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We discuss the relation between two intrinsically different proposals that have been made in the literature con-
cerning the representation by constant matrices of rational matrices given in fractional form. It turns out that the
relation is most naturally studied in the framework of partial fraction decompositions. We develop the realization
theory for decompositions with respect to arbitrary complementary parts of the extended complex plane which
may, for instance, correspond to stability and instability. An isomorphism is obtained which connects the spaces
used in the two methods, and several identities relating to the McMillan degree are derived in a direct way.
Finally, a new computational procedure is given to obtain the partial fraction decomposition of a rational matrix
given in fractional form.
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1. INTRODUCTION

The representation of rational matrices through a tuple of constant matrices has proved to be a powerful
tool in a large variety of problems that involve rational matrices; see for instance [2, 6]. Certainly the
most popular form has been the ‘standard state space realization’ which represents the rational matrix
G (s) by a four-tuple of constant matrices (4, B, C, D) through the formula G(s) = C(s/ —A) B+ D.
However, only rational matrices without poles at infinity can be represented in this way. Although the
restriction to proper rational matrices is often justified in applications, it is of interest to look for alterna-
tive representations that cover the whole class of rational matrices. An example of such a representation
is the ‘descriptor form’, which specifies a general rational matrix G(s) by a five-tuple (E, 4, B, C, D)
through the formula G (s) = C(sE —4) " 'B + D.

It was shown by Fuhrmann (see for instance [7, §1.10]) how to obtain a natural standard state
space realization for a rational matrix that is given in ‘fractional form’, that is, as a quotient of polyno-
mial matrices (G(s) = D ~!(s)N (s) where N (s) and D (s) are polynomial matrices, and D (s) is nonsingu-
lar). The Fuhrmann realization serves as an intermediary between state space techniques on the one
hand and techniques based on the fractional form on the other hand. The theory as given by Fuhrmann
only applies to proper rational matrices, and there is a natural question as to whether his methods'can be
adapted to cover nonproper rational matrices as well. Solutions to this problem were provided by Conte
and Perdon [5] and by Wimmer [21]. In both these papers, a decomposition is made of the given rational
matrix into a strictly proper rational part and a polynomial part. The standard method is used for the
strictly proper part, and a suitably adapted version of the same method is employed for the polynomial
part. Finally, the two parts are added to obtain a representation in descriptor form of the given matrix.
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A different approach was taken by the present authors in [13]. Instead of going to the descriptor
form directly, we used an alternative representation of rational matrices by means of constant matrices,
which we termed the ‘pencil form’. (In fact, in the cited paper we were concerned with the representation
of ‘behaviors’, which involves a bit more; however, in this paper we shall only consider the representa-
tion of rational matrices.) The constant matrices appearing in the pencil form are constructed from map-
pings between various spaces that are defined in a way that is inspired by the Fuhrmann realization.
However, the assumption of properness is no longer needed. Once the pencil form is obtained, it is possi-
ble to obtain a representation in descriptor form by a simple procedure, as was also shown in [13].

It is natural to ask what the relation is between the two realization procedures, of which one is
based on a decomposition into a proper part and a polynomial part, and the other on the pencil form
which is in a certain sense a homogeneous’ representation. To answer this question, it turns out to be
useful to take a slightly generalized viewpoint. Note that the decomposition of a rational matrix into a
proper part and a polynomial part is a special case of a (two-term) partial fraction expansion, that is, an
additive decomposition into two parts that have poles in two prescribed complementary regions of the
extended complex plane. It turns out that the Fuhrmann realization theory can be reformulated easily as
a method for providing a state space description of one term in this decomposition when the rational
matrix is given in a suitably adapted fractional form. Special cases are both the standard realization
method and the adaptation of it that was used by Conte and Perdon and by Wimmer to obtain a repre-
sentation of polynomial matrices. The realization via the pencil form can also be performed at this level
of generality, and the connection with the realization via the partial fraction expansion can be made. The
virtue of looking at the problem from this point of view is that no point in the extended complex plane is
a priori assigned any special role, and that also situations are covered in which both prescribed regions in
the plane contain more than one point.

The plan of this paper is as follows. In the next section, we shall introduce some notation. Then,
we shall present the generalized version of Fuhrmann’s realization that was alluded to above. In section
4, we shall generalize the pencil form realization in the same way. After that, we construct the isomor-
phism between the spaces that are used in the two realization methods. The relation with the McMillan
degree is worked out in section 6, and some computational issues are discussed in section 7. The final
section 8 contains some additional remarks and conclusions.

2. NOTATION AND PRELIMINARIES

The extended complex plane C° is the set C of complex numbers together with the point at infinity. It
will be assumed throughout this paper that two non-empty subsets ', and T_ of C® have been given
which satisfy

r,nT_=@, T,Ul_=ce @1

We shall take the complex numbers as the basic field in this paper, but everything done below can also
be done over the real numbers if it is additionally assumed that T, and T'_ are symmetric with respect
to the real axis, and that their intersections with the extended real axis are both non-empty.

