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Abstract. A 0, 1 matrix A is near-perfect if the integer hull of the polyhedron {z > 0: Az < 1}
can be obtained by adding one extra (rank) constraint. We show that in general, such matrices
arise as the clique-node incidence matrices of graphs. We give a colouring (that is, nonpolyhedral)
characterization of the corresponding class of near-perfect graphs and make the following conjecture:
a graph is near-perfect if and only if sequentially lifting any rank inequality associated with a
minimally imperfect graph results in the rank inequality for the whole graph. We show that the
conjecture is implied by the Strong Perfect Graph Conjecture. It is also shown to hold for small
graphs (no stable set of size eleven). Our results are used to strengthen (and give a new proof of)
a theorem of Padberg and give a new characterization of minimally imperfect graphs: a graph is
minimally imperfect if and only if both it and its complement are near-perfect.
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1 Introduction

A 0,1-matrix A (whose columns are indexed by V say), is perfect if the polyhedron
(1) P(A)={zeq@":4.2<1, z>0}

is integral.

The notion of a perfect graph was introduced Berge in 1959. A graph is perfect if each
of its induced subgraphs H has chromatic number, denoted by xg, no greater than the
size, wy, of a maximum clique in H. In 1975 Chvatal noted that results of Lovasz imply a
polyhedral characterization of such graphs: a graph is perfect if and only if any nontrivial
facet of its stable set polytope is induced by a clique inequality. (The stable set polytope of
a graph is the convex hull of incidence vectors of its stable sets.) This result of Chvatal and
a result of Padberg (see [17]) show that perfect matrices are essentially equivalent to clique
matrices of perfect graphs.

Theorem 1.1 A matriz A is perfect if and only if there is a perfect graph G such that the
incidence vectors of the maximal cliques of G are exactly the marimal rows of A.

In particular, the graph whose existence is asserted in the theorem is the derived graph of A
which we denote by G(A). This is the graph whose nodes correspond to the columns of A
and two nodes are adjacent in G(A) if some row of A has a one in each of their components.
This theorem shows that we lose no generality by restricting ourselves to studying perfect
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graphs instead of perfect matrices, i.e., by studying stable set polyhedra instead of the
polyhedron (1).

Note that even if P(A) is not integral, its integer hull, denoted by P(A)g, can be
described in terms of the derived graph G(A4), of A.

Proposition 1.2 For any 0, 1-matriz A, P(A)r = P(G(A)).

In [18] Padberg defines a polyhedron P to be almost integral if P is not integral but for
eachv €V, PN {z € Q" : z, = 0} is integral. He proves the following surprising result.

Theorem 1.3 (Padberg [18]) If P is almost integral, then P has a unique fractional
verter Z. Furthermore, T is adjacent to ezactly |V| vertices v, . .-vy| of P and for i =
1,...|V|, v; is integral and 1 - v; = ap.

Here, we use ap to denote the value max{1 -z : z € P;}. This yields a full description of
the integer hull of P(A).

Corollary 1.4 (Padberg) If P(A) is almost integral, then P(A); is given by
(2) {zeQ":2>0, A-2 <1, 1-z <apa)}-

This leads to the definition of a near-perfect matrix: a 0, 1-matrix A4 is near-perfect if the
polyhedron (2) is integral. We will see that there are many near-perfect matrices A for
which P(A) has a large number of fractional vertices and hence is not almost integral. We
return to near-perfect matrices but first we discuss their graphical counterparts.

It can be shown that if G is minimally imperfect, then P(G) is almost integral. Thus
for such graphs we have the following.

Theorem 1.5 (Padberg) If G is minimally imperfect, then

(¢7) 2> 0
(3) P(G)={z€ RV: (i) =(K)< 1 for each clique K
(ii7) (V)< a

We call a graph near-perfect if its stable set polytope is defined by the inequalities (1)-(iii)
of (3). It follows from a result of Chvétal (see Theorem 2.4) that the inequalities of (3) are
also sufficient to define the stable set polytope of any replication of a minimally imperfect
graph, i.e., a graph obtained by ‘expanding’ nodes into cliques. These are not however, the
only graphs with this property. Figure 1 gives some small examples of other such graphs.
We know that the clique-node incidence matrices of near-perfect graphs form one class of
near-perfect matrices. Theorem 1.1 shows that the concepts of perfect graphs and matrices
are essentially equivalent; the same is not quite true for near-perfection. The matrix J — I
is near-perfect but is not obtained from the cliques of any graph. The derived graph of A,
in fact, is a clique! A near-perfect matrix A, is said to be graph-representable if the set of
maximal rows of A is exactly the set of incidence vectors of maximal cliques of G(A). It is
easy to see that this is equivalent to stating that the incidence vector of each maximal clique
of G(A) is a row of A. For suppose that some maximal row xX say, of A is not the incidence
vector of a maximal clique in G(A4). Hence there is some other clique K’ which contains K.
By maximality of \X, xK' does not appear as a row of A. The next theorem shows that
the near-perfect matrices which are not graph-representable form a very restricted class.

(V]



Theorem 1.6 If A is a near-perfect matriz, then either A is graph-representable or G(A)
is a clique.

Proof: Suppose that A is not representable. By the preceding comments, there is some
maximal clique K of G(A) for which x¥ is not a row of A. Proposition 1.2 yields that
K gives a facet-inducing inequality of P(A)s. Thus xX -2 < 1 must appear in a defining
system of P(A)s. Since A is near-perfect, this implies that x¥ = 1. Thus G(4) is a clique.
O

Hence for the remainder of this paper we focus our attention on the class of near-perfect
graphs.

Figure 1:

The definition of near-perfection is given in terms of a graph’s stable set polytope.
Conversely, perfect graphs were defined in terms of a colouring property. It was over a
decade after their introduction that the polyhedral characterization of perfect graphs was
found. Sections 4.1-4.4 are devoted to finding a colouring-like characterization of near-
perfect graphs. Such a result should somehow characterize the structure of bad subgraphs
in a near-perfect graph (a graph H is bad if xi > wg). This approach leads to the following
conjecture:

Conjecture 4.10 A graph is near-perfect if and only if each lifting of a rank facet
corresponding to a minimally imperfect induced subgraph yields the constraint 1-z<a.
(We define the lifting operation in Section 2.) We show that a minimal counterexample to

the conjecture must satisfy several stringent conditions. We use these to show that if the
Strong Perfect Graph Conjecture is true, then so is Conjecture 4.10. We also show that any
counterexample to Conjecture 4.10 must have a stable set of size at least 11.

In Section 4.5 we discuss the complements of near-perfect graphs. Clearly any perfect
graph is also near-perfect. In contrast to the Perfect Graph Theorem however, the comple-
ments of near-perfect graphs need not be near-perfect. For example, the graph of Figure 2
is a replication of an odd hole and hence near-perfect. The inequality ; + ... + 25 < 21is
an odd hole inequality for the stable set polytope of the complement of this graph. It can
be seen to be facet-inducing by lifting, and so the complement is not near-perfect.

We use some of our earlier results to give a new polyhedral characterization of minimally
imperfect graphs:



Figure 2:

Theorem 4.35 An imperfect graph is minimally imperfect if and only if both it and its
complement are near-perfect.

