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Moving-grid methods in one space dimension have become popular for solving several kinds of parabolic
and hyperbolic partial differential equations involving fine scale structures such as steep moving fronts and
emerging steep layers, pulses, shocks, etc.. - In two space dimensions, however, application of moving-grid
methods is less trivial than in 1D. For some methods, e.g., those based on equidistributing principles, it is
not even clear how to extend the underlying grid selection procedure to 2D. The moving-finite-element
(MFE) method does not suffer from this drawback; its mathematical extension to 2D is trivial. However,
because of the intrinsic coupling between the discretization of the PDE and the grid selection, the applica-
tion of MFE, as for any other method, is not without difficulties. In this paper we describe the node move-
ment induced by MFE for various PDEs and we indicate some problems concerning the grid structure that
can result from this movement.
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1. INTRODUCTION

During the last decade, moving-grid methods in one space dimension have become popular for
solving several kinds of parabolic and hyperbolic Partial Differential Equations (PDEs) involving fine
scale structures such as steep moving fronts, emerging steep layers, pulses, shocks, etc.. Moving-grid
methods use nonuniform space grids, and move the grid continuously in the space-time domain while
the discretization of the PDE and the grid selection procedure are intrinsically coupled. Examples are
provided by the Moving-Finite-Element (MFE) method of Miller{10, 12], and by the Moving-Finite-
Difference (MFD) method discussed in Verwer et al.[17] (see also references therein). The latter is, in
contrast with MFE, restricted to problems in one space dimension.

In two space dimensions, however, application of moving-grid methods is less trivial than in 1D.
For instance, there are many possibilities to treat the one-dimensional boundary and to discretize the
spatial domain each having their own difficulties for specific PDEs. Therefore, 2D moving-grid
methods have mostly been applied only to special types of PDEs. The MFE method ([6, 8, 11]), con-
sidering its general approach, allows in principle a large class of problems to be dealt with. However,
because of the intrinsic coupling between the discretization of the PDE and the grid selection, the
application of MFE, as for any other method, is not without difficulties. The main difficulty we are
referring to is the threat of grid distortion. Grid distortion can occur in many different ways due to
the quite complex solution behaviour of 2D-evolution problems. For example, sharp layer regions
could develop propagating through the domain, or rotating pulses could emerge and die out again.
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The purpose of this note is to describe the node movement induced by MFE for various PDEs and to
indicate some problems concerning the grid structure that can result from this movement.

A standard way of describing moving-grid methods, is the introduction of a transformation of the
three dependent variables x, y (space), and ¢ (time) into new variables § 7, and 7 (usually one
chooses 1 =7). The effect of the transformation may be to stretch the coordinates in a steep region, so
that the transformed derivatives are small compared with the old ones. Of course, many of the
difficulties that the spatial discretization yields are now shifted to the problem of how to define the
mapping. After having applied the transformation, we obtain the so-called Lagrangian form of the
PDE. Within this new formulation the time-derivatives of the spatial variables x and y appear. It is
clear, that before using a numerical scheme to discretize the model, one has to define extra equations
for these quantities. There are various approaches to take care of this. First, one can use a 2D exten-
sion of the equidistribution principle, see, e.g., Brackbill & Saltzman[5], or Dwyer[9]. This idea is
either very difficult to work out and to implement, due to the complicated structure of the formulas,
or, in a simpler form, it can only be applied to a small class of models. Second, one can use the
method of characteristics. This method can, however, only be applied to certain scalar hyperbolic
equations. For systems in 2D the use of this method is problematical if possible at all. We would like
to focus our attention on the MFE method, which defines the transformation in terms of a residual
minimization. For scalar hyperbolic equations MFE is related to the method of characteristics (see,
e.g., Baines[2,3]). This link with the characteristics of the PDE is very useful in one dimension. For
in that case all ‘disturbances’, i.e., shocks, pulses, etc., can merely follow the characteristics. So, once
the user has located the grid points at the right positions, the characteristics do the rest. This has the
advantage that MFE needs very few points to follow such solutions. In two dimensions it may work
properly as well, for the same reasons (see, e.g., Miller[11], or Carlson & Miller[6]). However, in some
situations one has to be very careful in applying this method. We will illustrate this with some exam-
ples. For parabolic equations the node movement induced by MFE is less understood. For 1D scalar
equations one can derive asymptotic relations for the node movement and for the node distribution,
indicating that for parabolic equations MFE strives after an equidistribution of second and first order
derivatives. An example gives some indication that these results possibly also hold in 2D.

The paper is divided into four sections. In Section 2 we briefly describe MFE in two space dimen-
sions, its relation to the method of characteristics for hyperbolic equations and results on the grid
movement that can be derived for the parabolic case. Section 3 contains two examples of hyperbolic
PDEs with a typical solution behaviour. For these two examples it is shown that MFE yields a
severely distorted grid, although the computed solution remains accurate. However, this distortion can
lead to a breakdown of the numerical time-stepping procedure. Section 3 also contains an example of
a parabolic equation for which MFE strives after a transformation equidistributing second order
derivatives. Finally, Section 4 is devoted to some conclusions.