The ring of rational functions that have no poles in T', (T'_) will be denoted by Co. (5) (Co—(5)).
Elements of €y, (s) (Co—(s)) will sometimes also be called ‘plus-functions’ (‘minus-functions’). If
[, =Cand T_ = {0}, then the plus-functions are the polynomials and the minus-functions are the
proper rational functions. This is the special case which corresponds to the ‘standard’ realization theory.

Every rational function can be written as the sum of a plus-function and a minus-function, but not
uniquely so because the intersection of Cy. (s) and C,_ (s) consists of all constant functions. To geta
unique decomposition, we introduce the following device. Fix a point ey inT, and a pointa_ inT_.
(If one wants to work over the reals, let both &, and a_ be real.) Define

C. () = {f€Cps(8) | f(as) =0} 22)
C_()={f€Co_(s) | f(a_)=0). 2.3)

We now have:



LEMMA 2.1 Every rational function f (s) can be decomposed in a unique way as

=6+ fot f+6) )
where

f-(s) e C_(s), f+() € CL(s), , 2.5)
and f is a constant.

The associated projections (in obvious notation) will be denoted by 7_, m), and 7., respectively. We
shall also use

Mos = My + Ty, Ty =@y + w_. (2.6)

We shall assume that a rational function has been fixed which has one zero, at a , and one pole, at a_.
Since multiplication by such a function can change a minus-function to a plus-function, we shall denote
the chosen function by x(s) after the mythological ferryman Xapwr. Of course, x(s) can also be seen as a
Mbobius transformation. Some examples of situations we have in mind are:

- I'y =C,T_ ={0},a; =0,a_ =o00,x(s)=s

- I‘+={oo},1"_:C,a+:oo,a_:0,x(s):s_]

- Ty={eC||s|<1},T_-={seC||s|=1},a; =0,a_ =00, x(s) =+

- I'y={seC|Res<0},T_={seC|Res=0},a, = —La_ =Lx(s)=E+1)/(—1).

We note the following simple rules, in which we use x to denote the operation of multiplication by x(s):
XTo+ = T+ X 2.7
M- X = XT—. 23)

More generally, we shall be in the habit of writing R for the operation of multiplication by the rational
matrix R(s), leaving it to the context to determine between which spaces the mapping R acts. Any
rational matrix that doesn’t have a pole at a_ can be represented, in what might be called ‘modified state
space form’, by the formula

G(s) = C(x(s)I—A4)"'B + D. 29)

Modified forms of this type are not only used for theoretical reasons; they may also serve very practical
purposes, such as the reduction of roundoff noise in the finite-wordlength implementation of digital con-
trollers [14, 17]. Finally, with any rational matrix R (s) of size p X g we associate the following vector
spaces over C:

X_(R)={f(s)eCq(s)|Igls) eCL(s): f(s) = R(s)g(s)} (2.10)
and its twin
Xi(R) = {f(s)eCh_(s) | Ig(s) €Ch(s): f(s) = R(s)g(9)}- 2.11)

Spaces of this type will serve as state spaces for the various realizations we shall consider.

3. REALIZATION BY PARTIAL FRACTIONS
In this section we shall show how the Fuhrmann realization procedure can be extended to our present
setting. Let a rational matrix G (s) of size p Xm be given in the form '

G(s) = DI (N +(5) 3.

where D , (s) and N , (s) are both matrices over Cy, (s), and D . (s) is nonsingular. Since the quotient
field of Cy.. (s) is C(s), every rational matrix can be represented in this way. Our purpose will be to con-
struct a state space realization for #_ G (s) in modified form, assuming that G(s) is given in the form



(3.1). As a state space, we shall use

X_(D+) = {f(s) €CB+(s) | mp+ DT'f=0). G2
Introduce the following mappings:

A_:fes Do _Di'xf , 33)
from X _(D ;) into itself,

B_:uwD,7_Di'N.,u 34
fromC” to X_(D ), and

C_: frmDi'xf 35)

from X _(D ) into C?. We note that D+W_Dllf =f- D+frro+D11fe C§+(s) for any f e C§, (s);
this justifies the definitions of the mappings 4 _ and B _. The following result is a direct generalization
of Thm.I1.10-1 in [7]. We shall present a proof for completeness, although the argument is just a direct
extension of the one in [7]. Formulation and proof of minimality properties as in [7] will be left to the
reader.

THEOREM 3.1 If G(s) is given by (3.1) where bdh D . (s) and N  (s) are matrices over Cy..(s), then the tri-
ple (A _,B_,C_) defined by (3.3-3.5) gives a realization in modified state space form of w_ G (s).