(We give a different proof of the only if part which is different from [18].) Section 4.6
contains some conjectures about the structure of the complements of near-perfect graphs.
In Section 4.7 we discuss briefly the problem of recognizing a near-perfect graph. It is
shown that this problem is in coNP and that if it is in NP, then so too is the problem
of recognizing a perfect graph. The rest of this section is dedicated to frequently used
definitions and notations.

1.1 Definitions and Notation

We follow the text [4] for terms which we have not defined below. A graph G, is an
ordered pair (V, E) consisting of a node set V and edge set E. The edges are a subset of
{{w;v} : u,v € V,u # v}. (Note that by the definition there are no multiple edges.) We
denote a set {u, v} simply by uv. If uv € E, the nodes u and v are said to be adjacent.
The neighbourhood of a node v, denoted by N(v), is the set {u € V : u,v are adjacent}.
The closed neighbourhood of v, denoted by N([v], is the set N(v)U {v}. A stable set of G
is either the ¢ or a set of mutually nonadjacent nodes of V. A clique of G is a subset of
V' which is a stable set in G. The collection of all stable sets (respectively cliques) of G is
denoted by S(G) (respectively K(G)). The stability number (respectively clique number) of
G, denoted by ag, or simply a, (respectively wg, or w), is the size of a maximum stable
set (clique) of G. A stable set S (respectively clique), is universal if each maximum clique
(respectively stable set) contains a node of S. For an integer k, a k-clique of G is a clique
with k elements. Similarly we define a stable k-set. A colouring of G is a partition of V
into stable sets; the size of a colouring is the number of sets in the partition. A colouring
is proper if none of the stable sets is ¢. The chromatic number of G, denoted by yg, or
simply x, is the minimum size of a colouring of G. A clique cover of G is a partition of V
into cliques. A clique k-coveris a clique cover of size k. The size of a minimum clique cover
is denoted 6.

For X C V, the subgraph of G induced by X (or simply the graph induced by X), denoted
by Gx, is the graph (X, {uv: u,v € X, wv € E}). Such a graph is called an induced subgraph



of G. The node set, edge set, stability number, clique number and chromatic number of
Gx are denoted by Vx, Ex,ax,wx, xx respectively. For a graph H, we say G contains H ,
if there is X C V, such that H ~ Gy.

A cycle, C, of G is a sequence of distinct nodes vg, vy, ...v5_; such that for each i =
0,...k -1, v;v;y; € E (using modulo k arithmetic). A chord of C is any edge vvj of G
with (|2 — j| mod k) > 1. A path P is defined similarly, except that voui_; is not an edge.
The nodes {vg, v;_1} are called the endpoints of P and P is called a (vg, vp_1)-path. The
internal nodes of the path P are the nodes vy,...vt_s.

For X C V we denote by X, the set V — X. For X C V, the notation G — X may be
used to denote Gx. Similarly for E' C E, G — E' denotes the graph (V, E — E').

The graph obtained from G by replicating a node v, k > 1 times, is the graph with node
set

(V= {v}u {o},.. 0%}
and edge set

(E-{w:ue N@)}U{v'e' :1<4,j<k}Uu{uw’:1<i<kuc N(v)}.

where v',...v* are new, distinct nodes. A replication of G is a graph which is obtainable

from G by replicating a sequence of nodes. Stable replicating is analogous to replicating
except that the new nodes v!,...v* form a stable set instead of a clique. For w € ZV, we
denote by G[w] the graph obtained from G by deleting each node v if w, is nonpositive
and replicating each node v, w, times otherwise. We define G(w) analogously for stable
replication.

2 Stable Set Polyhedra

For a graph G, the stable set polytope of G, denoted by P(G), is conv({x’ : S is a stable set of G }).
The vertices of P(G) are the integral vectors in:

1) cqQv- z, >0 for each node v
( * " zy+2,<1 foreachedgeuve E [’

Since P(G) is full dimensional, there is a unique, up to scalar multiplication, facet-inducing
inequality corresponding to each facet of P(G). An obvious family of valid inequalities is
the class of trivial inequalities: z, > 0, for each v € V. The corresponding face is called a
trivial facet. A valid supporting inequality for P(G) is called nontrivial if it does not induce
a trivial face. There is the following well known fact.

Proposition 2.1 Let G be a graph. Suppose that a-z < 1 is a nontrivial facet-inducing
inequality for P(G). Then a > 0.

Let AC be a matrix whose rows consist of all a € @Y, such that a-z < 1 induces a
nontrivial facet of P(G), i.e.,, P(G) = {t € Q" : A% .r <1, z > 0}. The next result
shows that a defining linear system for the stable set polytope of a graph is inherited by its
induced subgraphs.



Proposition 2.2 For any subset X of V, P(Gx) ={z € Q¥ : 2> 0,4 -z < 1}.

Here A§ denotes the matrix obtained by restricting to the columns X.

We now give a procedure due to Padberg [16], called sequential lifting, which is used to
build facet-inducing inequalities from those for induced subgraphs. Consider X C V and
a-z < 1, a valid inequality for P(Gx). Supposev € V—X andlet y = 1 —max{a-x5: S €
S(Gx_N(v))} The lift ofa-z <1 to X Uw is the inequality vz, + a-z < 1. The next
theorem shows that this operation can be repeated to obtain a facet-inducing inequality for

P(G).

Theorem 2.3 (Padberg [16]) Let G be an arbitrary graph and X C V. Ifa-z < 1 is
facet-inducing for P(Gx), v€V - X andy =1 -max{a-x°: § € S§(Gx_n(v))}, then
vz, +a-z < 1 is facet-inducing for P(Gxyuz)-

We consider the substitution operation. Consider two node-disjoint graphs G and H.
The substitution of H for the node v (in G), denoted by G,_, g, is the graph obtained from
(G — v) U H by joining each node of H to each node in N(v). Chvatal [6] has shown that
a defining system of inequalities for P(G,_p) can be described simply, in terms of the
inequalities for P(G) and P(H). Cunningham showed [10] that each of the inequalities
described by Chvatal is facet-inducing.

Theorem 2.4 (Chvatal,Cunningham) Let G and H be graphs and v a node of G. Then
a nontrivial inequality is facet-inducing for P(G,_g) if and only if it can be scaled to be in
the form

(5) Yo afzy+af( ) afz.) <1,

yeV-{v} z2€Vy
where a® and a¥ are, respectively, rows of A® and AH.
The following is an immediate consequence.

Corollary 2.5 If G' is obtained from G by replicating a node v, k times, then AS" can be
obtained from AC by adding k — 1 copies of the column corresponding to v.

We denote by G, the class of graphs G, with a = 2. Note that the weighted stable set
problem is easy for this class of graphs as one need only check at most |V'|? subsets of the
nodes. A description of a defining family of inequalities for G, was first given by Cook [9].
Knowing such a family for G, provides a useful testing ground for conjectures about general
stable set polyhedra. A proof of this result is given in [21] which also shows how to assign
the integral dual variables for the associated LP. This also shows that the system given
by Cook is TDI. We use the following notation: for a graph G and X C V' we denote by
N(X) the set of all nodes v for which X C N(v) if X # ¢, otherwise N(X) = V.

