,J 4,/ 1) has the same value.
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