PROOF The terms in the expansion
o0
C_(xG—A_)"'B_ = 3 C_4*"1B_x7¥s) (3.6)
k=1

can be computed as follows:
C_A*"'B_ =aqD7'xD .7_Di'X* 'D,a_D7'N, =

= moxm_x*"'m_D3I'N, = moxw_D3'N . X))
The result therefore follows from the formula
f© = 3 @mx*Hx ) (33
k=1

which is valid for every f e C~ (s).

By interchanging ‘+’ and ‘—’ in the above (which includes replacing x(s) by x~!(s)) we can construct a
state space realization for 7. G (s) from a factorization G (s) = D= (s)N _(s) over Cy_ (s). It is then pos-
sible to find 7y G by the formula

MG = G(&) — (74 G)(@) + (- G)(a)) (39

which holds for any complex a that is not a pole of G (s). Alternatively, we may use the formula

Tor = X 'TiX (3.10)
to construct a realization for 7 G (s) from a realization for 7, xG (s). This leads to the following:
Xo+(D-)={f(©)eCh-(s) | 7-D-'f=0} (.11
Ags:fD_my DI'x7If (.12
Boi:uwD_my DZ'N_u (3.13)
Cor:fromDIf (3.19

One easily verifies that the triple (4o, Bo+, C+ ) Tepresents my. G (s) through the formula



o+ G(5) = Cor (I — x()40+) 'Bos. (3.15)

This representation in what might be called a ‘modified descriptor form’ can be merged with the realiza-
tion we found for #_ G (s). This results in a representation in modified descriptor form for the complete
matrix G (s), as follows:

G(s) = C(X()E — A)"'B ' (3.16)
where
I 0 _ 0 B_
E = 0 A0+ ’ A= 0 Il B = B0+ y C = [C_ _C0+]- (3.17)

This is essentially the construction in [5, 21]. If the factorizations that one starts with are coprime, then
the construction leads to a realization that is minimal (in the sense that the size of E is minimal) among
all realizations of the form (3.16). A reduction in size is possible, however, if one allows the presence of a
constant ‘D’ term (cf. for instance [13]).

4. REALIZATION IN PENCIL FORM

We have seen above that it is possible to obtain a state space representation of the ‘plus’ part of a
rational matrix from a factorization of that matrix over the ring of ‘minus’ functions, and vice versa. In
this section, we shall show that one can also obtain a representation by means of constant matrices for
the complete rational matrix from a fractional representation over Cg.. (s) (or Cy_(s)). The representa-
tion involved is the so-called ‘pencil representation’ [13] which can be introduced as follows. Note that
there is a one-one relation between the set of rational matrices of size p Xm and the set of m-dimensional
subspaces of C” *™(s) that are complementary to span [, 0]". The relation is given by

G@E) e V(s) = ker[I, —G ()} @.1n

Now, it is a fact (as shown below) that every m-dimensional subspace ¥ (s) of C”*™(s) can be
represented in the form

V(s) = H[ker(sG —F)] 42

where F, G, and H are constant matrices; the dimensions of Fand G are n X(n +m), where n depends on
V(s), and the dimension of H is (p +m)X(n +m). The representation (4.2) has been called the ‘pencil
representation’ in [13]. Any rational matrix, be it proper or nonproper, can be represented in pencil form
through the associations (4.1) and (4.2).

If (D (s), N(s)) is a pair of rational matrices of size p Xp and p Xm respectively, and the matrix
[D(s) N(s)] has full row rank, then this pair determines an m-dimensional subspace of C” *™(s) by

V(s) = ker[D(s) —N(s)) @.3)

The subspace defined in this way is complementary to span [ I, 0] if and only if D (s) is invertible, and
in this case the rational matrix associated with ¥ (s) through (4 1)is G(s) = D~ 1(s)N (s). In view of this,
it is natural to gencrahze our representation problem slightly. So, given a p X (p +m)-matrix R (s) of full
row rank over the ring Cg. (s), we shall be lookmg for a representation of the vector space ker R (s) in
(modified) pencil form:

kerR(s) = H [ker(x(s)G — F)]. 44

REMARK 4.1 Here, as well as below, we make no distinction in notation between a mapping H: X — Y
between vector spaces over € and the induced mapping between the corresponding vector spaces X (s)
and Y (s) over C(s).

REMARK 4.2 The correspondence between different representations is defined in the above by associating
an m-dimensional subspace of C? *™(s) to each representation, as in (4.1), (4.2), and (4.3). This type of
equivalence was introduced in [1] and was termed ‘input/output equivalence’ in [12]. The terminology



was suggested by the use of the phrase ‘input/output relation’ in [8] for m-dimensional subspaces of
C? tr(s).

Our main result on representation in the form (4.4) is given below. The proof technique can of course no
longer be based on expansion around a point in the complex plane, as in the previous section. It also has
to be different from the method employed in [13], from which the result below has been gleaned, because
the proof there is based on an interpretation which cannot be used for the modified form (4.4).