Theorem 2.6 (Cook [9], Shepherd [21]) IfG € G,, then the following system is TDI:
(6) z>0

(7) 22(K)+ z(N(K)) <2 for each clique K.



The next theorem tells us exactly which inequalities are facet-inducing for graphs in G,
(a proof may be found in [21]).

Theorem 2.7 If G € G, and K is a cliqgue of G, then K ’s inequality is facet-inducing for
P(G) if and only if no component of G N(K) is bipartite.

This describes the unique minimal defining system. We now describe the unique minimal
integral TDI defining system. For this theorem we let K* denote the set of all maximal
cliques and cliques K for which G N(K) is nonbipartite and does not contain any isolated
nodes.

Theorem 2.8 (Shepherd [21]) For G € G,, the following is the minimal integral TDI
system for P(G)

(®) )
2z(K) + 2(N(K)) < 2 for each K € K*.

The reader is referred to [19] and [20] for further background in polyhedral combinatorics.

3 Perfect Graphs

In any colouring of a graph G, each node in a clique must have a distinct colour, hence
X 2> w. A graph is perfect if every induced subgraph H satisfies xg = wg. This class
of graphs was first defined by Berge; he made two conjectures (see [2]) which have since
attracted much attention. The first was known as the Weak Perfect Graph Conjecture and
was resolved by Lovasz [14] in 1971. This result is known as the Perfect Graph Theorem:

Theorem 3.1 (Perfect Graph Theorem) A graph G is perfect if and only if G is per-
fect.

The smallest example of an imperfect graph is a chordless cycle of length five. Note that
the chromatic number of this graph is 3 although the size of the largest clique is 2. An odd
hole is any odd length (chordless) cycle of length at least five. The same reasoning shows
that odd holes are imperfect. It is also easy to see that the complement of a hole with 2k +1
nodes has chromatic number k 4+ 1 and maximum clique size k. Hence such graphs, called
odd antiholes, are also imperfect. The second conjecture made by Berge, which remains
unsolved, asserts that graphs without odd holes or antiholes are perfect. It is called the
Strong Perfect Graph Conjecture because it immediately implies Theorem 3.1.

Conjecture 3.2 (Strong Perfect Graph Conjecture) A graph G is perfect if and only
if neither G nor G contain an odd hole.

A graph is minimally imperfect if it is imperfect and each proper induced subgraph
is perfect. The Strong Perfect Graph Conjecture is equivalent to stating that the only
minimally imperfect graphs are the odd holes and antiholes.

We now examine some results on perfect graphs which we will need later. Our attention
focuses on results relating to stable set polyhedra.



3.1 Characterizations of Perfect Graphs

Fulkerson [11] used anti-blocking theory to reduce the Weak Perfect Graph Conjecture to
the following statement:

Lemma 3.3 (Replication Lemma) If G is perfect, then so is any replication of G.

In addition, he called a graph pluperfect if it had this property.
Independently of Fulkerson’s work, Lovész [14] settled the Weak Perfect Graph Conjec-
ture. His proof is based on the following theorem.

Theorem 3.4 (Lovasz [14]) If G and H are perfect graphs, then substituting the graph
H for any node of G results in a perfect graph.

It follows that every perfect graph is pluperfect. The following is also immediate.

Corollary 3.5 If G is minimally imperfect, then G does not contain a pair of replicated
nodes.

Lovasz later gave an even stronger characterization of perfect graphs.

Theorem 3.6 (Loviasz [13]) A graph G is perfect if and only if for each subset S of V,
|S| < wsas.

Note that if |[S| > wsag, for some S C V, then the graph G could not possibly be wg-
colourable since each colour can be used for at most as nodes of S. This characterization
leads to another useful fact about minimally imperfect graphs.

Theorem 3.7 (Lovasz) IfG is minirﬁally imperfect, then |V| = aw + 1.

About the same time, Chvétal noted that the results of Lovasz imply a characterization
of a different nature.

Theorem 3.8 (see [6]) A graph G is perfect if and only if

. () 220
P(G) = {m SRS (3) 2(K) <1 for cach cligue K }

Note that Theorem 3.8 is equivalent to having for each w € QK, an integral optimum
of maximize w - z, subject to the constraints (1) and (2) of Theorem 3.8. If G is perfect,
then for 0, 1-valued vectors w this is just a restatement of the definition of a perfect graph.
Chvatal appeals to the Replication Lemma to exhibit an integral optimum for any integral
weight vector w.

3.2 Minimally Imperfect and Partitionable Graphs

For p,q > 2, a graph G is an (p, ¢)-graph if |V'| = pg + 1 and for each node v, G — v can be
partitioned into ¢ stable sets of size p and p cliques of size ¢q. The following is immediate:

Remark 3.8.1 If G is an (p, q)-graph, thena =p,w =¢,x =w+1land Y = a + 1.



In light of this remark we refer to such graphs as (a,w)-graphs. We call a graph G
partitionable if it is an (o, w)-graph. Note that Remark 3.8.1 implies that each partitionable
graph is imperfect. It is easy to check that each odd hole and antihole is partitionable. In
fact it follows from the Perfect Graph Theorem and Theorem 3.7 that:

Theorem 3.9 Every minimally tmperfect graph is partitionable.

Other examples of partitionable graphs have been constructed in [7] and [8]. Indeed
every known example of a partitionable graph has been shown to contain either an odd hole
or antihole. In [15] Lovasz states:

...it seems that virtually all structural results which we know for minimally
imperfect graphs also follow for (c, w)-graphs. (This indicates the main difficulty
in the proof of the Strong Perfect Graph Conjecture - it is difficult to determine
that an (a,w)-graph is not minimally imperfect.)

This suggests that the partitionable graphs act as imposters of the minimally imperfect
graphs.

The next theorem shows that partitionable graphs have some interesting and apparently
strong properties. These properties were shownto hold first for minimally imperfect graphs
by Padberg [17] and later for all partitionable graphs by Bland, Huang and Trotter [3]. For
an (a,w)-graph G and each node v € V, arbitrarily choose a partition K7,... K2 of G — v
into w-cliques and similarly choose a colouring S7,...52 of G — v. In fact, the following
theorem implies that these partitions are unique.

Theorem 3.10 (Padberg [17];Bland,Huang,Trotter [3]) IfG is a partitionable graph,
then G has the following properties:

(1) G has ezactly |V| w-cliques; in fact, {x¥ : K is a mazimum clique } is linearly inde-
pendent,

(2) G has ezactly |V| stable a-sets; in fact, {x° : S is a mazimum stable set } is linearly
tndependent,

(3) each node is in ezactly w mazimum cliques,

(4) each node is in exactly a mazimum stable sets,

(5) each mazimum clique is disjoint from exactly one mazimum stable set,

(6) each mazimum stable set is disjoint from ezactly one mazimum clique,

(7) for any w-clique K, ({K} U (Uper{K?}2,) is the set of all mazimum cliques in G,

(8) for any a-set S, ({S}U (Upes{S?}2,) is the set of all mazimum stable sets in G.