THEOREM 4.3 Let R (s) € C§3(s) be of full row rank. Introduce the following complex vector spaces:

CXTR) = {(wQ) eCLQ) | 7_Rw =0) @5)
N™(R) = (W) eCLQ) | Rw =0} (4.6)
X-(®) = (pM) e M) | IwA) € CLM)s.t.p = Rw). @7

The elements of the quotient space X~ (R)/x 'N~ (R) will be denoted by [w(N)] or [w] where
w() € X~ (R). Define mappings F and G from X~ (R)/x " 'N~(R) to X _ (R) by

F:[w]w Rm_xw 4.8)
and

G:[w]~ Rw, 49
and define a mapping H from X~ (R)/x~'N~(R) to C? by

H:[w]e moxw. (4.10)

These mappings are well-defined, and the relation (4.4) holds. That is to say, the triple (F, G, H) provides a
modified pencil form realization under input/ output equivalence for the given matrix R (s) over Cy. (s).

PROOF It is straightforward to verify that the mappings F, G, and H are indeed well-defined. Now, let
[w (A)](s) be an element of ker (x(s)G — F). We then have

XSORM)Q)s) — RM7_xN)(w A)(s) = 0. @.1n
Because (w (A))(s) € (CZ (A))(s), we obviously have

T XA A)6) = X)W N)s) — ToxP)w M), 4.12)
so that (4.11) may be rewritten as :

XER A A)E6) = RAXMWN)E) — R QymoxWm Q))(6s). @4.13)
By the definition of H, this gives

RMH (w QN)(s) = (ls) — xR M) Q))s)- @.19)
Taking A = s, we get in particular

R()H W) = 0. @4.15)

We have proved that ker R (s) D H[ker(x(s)G — F)]. It remains to show that the dimensions of the two
spaces are equal. Because the mapping G is surjective, as is clear from the definition, the rational matrix
X(8)G — F has full row rank, so that we have

dimg,) ker (x(s)G — F) = dim¢ ker G = dim¢ N~ (R)/x !N~ (R) = dimgy,) ker R (s)(4.16)

Finally, we note that the mapping [GT H']' is ing'ective; for, if for some w € X~ (R) we have both
Rw = 0 and moxw = 0, then xw e C_ () sow € x_ TN~ (R) and hence [w] = 0. Therefore, the rational
matrix [x(s)G' —F' H']" has full column rank and we may conclude

dimeg) H [ker (X(s)G — F)] = dime, ker (x(s)G — F) = dimgg, ker R (s). @17



It can be shown that the realization above is minimal (in the sense that no pencil representation with a
lesser value of n exists for the same input/output relation) if R (s) has full row rank as a matrix over C
foreverysel',.

5. CONSTRUCTION OF THE ISOMORPHISM

In the previous two sections, we have seen two ways of representing a general rational matrix G(s) by

means of constant matrices, when factorizations of G (s) over Cy (s) and C,_ (s) are given:

- by two modified state space representations for the partial fractions of G (s) corresponding to I,
and I'_ respectively;

- by a modified pencil representation. ‘

When using the first method, we obtain two state spaces: X _(D ) and X, (D _). Application of the

second method leads to a space X _([D, N . ]) which might be considered as a ‘state space’ for the pen-

cil representation. It is a natural question to ask in what way these spaces are connected. We shall now

establish an isomorphism which ties the three spaces together.

THEOREM 5.1 Let G (s) be a rational matrix of size p X m, and suppose that factorizations of G (s) both over
Cy+ (s) and over Cy_ (s) have been given:

G(s) = D' ()N +(s) = DX (SN _(s). R CR))
Also suppose that the pair (D _(s), N _(s)) is left coprime. Under these conditions, the mapping
¥:[f1» D _xm+ D3'f (= D_myxDT'f) 2

fromX_(Dy N D/X_(D.y)toX (D_)iswell-defined, and is an isomorphism.
PROOF Deﬁnﬁ‘pﬁomX_([D+ N+DtOX+(D_)by
®: fr> D_xmp: D5'f (= D_myxD5'f). 53

The statement in the theorem will follow if we can show that this mapping is well-defined, that it is sur-
jective, and that its kernel is exactly X _ (D). We first prove that ® maps X_ (D, N_.]) into C” (s).
Take fe X_(D, N.],andletg eC? (s)andh € CZ(s) besuchthat f = D, g+ N . h. Then

Di'Yf=g+ D;'N,h=g+ DZ'N_h. 4
Note thatmy, g = 0, so
®f = D_a,xD-'N_h = N_xh — D_my_xD-'N_h 55)

which indeed belongs to C”_(s). Next we have to show that mp_ D=1® = 0; this is obvious from the
definition. It is also obvious that ker @ coincides with X _ (D ;).

Finally, we prove that ® is surjective. Let p € X (D _), and define f = x'D, DZ'p. It is easily
verified that f e C§, (s) and that @f = p. In order to show that fe X_(D, N.]), we have to find
geC”(s)and h € C” (s) such that f = D , g + N  h. Since the pair (D _(s), N _(s)) is left coprime, the
matrix [D_(s) N_(s)] has a right inverse, say [K'(s) L(s)]", in C§™*P(s). Define g = x ' Kp and
h = x""Lp; theng € C?_(s), h € C™ (s), and

D_g+N_h=x"p 56
This gives
D,g+N,h=D,D'D_g+N_h)=D.D'xp=7f

and so the proof is complete.

We immediately have the following corollary.

COROLLARY 5.2 Let G(s) be a rational matrix of size p Xm, and suppose that factorizations of G (s) both
over Cq (s) and over C_ (s) have been given.as in (5.1). Also suppose that the pair (D _(s), N _(s)) is left



coprime. Under these conditions, we have
dimX_(D, N,)=dimX_(D,)+ dimX,(D_). X))

We shall elaborate on this dimensional equality in the next section.

6. THE MCMILLAN DEGREE

In this section we consider some alternative expressions for the dimensions of the vector spaces that have
appeared in the development above. The following version of a Wiener-Hopf factorization theorem for
rational matrix functions will be needed. We still use the notation and the assumptions of section 2.

THEOREM 6.1 Every rational matrix R (s) of full row rank p can be written in the form

R(s) = UL (s)[Als) 01U-(s) 6.1)
where U (s) is Co (s)-unimodular, U _(s) is Cy_ (s)-unimodular, and

AG) = diag"(s), -+, X 6N, Ky, oLk, €Z. (62)
Moreover, the indices kq, - -+ , k, are the same (up to order) in any factorization of the form (6.1).

PROOF Let g(s) be a rational function such that g (s)R (s) is a matrix over Cg_ (s). For instance by reduc-
tion to Hermite form [15], one can find a Cy_ (s)-unimodular matrix ¥ (s) such that

gOREV(s) = [R(s) 0] 6.3)

where R(s) is square and nonsingular. It follows that for the construction of the factorization (6.1) it is
sufficient to consider the case in which R (s) is invertible. For this case, a construction method is given in
[4, Ch. 1] under some extra conditions, which are however inessential in the present context.

It remains to prove the uniqueness of the indices k,, - - -, k,. Define, fork € Z,

m(R) = dime X_ (x *R). 6.9

It is easily seen that these integers are invariant under left multiplication of R (s) by Cy. (s)-unimodular
matrices and right multiplication of R (s) by C,_ (s)-unimodular matrices. Consequently, we can use the
factorization (6.1) to compute the indices 7, (R) in terms of the indices k;:

n(R) = . Iz(k)k,-—k, I,(k)={ie{l, ---,p} | ki—k=0}. 6.5)
Since we have
m-R) = ¥ k—k+1= 3 k—k+1= m(R)+ card(l , (k)), (6.6)
iel, (k—1) iel (k)
the number of #’s for which k; = k is equal to n; _;(R) — n,(R), so that
card{i € {1, -+, p} | ki = k} = mp 1 (R) — 2m(R) + mp_1(R). 6.7

This shows that, conversely, the indices k; are uniquely determined (up to order) by the integers 7, (R).
Since the latter are directly determined by R (s) through (6.4), the proof is complete.

DEFINITION 6.2 The indices ky, - -, k, that are defined by the factorization (6.1) are called the factori-
zation indices of R (s) with respect to (I'y., T'_).

COROLLARY 6.3 For any rational matrix R (s) of full row rank, the integer dimg X _ (R) is equal to the sum
of the nonnegative factorization indices of R (s) with respect to (T ., T _).

PROOF Use (6.4) and (6.5) with k = 0.

COROLLARY 6.4 For any nonsingular rational matrix D (s), the number of zeros of D (s) in T minus the
number of poles of D(s) in T is equal to the sum of the factorization indices of D(s) with respect to



T4, T

PrOOF Both sides of the equality are invariant under left multiplication of D (s) by Cy.. (s)-unimodular
matrices and right multiplication of D (s) by C_ (s)-unimodular matrices. (To see the invariance under
multiplication by Cy_ (s)-unimodular matrices, note that the number of zeros of D(s) in I minus the
number of poles of D (s) in T’ is equal to the number of poles of D (s) in '~ minus the number of zeros
of D(s) in T'_, by the fact that the total number of zeros of D (s) in C° is equal to the total number of
poles in C° [10, Exc.6.5.12b].) It is therefore sufficient to prove the theorem for the case in which D (s)
has the form (6.2), which is straightforward. -

PROPOSITION 6.5 If R(s) is a Cy.. (s)-matrix of full row rank, then the factorization indices of R(s) with
respect to (I';., I'_) are nonnegative.
ProoOF From (6.1), we have

UT ()R (s) = [As) 01U (s). (6.8)

On the left hand side we have a matrix over Cy (s), whereas U_ (s) on the right hand side is unimodular
over Cy_ (s). So each xk" (s) on the diagonal of A(s) multiplies at least one nonzero minus-function into a
plus-function, which can only happen if ; is nonnegative.