4 Near-Perfection

4.1 Some Properties of Near-Perfect Graphs

A graph H is said to be bad if xir > wpg. Perfect graphs are originally defined in terms of the
structure of their bad subgraphs, namely, that they do not have any such induced subgraphs.
In contrast, near-perfect graphs are defined in terms of a polyhedral property. We find
a colouring characterization for the class of near-perfect graphs. This also leads to two
conjectures about characterizations of a different type: a so-called Near-Perfect Conjecture
and a Weak Near-Perfect Conjecture (given in Section 4.2). We begin by examining some
of the properties implied by near-perfection.

Proposition 2.2 shows that a defining linear system for the stable set polytope of a graph
is inherited by its induced subgraphs. Hence we have:

Proposition 4.1 If G is near-perfect and S is a subset of V', then Gs is near-perfect.

A subset § of V' is a bad set of G if xg > ws. Evidently, a graph is perfect if and only
if it has no bad sets. We now describe three properties which we show are possessed by
near-perfect graphs.

P;: S is a bad set implies ag = a, forall S C V,
Py: S is a bad set implies as_y[y) = as —1,forall SC V and v € V,

P;: S is a bad set implies |S| > wsas, for all § C V.
Proposition 4.2 If G is near-perfect, then G has property P;.

Proof: Suppose S is a bad set of G. By Corollary 4.1, G is near-perfect. Since Gy is
imperfect, Theorem 3.8 implies that z(S5) < as is facet-inducing for P(Ggs). Since as > 2,
Proposition 2.2 implies that ag = a. O

Clearly, a graph with property P; need not be near-perfect. For example, the 5-wheel
has property P; yet lifting the odd hole inequality yields a non-rank inequality. This graph
does not however, have property P,.

Proposition 4.3 If G is near-perfect, then G has property P,

Proof: Suppose S is a bad set and v is some node. Since Gsi{v} is near-perfect and
imperfect, 2(S U {v}) < agy(y) must be facet-inducing. In particular, we deduce that
asu{v} = as, i.e., as_npp] < as — 1. Otherwise 2(SU{v}) < agy(y} is the addition of Gs's
rank inequality and the clique inequality for {v}, a contradiction. Furthermore there is a
set £, of |[§ U {v}] linearly independent incidence vectors of stable agy(,)-sets in Ggyy}-
The linear independence of £ implies that v must be in some maximum stable set of G}
Hence as_y[,) 2 as — 1. Thus ag_pp,) = as - 1. a
We now show that near-perfect graphs must have property Ps.

Proposition 4.4 If GG is near-perfect, then G has property Ps.

10



Figure 3:

Proof: The proof is by induction on w, the case w = 1 being trivial. We may assumne that
the bad set which violates the definition of P3 is V. So suppose G is near-perfect such that
|V| < wa and w > 1. The vector (1/w)- 1 satisfies the inequalities in (3) and so is in P(G).
Thus for some A € R5(®) satisfying 1- A = 1 we have (1/w)l = 2ses(G) s x5. Let k be an
integer such that kwAs € Z for each S € §(G); set ks = kwAs. Then k-1 = Yges(q) ks x5
Let G’ be the graph obtained from G by replicating each node k times. Clearly wgr = kw.
Also ) gives rise to a colouring of G’ with Y sc5(6) ks = kw Y ses(6) As = kw = we stable
sets. Let Sy,.. .SwG, be such a colouring of G'. Since this is an wg:-colouring, each S; is
a universal stable set of G’. Each such set has a natural correspondence with a universal
stable set of G. Let r = |V|—(w—1)a. Now since 3.5, |S;| = |Vgi| = k|V|, one of the stable
sets must have cardinality at least k|V|/wg = |V]/w > (wa —a+7)/w = a — (a - 7)/w,
which is at least » since w > 1 and 7 < w. Thus G has a universal stable set S such that
|V -S| < (w-1)a. Now if G — § is perfect, then clearly it is (w — 1)-colourable. Otherwise,
since G has property P;, ag_s = a and so by the induction hypothesis and the fact that
G — § is near-perfect, G — S is (w — 1)-colourable. Hence G is w-colourable. o

Figure 3 shows a graph with property P, but not P,. This graph and the 5-wheel
together show that P; and P, are independent. This may not be true for the third property
P3. (We discuss this further in the next section.)

We complete this section by noting how the properties we have discussed are affected by
the replication of nodes. It follows from Corollary 2.5 that near-perfection is closed under
performing replications.

Remark 4.4.1 The replication of a near-perfect graph is near-perfect.

We also have the following.

Remark 4.4.2 The replication of a graph with property P, has property Py,

Proof: Suppose G has property P;. Let G' be a replication of G and S be any bad set

of G'. Since G is imperfect it must contain an induced minimally imperfect subgraph H.

11



Corollary 3.5 states that H' cannot contain a pair of replicated nodes. Thus G contains an

induced subgraph H isomorphic to H'. We have ag = a (= ag') and since ag = ag < as

we must have as = ag'. Hence G’ has property P;. a
The following is proved in a similar fashion.

Remark 4.4.3 The replication of a graph with property P, has property P,.

This does not hold for property P3. Figure 4 shows a graph which has property Pz but
not Pj since replicating the node v yields a graph G’ with 12 nodes and wgrag = 12. It
is, however, straightforward to check that xgr > 3 = wg and so G’ does not have property
Ps.

Figure 4: A graph with property P; but not P3.

We consider one more property that a graph G may have:

P3: each replication of G has property P;.

4.2 Two Conjectures and a Characterization

In this section we give a characterization of near-perfect graphs. We also make two conjec-
tures of alternative characterizations: a strong and a weak version.
First, we show that graphs with properties P; and P; have a strong colouring property.

Proposition 4.5 If G has properties P, and P3, then x(G) = max{w, [I—Z—lﬂ

Proof: The proof is by induction on |V, the base case being trivial. Now if G satisfies the
hypotheses and |V'| < wa, then certainly the proposition holds. So suppose |V| = ma + r,
m>w,1 <7< a Let S beamaximum stable set of G. If ag_s < a, then since G has
property Py, G — S is wg_s-colourable. Otherwise, m = {'l" S'] and so by the induction
hypothesis is m-colourable. In either case we can colour G wfth m + 1 colours. a

We now give the characterization. The proof of this result also shows that if G is
near-perfect, then P(G) has the integer decomposition property (see [1]).

Theorem 4.6 A graph is near-perfect if and only if it has properties P; and P;3.

12



Proof: First suppose G is near-perfect. Then Remark 4.4.1 states that any replication of
G is near-perfect. Hence Propositions 4.2 and 4.4 imply that G has properties P; and P;.

Conversely, suppose G has property P; and P;. Let z be a rational vector in the
polyhedron defined by (3) and let k be an integer such that kz € Z¥. Let G’ be obtained
from G by replicating each node v, (kz), times. Remark 4.4.2 and our hypothesis then
imply that G’ has properties P; and P;. Equation 3 implies that kz(K) < k for each clique
K of G. Hence wgr < k. Also z satisfies |Vgi| = kz(V) < kag and so [|Ve|/a] < k. Thus
if agr = a, then by Proposition 4.5, G’ is k-colourable. Otherwise agr < a and hence must
be a replication of an induced subgraph H of G with ay < a. Thus H is perfect and so by
Theorem 3.4, G' is also perfect and hence agi-colourable. In either case G’ is k-colourable
and so kz is the sum of k vertices of P(G). Hence z is a convex combination of vertices of
P(G). Tt follows that P(G) is given by (3). a

This theorem is the best possible in the sense that we cannot relax either of the condi-
tions. It is clear that we cannot eliminate the condition of having property P; but neither
can we relax the condition of Pj. For example, Figure 4 shows a graph with properties P,
and P3 (but not P3). This graph is not near-perfect since the node w together with the bad
set forming the odd cycle of length nine, violate the requirement in the definition of P,.

It would be desirable to have a characterization which did not require a property to hold
for each replication of a graph. We do not know of a graph which has properties P;,P» and
P, but which does not have property P;. We conjecture the following:

Conjecture 4.7 (Weak Near-Perfect Conjecture) A graph is near-perfect if and only
if it satisfies properties Py, P, and P;.

As mentioned in the preceding section, we do not even know if property P; is independent
of P, and P,. In light of Remarks 4.4.2 and 4.4.3 and Theorem 4.6, the following conjecture
is even stronger than the Weak Near-Perfect Conjecture.

Conjecture 4.8 If a graph has properties Py and Py, then it has property Ps.

Of course if Conjecture 4.8 holds, then using Remarks 4.4.2, 4.4.3 and Theorem 4.6 we
could also prove the following:

Conjecture 4.9 (Near-Perfect Conjecture) A graph is near-perfect if and only if it has
properties Py and Ps.

An equivalent form of this conjecture is the following:
Conjecture 4.10 Given a graph G, eractly one of the following statements 15 true.
o G is near-perfect

o G contains a minimally imperfect graph I, such that the inequality (I) < ay can be
lifted to V to obtain an inequality other than (V) < a.

Let us examine the equivalence of the two conjectures. Suppose G is a graph which has
properties P; and P,. Let H (not a clique) be an induced subgraph such that 2(Vy) < ag
is facet-inducing for P(H). Suppose v € V' — Vy, then since H contains a bad set, lifting
results in a coefficient of 1 for the new node v.

13



Conversely, suppose that G is a graph such that lifting a non-clique rank inequality
which is facet-inducing for an induced subgraph of G results in a rank inequality for a larger
subgraph. Now suppose H is a minimally imperfect subgraph of G. If v € V — Vi, then since
lifting the inequality 2(Vy) < ag yields a rank inequality, we must have Ay, -N(v) = ag—1.
It now follows that G has property P,. Repeating this lifting process we obtain the inequality
2(V) < ag. Thus ag = a, and so G has property P;.

We end this section by noting that the Near-Perfect Conjecture holds for graphs G, with
a=2.

Theorem 4.11 For a graph G with a = 2, the following are equivalent:
(1) G is near-perfect.

(2) G has properties P, and P,.

(3) For each node v, Gyy) is perfect.

Proof: We already know from Propositions 4.2 and 4.3 that (1) implies (2). Now suppose
G is a graph with properties P, and P, and v € V. If G N(v) 1s not perfect, then it contains
an induced minimally imperfect subgraph, H say. But then ag_Nw) =0 #ag—-1,a
contradiction. Hence G must also satisfy (3).

We now show that (3) implies (1). This follows from Theorem 2.7 which states that any
facet-inducing inequality of P(G) can be scaled to be in the form 22(K) + z(T'(K)) < 2,
where K is a clique such that G'F(K) is nonbipartite (i.e., Gp(g) is imperfect). Thus G
is near-perfect if and only if I'(K) is perfect for each nonempty clique K, or equivalently
GN(v) is perfect for each node v. o

4.3 Towards the Near-Perfect Conjecture

As noted previously, the Near-Perfect Conjecture is equivalent to Conjecture 4.8. We now
study the structure of a minimal node counterexample to this latter conjecture. These
are graphs which have properties P, P, and not P3 but for which every proper induced
subgraph has property P;. We show that the node set of any such graph can be partitioned
into two sets @ and Q which satisfy:

e @ is a universal stable set of G of size at most a — 1,
 Q induces a minimally imperfect subgraph.

Any graph with properties P; and P, which can be partitioned in this fashion is called de-

composable relative to the set Q and (G, Q) is called a decomposition (of G). The pair (G,Q)

is called a strong decomposition if it is a node minimal counterexample to Conjecture 4.8.
We need the following fact.

Lemma 4.12 If A, B are m X n matrices and m > n, then A- BT is singular.

Proof: Let a,,...a, be the rows of A. Since m > n we may assume that there exist real
numbers Ay, ...\, such that a; = Y7, A\;a;. Thus a, - BT = ™, Ai(a; - BT), that is, the
first row of A - BT is a linear combination of the last m — 1 rows. O

We use this lemma to show that we can find a universal stable set in a minimum
counterexample to Conjecture 4.8.
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Theorem 4.13 If |Vg| < wa and G — v is w-colourable for each node v in some marimum
stable set S, then G has a universal stable set of size at least r = maz{1,|V|—-(w—1)a—1}.

Proof: Let Sy be a maximum stable set of G. For each v € S, let 57,...S5? be a colouring

of G —v. Then § = Sg U (Uyes, {S7}%.,) is a collection of aw + 1 stable sets of size at least

7. Note that for each maximum clique K, if v € Sy — K, then K must intersect each of
7y...5%. Thus we deduce:

9) each w-clique is disjoint from at most one member of S.

Let A be a matrix whose rows are incidence vectors of the stable sets in S. If no stable set
in S is universal, then for each S € S we can choose an w-clique Kg, such that SN Kg = ¢.
Let B be an m X n matrix such that for i = 1,...m, the it* row of B is xXs if the i** row
of A is x5. Then A - BT = J — I which is nonsingular, contradicting Lemma 4.12. a

The idea of constructing the collection S as defined in the previous proof was first used
by Bland, Huang and Trotter [3] to prove Theorem 3.10. The construction is used again
in the next theorem (the first part of the proof is nearly identical). We show that, in the
definition of an (a,w)-graph, we can remove the condition of G — v being clique a-coverable
for each node v if we insist that there are no universal stable a-sets.

Theorem 4.14 A graph G is partitionable if and only if for some p,q > 2 such that
VI=pg+1,

o G has a family of |V| stable p-sets, S, such that each node is in exactly p of the sets
inS.

e G has no stable p-set which intersects every q-clique.

Proof: Let A be a matrix whose rows are incidence vectors of the sets in S. By hypothesis,
for each S € S we can choose an n-clique K such that SN Ks = ¢. Let B be a matrix
whose it" row is X5 if the it* row of A is x5. Then

1-4-BT . 1=¢q(1-BT-1)=q(VIp).

Hence A - BT has exactly |[V|(|V] — 1) ones and |V| zeros, that is each column has exactly
one zero and so A- BT = J—1I. Since J — I is nonsingular, each of A and BT is a nonsingular
|[V| x |V| matrix. Thus for each v € V, there is a unique solution to:

(10) BT .z =1 -yl
Furthermore, the unique solution to (10) must also be the unique solution to
A-BT .z=4-(1-xM.