COROLLARY 6.6 If D (s) is a nonsingular rational matrix having no poles inT ., then dim X _ (D) is equal to
the number of zeros of D(s) inT .

ProOF The statement follows from Cor. 6.3, Cor. 6.4, and Prop.6.5.

REMARK 6.7 It can be verified that this corollary allows a sharpening of Thm. 5.1 in the following sense.
If the pair (D _(s), N _(s)) is not assumed to be coprime, then the mapping ¥ of the theorem is still

well-defined and injective. The mapping is is surjective if and only if the pair (D _(s), N _(s)) is left
coprime.

The degree of a rational matrix G(s) is defined in [16] as the total number of poles of G(s) in C°.
We shall write deg G for the degree of G (s), and likewise we shall write deg, G for the number of poles
of G(s)inT; and deg_ G for the number of poles of G(s) in I'_ . Obviously,

degG = deg, G + deg_ G. 6.9

We can now easily identify the terms on the right hand side, if left coprime factorizations over Cy- (s)
and Cy. (s) are given.

COROLLARY 6.8 If G(s) = DI'(S)N,(s)isa left coprime factorization over Cy. (s), then
deg, G = dimX_(D ). (6.10)

PrOOF Under the coprimeness condition, the number of poles of G(s) in T, is equal to the number of
zeros of D . (s) in ", . Therefore, the statement follows from Cor. 6.6.

Together with the main result of the previous section, this leads immediately to the following characteri-
zation of the McMillan degree of a rational matrix in terms of the factors in a coprime factorization over
the ring Cg 4 (5).

COROLLARY 6.9 If G(s) = D' ()N . (s) is a left coprime factorization over C (s), then ‘
degG =dimX_(D, N.]. 6.11)
PrOOF The statement is immediate from (6.9), Cor. 6.8 and its twin version, and Cor.5.2.

In view of Cor. 6.3 and Prop. 6.5, the above can be reformulated as follows:
COROLLARY 6.10 If G(s) = DI'$N () isa left coprime factorization over Cy, (s), then degG is equal
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to the sum of the factorization indices of [D . (s) N ,(s)]withrespectto(T,,T_ )

The factorization indices of a polynomial matrix with respect to (C, {c0}) are also known as the minimal
row degrees (i.e., the degrees of the rows of an unimodularly related row reduced matrix—see [10,
§6.3.2]). So a particular case of the above corollary is:

COROLLARY 6.11 If G(s) = D~ !(s)N(s) is a left coprime factorization over Cls), then deg G is equal to the
sum of the minimal row degrees of [D(s) N (s)).

This result is immediate from the Fuhrmann realization theory in case G (s) is proper, because then the
sum of the minimal row degrees of [D(s) N(s)] is equal to the sum of the minimal row degrees of D (s),
and one can use the well-known characterization of the degree of a proper rational matrix as the dimen-
sion of the state space in a minimal realization. The fact that the statement is also true in the nonproper
case can be inferred by combining results from the literature which connect the degree to the rank of the
matrix E in a minimal descriptor form representation with results which connect this rank to the sum of
the row degrees (cf. [3, 13, 19, 20,22]). The present development, however, provides a direct proof based
on the isomorphism of Thm. 5.1.

REMARK 6.12 The dimensional equality (5.7) can also be used to express deg_ G in terms of a factoriza-
tion over Cy. (s), which doesn’t even have to be coprime.

COROLLARY 6.13 If G(s) = D' ()N 4 (s) is a factorization over Cq. (s), then
X-([P+ N.]D

deg_ G = dim
% X_(D)

(6.12)

PROOF The statement is immediate from Cor. 5.2 and Cor. 6.8 (with ‘+’ and ‘—’ interchanged).

7. COMPUTATIONAL ISSUES ,

In sections 3 and 4, we have described two different methods for obtaining a representation in terms of
constant matrices for a general rational matrix which is given in fractional form. Any discussion of the
merits of these two methods from the computational point of view should take into account the question
what kind of representation one is looking for. If the form one wants to obtain is the descriptor form,
then the method of section 4 (the pencil realization) would seem to be preferable for the following rea-
sons:

- in the realization by partial fractions, one has two compute basis matrices for two state spaces
rather than for one as in the pencil realization;

- in the realization by partial fractions, there are six parameter matrices to compute rather than
three as in the pencil realization; moreover, the definitions of the parameter matrices in (3.3-3.5)
and (3.12-3.14) are more complicated than those in (4.8-4.10).

REMARK 7.1 The fact that the pencil representation is formed on the basis of a factorization over either
Co+ (5) or Cy_(s) may seem to present an additional advantage over the realization by partial fractions,
which needs factorizations over both rings; however, if the matrix parameters defined in Thm.4.1 are
computed via the Wiener-Hopf factorization, then there is no real gain since the upper rows of the
matrix U _ (s) in the factorization (6.1) already provide a factorization over Co—(s).