But the vt* column of A satisfies this last equation. Hence the solution to (10) is (0,1)-
valued. It follows that for each node v, G — v can be partitioned into p g-cliques. Similarly,
G — v can be partitioned into g stable sets of size p. It is straightforward to check now that
= a, ¢ = w and so G is an («a,w)-graph. O
We have the following consequence.
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Theorem 4.15 If|V| = aw+1, G has no universal stable a-set, and for some stable a-set
S0, G — v is w-colourable for each node v € Sy, then G is an (e, w)-graph.

The next theorem is helpful in describing the structure of (a,w)-graphs as induced
subgraphs.

Theorem 4.16 If G is an (a,w)-graph and H is a proper induced subgraph which is a
partitionable graph, then ag < o and wg < w.

Proof: Suppose H is a proper induced subgraph of G which is an (g, wy)-graph. Without
loss of generality, wy < w. Now suppose ag = a. Consider the LP

min 1.z
(1) z(K) >w-wpg for each w-clique K,
z >0.

Clearly xV V¥ is a solution to (Nand 1-xV"Y% =wa+1- wgag — 1 = (w — wgy)a.
But the dual of (1) is:

max (w-wg)(i-y)
(2) Y kwekx Yk < 1 for each node v,
y 20.

Theorem 3.10 implies that setting yx = % for each w-clique K yields a feasible solution,
Y, to (2) such that 1.y = (w — wy)(a + L). This contradicts weak LP duality, therefore
ag < a. O
We use this theorem to prove the following result.

Corollary 4.17 IfG has property P; and H is an induced subgraph which is a partitionable
graph, then H is minimally imperfect.

Proof: Suppose H is an induced subgraph which is a partitionable graph. If H is not min-

imally imperfect, then it contains some induced subgraph H’ which is minimally imperfect.

Theorem 4.16 implies that ag: < ag which contradicts the fact that G has property P;. O
We can now prove the main structural result.

Theorem 4.18 IfG is a minimal counterezample (with respect to the node set) to Conjec-
ture 4.8, then G is decomposable.

Proof: Suppose that G is a minimum counterexample. Then V| € wa and x > w. Set
r = |V| - (w — 1)a — 1. By minimality and Proposition 4.5 we have

(11) G has no universal stable set of size greater than r.

Since G is imperfect and has property P,, each node is in a stable a-set. Thus QAG_y =
for each node v. Also wg_, = w for each node v (otherwise v would be in a universal stable
a-set). Thus by minimality, G — v is w-colourable for each node v. Hence by (11) and
Lemma 4.13, G has a universal stable set, S, of size r. In particular, note that 7 is positive.
Now wg = w — 1 and |§| = wga + 1. Thus Gy is imperfect and so ag = «. Since any
universal stable set of G5 is also universal for G, G5 cannot have a universal stable a-set.
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It follows that wg_, = wg for each node v (otherwise v would be in a universal stable a-set)
and since each node v € § is in a stable a-set of Gz (by property P,), ag_, = a. Hence
|S — v| < wg_,a5_, for each node v and so G3_, is wg_,-colourable. Theorem 4.14 now
implies that G5 is an (o, w — 1)-graph. Hence by Corollary 4.17, G5 is minimally imperfect.
a v

For a decomposition (G, @), we denote by M(Q) the collection of maximum cliques in
Gg. We say a clique K in M(@Q), is straddled by a node v € Q, if K C N(v). We denote
by Hg(v) (or H(v) if the context is clear) the collection of all cliques in M(Q) which are
straddled by v. We now bound the number of cliques straddled by a node in Q.

Lemma 4.19 Suppose G has property Py. If (G,Q) is a decomposition and v € Q, then
Ho(v)| € w.
Proof: Suppose K € Hg(v). Theorem 3.10 states that {K} U (Upex{K7};) is exactly
the set M(Q). Since ag_Nw) = ag —1 it follows that for each £ € K, at most one of the
cliques in the partition K¥,... I(;Q is straddled by v. Hence |Hg(v)| < | K|+ 1. a
In light of Lemma 4.19, for k = 1,...w we call v a k-node if |Hg(v)| = k. Recall that a
decomposition (G, Q) for which G is a minimal counterexample to Conjecture 4.8 is called
a strong decomposition. The next lemma shows an even stronger condition which must be
possessed by these decompositions.

Lemma 4.20 If (G,Q) is a strong decomposition, then each mazimum clique of Gy is
straddled by some node.

Proof: Suppose that K isin M(Q). By Theorem 3.10 there is a stable a-set § of Gg which

intersects every maximum clique of M(Q) except K. Since S is not a universal stable set

of G (by (11)), K must be contained in a maximum clique of G. O
Lemma 4.20 and Theorem 3.10 imply the following.

Corollary 4.21 For a strong decomposition (G, Q) we have

(12) > H(v) 2 alw-1)+1.
vEQ

The right hand side of (12) may be even larger when there are cliques of M(Q) which
are straddled by more than one node. We now show that such cliques must exist.

The straddle intersection graph of (G, Q), denoted G9, is a bipartite graph with bipar-
tition (Q, M(Q)); there is an edge between a node v and clique K if K € H(v). Using this
terminology, Lemma 4.20 states that each node in M(Q) has degree at least one, or:

(13) Yo M@= Y, dge(K).

veQ KeM(Q)

The next lemma proves that the right hand side of (13) is larger than |M(Q)| by at
least one half the number of w-nodes in Q.

Lemma 4.22 If (G, Q) is a strong decomposition and v is an w-node, then there is some
other node u, such that H(v) N H(u) # ¢.
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Proof: Let v be an w-node. Since G has property P, there is some stable a- -set, S, such
that SN Q = {v}. Let K € M(v). Then without loss of generality, for each z € K, §
intersects K3,... Kg. Thus H(v) = {K} U (Usex{KT}). Hence S intersects each clique in
M(Q) except those in H(v). Since S is not universal, some other node must straddle one
of the cliques in M(Q). o

We use this lemma to enlarge the class of graphs for which we know Conjecture 4.8
holds. This new class is considerably more complex than the graphs with stability number
two.

Theorem 4.23 If G has properties Py, P, and a < 6, then G has property Ps.

Proof: Suppose (G, Q) is a strong decomposition. Let m be the number of w-nodes in Q.
Then by Lemma 4.22 and (13)

> H(v)| > a(w—1) + 1+ m/2.
v€Q

But also

Y HE)I<IQIw-1)+m< (a~1)(w-1)+m.
vEQ

Combining these two inequalities yields m > 2w. Now m < a—1 and clearly wgy > 2, hence
a>T. ]
This also implies the Near-Perfect Conjecture for the same class of graphs.

Corollary 4.24 For a graph G with a < 6, the following are equivalent:
(1) G is near-perfect,
(2) G has properties P, and P;.

We show in the next section that we may improve the bound of 6 in Theorem 4.23.

We now give the main result of this section which is a finite characterization of near-
perfect graphs; that is, we do not require a property to hold for every replication. The
theorem “almost” coincides with the Weak Near-Perfect Conjecture. A graph G has prop-
erty PZif for any stable set S, the graph obtained by replicating once, each node in §, has
property P; (or equivalently is not a strong decomposition).

Theorem 4.25 A graph G is near-perfect if and only if it has properties P,, P, and P2

Proof: Theorem 4.6 implies that we need only show that if G has properties P, P, and
P3, then it has property P;. If this is not the case, then some replication G[w] of G gives
rise to a strong decomposition (G[w], Q). By Corollary 3.5 Glw]g contains no replicated
nodes. Hence any new nodes may be presumed to be in Q, but this contradicts G having
property PZ. O
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4.4 Assuming the Strong Perfect Graph Conjecture

We now show that the Near-Perfect Conjecture follows if the Strong Perfect Graph Con-
jecture holds. OQur approach is to examine how the w-nodes in a decomposition interact,
i.e., how they jointly straddle cliques. In this section, all graphs are assumed to have both
properties P; and P,.

Lemma 4.26 If (G, {v}) is a decomposition of G such that v is an w-node, then:
1. there is a unique stable a-set of G which contains v,

2. for K € M(G — v) — H(v), v is not contained in a stable a-set of G — K.

Proof: We first show 1. Suppose that S is a stable a-set containing v andz € S —visa
node which is not contained in every such stable set. Now let K be an (w — 1)-clique in
G — v which contains z. Clearly, K ¢ H(v). Thus for some node z € K, two of the cliques
in the minimum clique cover of G — z must be straddled by v (otherwise |H(v)| < |K|).
This implies that z is in every stable a-set containing v, but zz € E, a contradiction.

Now suppose that K € M(G —v)—H(v) and K’ € H(v). We have seen that v straddles
exactly one of the cliques in the clique cover of G — z for each z € K'. Furthermore, one of
these clique covers, for z € K’ say, contains the clique K as well. Since zv € E, it follows
that each stable a-set containing v must intersect K. O

A graph G is called sparse if it is triangle-free and has a subgraph which is an odd cycle
of length |V|. We show that sparse graphs are imperfect.

Lemma 4.27 If G is sparse, then it is imperfect.

Proof: Since G contains a spanning odd cycle, we have that a < |V|/2. Hence, since |V|
is odd we have that |V| > 2a = wa. ' ]

We call a decomposition (G, Q) for which G is an odd hole, a hole-decomposition. For
the next few paragraphs we let (G, {v}) be a hole-decomposition and v be an w-node. Note
that v is of one of three types. By our assumption, G — v is simply an odd cycle on 2a +1
nodes. Hence each clique straddled by v is an edge. We say that v is a type ¢ node if the
length of a longest path in G y(,) is ¢. Figure 5 shows a type one node and a type two node.
Let T be the neighbours of v which are contained in a triangle of G. It follows that if v
is of type i, then G — (v U T) has exactly 4 — i components (each of which is a path). A
segment of v, is a subset of the nodes of the form U U {u, v}, where Gy is a component of
G — (vUT) and {z,y} are the two nodes of T which are adjacent to U (i.e., to some node
of U7). Note that for any segment X, G x (.} is triangle-free and so Lemma 4.27 implies the
following.

Lemma 4.28 If X is a segment of v, then |X| is odd.
We are now ready to prove our main lemma.

Lemma 4.29 If (G,{u,v}) is a hole-decomposition and u,v are w-nodes, then H(u) N

H(v) # ¢.
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Figure 5: Example of a type one node (v) and type two node (w).

Proof: Suppose that the statement is false and let u, v satisfy the hypotheses but H(u) N

H(v) = ¢. We consider three cases.

Case 1. At least one of the nodes, say u, is of type three.

Let the edges straddled by u be ToZ1, 2122, L223. It follows that these edges lie in the

graph induced by some segment, X say, of v. Hence G’ = G{u,v}U(X—{:cl.:rz}) is triangle-free.

Furthermore, by Lemma 4.28, G’ has an odd number of nodes. Hence by Lemma 4.27, G’

is imperfect, contradicting the fact that' G has property Pj.

Case 2. At least one of the nodes, say u, is of type two.

Let u’ be the node of N(u) which is contained in two of the triangles containing wu.

Case 2a. A segment, X, of u is contained in some segment Y, of v.

Since | X|,|Y| are odd it follows that G{u,v}u(Y=(xuw)) has an odd number of nodes, and is

hence sparse. Thus by Lemma 4.27 this contradicts the fact that G has property P;.

Case 2b. There are distinct segments Y;,Ys of v, which contain edges straddled by u.

Let Y) be the segment of v which contains u'. Let P be a (u,v)-path whose internal nodes

are contained in Y — N(Y2). Now since |Y3| is odd, there is another (u,v)-path in Gy, u{uw)

whose length is of different parity from P. The union of the nodes of the two paths induces

a sparse graph, a contradiction.

Case 3. Both u and v are type one.

Case 3b. Two segments X, X, of one of the nodes, u say, is contained in a single segment,

X, of v.

In this case (X U {u,v}) — (X; U X;) induces a sparse graph, a contradiction.

Case 3b. There is some segment X, of u say, which contains ezactly one edge straddled

by v.

As in Case 2b, there are (u,v)-paths in G xu{u,v) Whose lengths are of different parity.

We obtain an induced sparse subgraph by taking the union of one of these paths with an

appropriate (u, v)-path which passes through one of the other segments of u. a
We now prove the main result of this section.
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Theorem 4.30 No hole-decomposition is a strong decomposition.
Proof: Suppose that (G, Q) is a hole-decomposition. By Lemmas 4.19 and 4.29 we have

> M) < 1Q)(w - 1) + 1.
vEQR

If (G, Q) is also a strong decomposition, then by Corollary 4.21 we have
> H(v) > a(w - 1) + 1.
vEQ

Thus |@Q| > a, contradicting the definition of a decomposition. o
The following is now immediate.

Theorem 4.31 If the Strong Perfect Graph Conjecture is true, then so too is the Near-
Perfect Conjecture.

This result also implies that we may improve the bound in Theorem 4.23.
Theorem 4.32 If G has properties Py, P, and a < 10, then G has property Ps.

Proof: The proof is similar to Theorem 4.23 except that we may assume that the minimally

imperfect graph G is not an odd hole or antihole. Tucker [22] has shown that any such

graph must have a clique of size 4. Hence the lower bound in the proof of Theorem 4.23

becomes a > 2w+1>2-5+1. 0
We immediately have the following.

Theorem 4.33 For a graph G with a < 10, the following are equivalent:
(1) G is near-perfect,

(2) G has properties Py and P,.

4.5 A Polyhedral Characterization of Minimally Imperfect Graphs

We have seen that the complement of a near-perfect graph need not be near-perfect. We
show that the only imperfect near-perfect graphs for which the complement is near-perfect
are the minimally imperfect graphs. In fact, we only require that both the graph and its
complement have property P; (or P;).

Lemma 4.34 The following are equivalent for an imperfect graph G:

(1) G is minimally imperfect,

(2) both G and G have property Py,

(3) both G and G have property P,.

Proof: Clearly (1) implies (2). Since each node of a minimally imperfect graph is in a
maximum stable set and a maximum clique (1) also implies (3).