Neither the pencil realization nor the realization by partial fractions leads immediately to a representa-
tion in descriptor form, but in both cases such a Tepresentation can be obtained by a simple rearrange-
ment of the data which doesn’t involve any computation (see for instance [13] and (3.17) above). Both
methods require the computation of basis matrices for spaces of the form X _ (R). The most obvious tool
to use for this is the Wiener-Hopf factorization (6.1). It should be noted that the computation of this
factorization is simple when I'_ is a singleton, in which case the procedure is essentially the same as the
well-known algorithm for reducing a polynomial matrix to row reduced form [10, p-386].
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A different perspective appears when the ultimate goal of the computation is not a representation
in descriptor form but rather a representation in (modified) state space form of the components in the
partial fraction expansion. Such representations are relevant in several applications. For instance, a
well-known method to compute the norm of a Hankel operator with rational symbol is based on the
state space Tepresentation for the term in the partial fraction decomposition of the symbol that has poles
outside the unit circle [6, Ch. 5]. In econometrics, the principal part of a transfer matrix associated with a
pole at the point 1 is of interest because of its role in the description of ‘co-integration’ [9, 18]. For the
first example, the methods discussed in this paper require a factorization of the given rational matrix
over the ring of rational functions whose poles are inside the unit circle; representations of this form are
indeed often used [6]. In the second example, we need a factorization over the ring of rational functions
having no pole at 1. This is certainly provided by the standard ‘ARMA’ representations of econometrics,
which actually use the ring of polynomials.

State space representations for the terms in a partial fraction decomposition can be obtained from
the pencil realization by first going to the descriptor form and then using an appropriate solution
method for the generalized eigenvalue problem, such as the one in [11]. However, the method of realiza-
tion by partial fractions would seem to be more naturally adapted to the problem, at least when the
starting point is a fractional representation, and so it is of interest to see what this method can do. At
first sight, it seems that the definition (3.4) already requires the computation of the partial fraction
expansion, so that the only gain obtained from the method would be that the terms in this expansion are
displayed in state space form. However, it is possible to avoid the computation of the partial fraction
expansion, and even to avoid computing the quotient D3 (s)N . (s) altogether, by using the following
trick. We will be looking for representations in the form

GE)=C_(&I-A_)'B_ + 7G + C.(x" '6)[—A4:) 'B., (7.1
where the left hand term on the right represents 7_ G (s) and the right hand term represents 7. G (s). We
start from factorizations G(s) = D3'N , (s) = DZ!(s)N _(s) which are both assumed to be coprime.

Suppose that we already have computed a basis matrix M , (s) for X_ (D ) and a basis matrix M _(s)
for X, (D _). The constant matrix B _ is defined, according to (3.4), by

DI')M L (s)B_ = 7_G(s). (72)
Likewise, we have
DZY()M _(s)B . = 7, G(s). (13)
This means that the three matrices B _, m)G, and B ; must satisfy the equation
' B_
G() =[DF'M () I, D' ()M _(5)] |mG|. - (74)
B

The columns of the rational matrix on the right hand side are independent over C, so that the solution is
unique. By multiplying through with D , (s), we get the equivalent equation

B_
N, (s)=[M(s) Di@) DiEDZ'OM_(9) |mG (7.5)
B

which is stated entirely in terms of plus-functions. For instance by using the bases in X_(D ) and
X,(D_) we can write (7.5) as an equation in constant matrices of size n +p times m, where
n=dimX_(D,)+dimX,(D_) = the McMillan degree of G (s). Solving these equations will provide
the parameters B_, myG, and B ; .

To illustrate the computational procedure, we shall work out an example. The example is the same
as in [13] where the pencil realization method is applied to it; here we shall apply the method of realiza-
tion by partial fractions. The setting is the ‘standard’ one, with I';, = C, T'_ = {00}, and x(s) = 5. The
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rational matrix G(s) is given in fractional form by G(s) = D! (5)N . (s5), with
s+1 0 s2 2
D.i(s) = s+2 2 Ni(s) = 1 s—1l (7.6

The matrix [D  (s) N . (s)]is row reduced and so it is easy to write down a WH factorization

s2 0 (s+Dss2 0 1 2/s5%
LP+6) No@I= 1o || @s+2rs 2 175 (=18 a0
and to obtain from this a factorization over Cy_ (s): G(s) = D=! ()N _(s) with
(s+1)/s* 0 1 2/5?
P-©= 1+ 2 N-O= |15 (—1ys (78
A basis matrix for X _ (D ) can be computed from the WH factorization
(s 0] [¢+D/s ©
D@ = o 5| |s+2ss 2 (7.9)
of D (s). This shows that we can take
1 0
M, (s) = 0o 1l (7.10)

To compute a basis matrix for X ; (D _), we have to obtain a WH factorization of D _ (s) with respect to
(', T+). This can be done by transposing a WH factorization with respect to (T, T_) of the polyno-
mial matrix s2D7 (s):