It is straightforward to check that (2) and (3) both imply that if S induces a minimally
imperfect graph in G and v € V — §, then wsy{,) = ws and asy(,) = as. We use this
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fact to show that both (2) and (3) imply (1). For let S be a subset of V such that G is
minimally imperfect and subject to this ws + ag is minimized. If § # V', then consider
veEV -5 Set N=N(v)NS, N =5 — N. Now consider w € S and set G¥ = Gsu{vy — w.
Note that G* has the same number of nodes as S, that is, agwg + 1. Furthermore since G s
is minimally imperfect it is easy to show that age = ag and wgw = wg (i-e., deleting w does
not destroy all of the maximum cliques or stable sets). Hence G* has agwwgw + 1 nodes
and so contains a minimally imperfect subgraph. But by our choice of S, G* must itself be
minimally imperfect. In particular, v must be in exactly wg cliques of size wg. Thus N —w
contains exactly ws cliques of size wg — 1. Thus choosing w € N implies that N contains
exactly ws cliques of size (ws — 1) and choosing w to be some node in a maximum clique
of G¥ which contains v, implies that N contains at least (ws + 1) cliques of size (ws — 1),
a contradiction. Thus S must be the whole node set V. O

We now give the promised polyhedral characterization and a new proof of Theorem 1.5.

Theorem 4.35 An imperfect graph G is minimally imperfect if and only if both G and G
are near-perfect.

Proof: First suppose that G is minimaly imperfect. Clearly G has properties P, P, and
P;. Furthermore, replicating each node of a stable set S of G cannot result in a strong
decomposition. Otherwise by Lemma 4.20 S would be a universal stable set of G. Hence
by Theorem 4.25 G is near-perfect.

Conversely, if G and G are near-perfect, then they both have property P, by Proposi-
tion 4.3 and so by Lemma 4.34, G is minimally imperfect. O

4.6 Complements of Near-Perfect Graphs

A graph G is called w-separable if there is a nonempty, proper subset S of V such that
w = ws + wz. A graph which is not w-separable is called w-nonseparable. We have seen
that if G is near-perfect, then

¢ if V| < aw, then G is w-colourable, and hence w-separable,
¢ if V| = aw + 1, then G is minimally imperfect, and hence w-nonseparable.

We do not know what happens when |V| > wa + 1; could it be that all such near-perfect
graphs are w-separable?

Question 4.36 Are the minimally imperfect graphs the only w-nonseparable near-perfect
graphs?

We consider a consequence of this question, but first we state a well known lemma.

Lemma 4.37 If G is a graph such that (V) < w is facet-inducing for P(G), then G is
w-nonseparable.

We now show that an affirmative answer to Question 4.36 would yield a nice description
for the stable set polytope of the complement of a near-perfect graph.

Proposition 4.38 If the answer to Question 4.36 is yes, then for any near-perfect graph
G:

o
[



>0
P(G)={zeRY: 2(S) <1 for each stable set §
z(I) < wr for each minimally imperfect induced subgraph I

Proof: Suppose that the answer to Question 4.36 is yes. Let G be near-perfect and a-z < Y
be a nontrivial facet-inducing inequality for P(G). Without loss of generality a and v are
integral and ged({7} U {a,}scv) = 1. Let G’ be the graph obtained by making a, copies
of each node v. Note that G’ is also near-perfect. If a is 0-1 valued, then G(yia,=1} = G’
and so by Lemma 4.37 is w-nonseparable and hence minimally imperfect. Otherwise, G’
contains a pair of replicated nodes and so by Corollary 3.5 is not minimally imperfect. By
assumption, there is a nonempty, proper subset Z, of Vg, such that v = we = wz + wyz.
For each node v € V let @ be the number of copies of v in G’ that are contained in Z.
Evidently o’ - ¢ < wgz is a valid inequality for P(G). Furthermore, if Q is a clique with
a-x? =7, then Q also satisfies a' - x? = wz. Thus the two inequalities define the same
facet. This implies that a = %a’ . Hence by our choice of a, ¥ = wz. Thus Z = ¢, a
contradiction. O Note that the statement about the linear description in Proposition 4.38
is equivalent to stating that each fractional vertex of the fractional stable set polytope is
of the form wL’xI for some minimally imperfect G;. It can be shown that the Near-Perfect
Conjecture is implied by this property. (B. Reed has independently shown this.)
Proposition 4.38 and Theorem 4.11 together imply the following.

Corollary 4.39 Suppose the answer to Question §.36 is yes. Then any triangle-free graph
G, such that G — N(v) is bipartite for each node v, is t-perfect.
4.7 The Recognition Problem

The recognition problem associated with a class P of graphs is a decision problem which
takes a graph G as input and outputs YES if G € P and NO otherwise. We denote by
PERFECT, MINIMPR and NEARPERF the recognition problems associated with classes
of perfect, minimally imperfect and near-perfect graphs respectively. At present, none of

these problems is known to be polynomially solvable. Grotschel et al. [12] and Cameron [5]
have shown that PERFECT is in coNP.

Theorem 4.40 The problem PERFECT s in coNP.
Furthermore it is easy to show:
Theorem 4.41 MINIMPR is in coNP.

On the other hand the following problems are still open.
Conjecture 4.42 PERFECT s in NP.

Conjecture 4.43 MINIMPR is in NP.

Note that the first conjecture implies the second. Conjecture 4.42 is stronger also in the sense
that an affirmative answer to the Strong Perfect Graph Conjecture bears would immediately
imply a polynomial time algorithm for MINIMPR whereas it is not clear how this would
bear on Conjecture 4.42.
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We now outline a proof to show that NEARPERF is in coNP but first we need one
fact. Suppose G is near-perfect and v € V. Since G has property P;, aGg_N[p] < @ and
since G has property P; we deduce:

Remark 4.43.1 If G is near-perfect, then for each node v € V, G — N{[v] is perfect.

Now suppose G is a graph which is not near-perfect. If there is some node v such
that G — N[v] is imperfect, then we need only display an induced partitionable graph in
G — N[v]. So assume that no such node exists. To show that G is not near-perfect it is
enough to show that there is some nontrivial facet-inducing inequality of P(G) which is
not a constant multiple of any of the inequalities in (3). Note that it is easy to check that
a is not a constant multiple of 1 or xX for some clique K. Suppose a-z < 7 is such an
inequality. We can verify that this is valid for P(G) simply by showing for each node v that
max{a-x° : § € §(G - N[v])} < 7 - a,. Since G — N[v] is perfect, this can be done by
displaying an appropriate clique cover of G — N[v]. Finally, to see that our chosen inequality
is facet-inducing we must exhibit |V| linearly independent incidence vectors of stable sets
which satisfy the inequality with equality. Thus we have:

Theorem 4.44 The problem NEARPERF is in coNP.

We close this section with a remark on how near-perfect graph recognition relates to
perfect graph recognition.

Remark 4.44.1 If NEARPERF is in NP, then PERFECT is in NP.

4 | N

partitionable

/

minimally

perfect imperfect

near-perfect

N )

Figure 6:

This is easy to see, for suppose G is a perfect graph. If NEARPERF is in NP, then
we can give a certificate to show that G is near-perfect. In order to show that G is perfect
we need only show that z(V') < a is not facet-inducing for P(G) (since this implies that
P(G) is given by the clique inequalities). This can be done by exhibiting a stable set and a
clique cover of G with the same size (i.e., of size ). (Note that a near-perfect graph with
fc = ag is perfect.)
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