07" [s* 0] [G+Dss*  (s+2)/s
SDLE = |, 1} [0 s} [-—2(s+l)/s -4 | Ay
SO
(+1)/s?  —=26+Dss) (1 011 2
D)= | s+2)/s —4 o 1ws|lo 1f (.12)
As a basis matrix for X ; (D _), we can therefore take
M_(s) = [(S 1/ s]. (71.13)

We can now start computing the parameters in the state space representations of the terms in the partial
fraction decomposition. We first use (7.5), which in this case reads

B_

52 2 1 0 s+1 0 s(@+1)
1 s—1/= |0 1 s+2 25 25 | |mG| (7.14)
B,
The solution is obtained by equating coefficients:
1 0 1 0 07 'fo 2 1 2
B_ 0 0 1 0 1 0 o0 3 -1
™Gl =10 0 0 0 1 1 o0|=|-1 o0/ (7.15)
B, 0 1 2 0 o |1 -1 -% B
0 0 1 2 2 0 1 1 0

Next we compute the parameters C_ and C . According to (3.5), the first is
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1 0
C_ = mGDI )M L (s) = [_,/2 %] (7.16)
For the second, we have analogously
C, =m@ DI EM_(s) = [_1%]. (1.17)
Finally, the matrix 4 _ is computed from the formula
M ()4 =XM1 (s) — D+ (5)C - (7.18)
which follows from (3.3) and (3.5), and which gives
-1 0 '
A_=1_5 ol (7.19)
The analogous formula
M_(A+ =x'OM_(s) = D_()C+ (7.20)
gives
A, =0 . - (7.21)

as of course it should be, since the matrix 4 , in the type of representation we consider is necessarily nil-
potent.
Summarizing the computation, we have found the partial fraction decomposition

s+1 0] (s? 2 1 0 -1 oN'f1 2
[s+2 25 [1 s—l]: —u w7 |-2 o 3 -1 T
-1 0 1) .
+ [~% ,/z] + [_%](s -0~ 0] (7.22)

The left hand side was the starting point of our computation, a fractional representation in terms of
polynomial matrices; the right hand side is the result, an additive representation which separates the
finite and the infinite poles. The transformation to descriptor form is not difficult from here, but would
perhaps rather hide than add information. A comparison with the computation in [13] will readily show
that the pencil realization is much more convenient if all one wants is a minimal descriptor representa-
tion without separation between finite and infinite modes.

8. FINAL REMARKS AND CONCLUSIONS
We have discussed two realization methods for rational matrices given in fractional form: the pencil real-
ization, and the realization by partial fractions. The two methods are alike in that they both apply to the
whole class of rational matrices, and that they provide representations in terms of constant matrices. The
pencil realization requires one fractional representation whereas the alternative method uses two, but we
do not believe this difference to be very significant (see Remark 7.1). The realization by partial fractions
leads to a more specific result than the pencil realization does, because it actually provides the partial
fraction decomposition of the given rational matrix. There is a computational price to be paid for this
bonus, and so the pencil realization would seem to be preferable as a computational tool when all one
wants is a representation of the given rational matrix in terms of constant matrices (say, descriptor form
or pencil form). However, in case one is interested in obtaining state space representations for the com-
ponents in a partial fraction expansion, realization by partial fractions may be an interesting option to
compare with the alternative route via the pencil realization, the descriptor representation, and the gen-
eralized eigenvalue problem.

The isomorphism of section 5 provides the connection between the two realization methods,
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inasmuch as it establishes a relation between the state spaces as vector spaces. Of course, the space
X _ (D) is a Cy, (s)-module under the multiplication defined by p- f = D+17_D11pf @ eCps(s),
feX_(Dy)), and likewise X, (D_) is a C,y_ (s)-module. These module structures are closely related
with the (modified) state space realizations on the two spaces [5,21]. However, the space X_([D, N, D
has no apparent module structure and it seems hard to interpret the isomorphism between
X_((D+ N ]D/X_(D,)and X, (D_) in a module-theoretic sense. It remains an open question
whether a natural connection exists between the parameters in a pencil realization and the parameters of
the state space realizations of the terms in a partial fraction decomposition.

We have considered general partial fraction decompositions in the sense that the decomposition is
made with respect to arbitrary nonempty complementary parts of the complex plane. These parts may
for instance correspond to stability and instability regions. The classical Fuhrmann realization [7,
Ch.1.10] appears in our framework as the special case of realization by partial fractions (with respect to
I'y =CandT_. = {o0}) in which it is assumed a priori that the rational matrix G (s) has its elements in
Co- (5)- In this case of course one term in the partial fraction decomposition becomes trivial. In addition,
there is a simplification in the definition of the ‘B’ parameter for the other term (see (3.4)) which makes it
unnecessary to solve a system of linear equations as we did in section 7.
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