2. THE MOVEMENT OF THE NODES IN MFE
Let us consider the scalar PDE

W= L@, ()L 130, 2.1

with initial and boundary conditions

ul,=o = u(x,p), (x,y)EQ,
Bu,Vu)|s = g(t), t=>0,

where u° and g are given functions, and L represents a differential operator involving only spatial
derivatives up to second order. In general, the solution u(x,y,7) of (2.1) may have a very complex
behaviour. Even for a restricted situation (a scalar linear PDE with simple boundary conditions), one
can have severely varying u-values in space (x,y) and time ¢. Some examples in this context are steep
moving fronts and emerging and rotating pulses.



3

A common approach to handle these phenomena is to introduce a transformation which maps the
variables x, y, and 7 into new variables £, 7, and 7. Such a transformation can be defined as, e.g,,

x =x¢&mn7
y =yEmnm 2.2)
r =T
u(xy,r) = v, 7).
Applied to the left-hand side of equation (2.1) this gives
fu _ v ox By 23

a  or o W

and additionally equations for x and y must be defined. The effect of the transformation may be to
stretch the coordinates in a steep region in space so that, for example, u; and u, are small in contrast
with u, and u,. This type of transformation is strived after by methods which equidistribute first or
higher order derivatives of the solution. Another effect of the transformation may be to decrease the
dv /97 as is done by the method of characteristics and by the finite difference method of Petzold ([14],
in 1D). Of course, when using a transformation, most difficulties are shifted to the problem of how to
define and carry out the mapping. The Moving-Finite-Element (MFE) method can, in some cases,
also be shown to underly a transformation of variables (Baines[3]). Below we will discuss this method
and in particular the node movement induced.

2.1. Description of MFE
MFE restricts v, x, and y to U, X, and Y from a finite-dimensional subspace. The MFE-
approximations are piecewise linear on a hexagonally connected triangularization of &

v R U= U o ),

jeJ
x & X = 3 X a ), (24)
jeJs
yRY = Y0 e,
JjEJ

where J is the set of indices of the grid points and «; are the standard piecewise linear hat functions.
Substituted in the PDE (2.1), (2.3), this approximation gives in general a non-zero residual R, defined
by
oU 09X dY U 0X Y
R— — —) = — - U-~—-U,——-LU). 2.

(a'r’a'r’a'r or * 0T Y ot @) (2:3)
A least-squares minimization is performed on R with respect to the unknowns 9U;/9dr, 9X;/9d7, and
dY; /9, yielding a system of implicit ODEs

< R, o; > =0
<R —Ua > =0 2.6)
<R —Ug > =0, Vi€l

where <<,> is the usual Lz-innerproduct on § (for an elaboration of (2.6), see [3]). This ODE-system
must be integrated numerically to obtain the required fully discretized solution. It is known, that this
system may become very stiff. For integration in time, therefore, a suitable stiff ODE-solver must be
used.

In practical applications, regularization terms (penalty functions) will be added before the minimi-
zation procedure is carried out. These penalties prevent that the parametrization of U, X, and Y
becomes degenerate (see [8]). Further, they produce forces on the grid movement to prevent the trian-
gles from getting too thin or from loosing their orientation. In our experiments we use the penalty
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functions, but in this section we will not discuss their influence on the grid movement, since the
penalties are not the ‘driving forces’ behind the movement.

Although the Gradient Weighted version of MFE (see, e.g., [6,19]) is more robust than MFE for
steep solutions, the phenomena observed below will be essentially the same for GWMFE.

2.2. Relation of MFE with the method of characteristics

Only a few theoretical properties of the resulting ODE system (2.6) are known. One important pro-
perty is the relation of MFE, in both 1D and 2D, with the method of characteristics for the scalar
hyperbolic PDE with

Lu) = — ,Bl(u,x,y,t)% — Bz(u,x,y,t)g—;. 2.7

It is easy to derive that for linear §; and B,, while setting aside boundary effects, the ODE system
(2.6) is equivalent to

Xi = Bl(Uh Xi’ Yi9 t)’
Yi = BZ(UI’ Xia Yi? t)? (28)
Uj - O, ied.

This simple formulation holds for nonlinear 8, and B, in 1D as well (see, e.g., Baines[2,3]). So, the
ODE system is identical to the discretized system of characteristic ODEs for the PDE (2.1). In the
case that

u + eAu, (2.9
ay

one can expect, that for small ¢, MFE results in a grid movement more or less the same as (2.8). (In
one dimension one can even quantify the perturbation of the characteristics produced by the diffusion
term (see below).)

In 1D this relation with the characteristics is very useful. For, in that case, shocks and pulses have
only one degree of freedom to move: they propagate along the characteristic curves of the PDE. In
many cases in two space dimensions, this characteristic behaviour is also very beneficial (cf. [7, 11]).
However, there are some situations in 2D for which this behaviour will give problems. The main pur-
pose of this note is to illustrate this. We will discuss some of these problems in Section 3.

L(u)= — B]g_z - B

2.3. Node movement for parabolic equations

Theoretically, little or none is known about the grid movement in 2D induced by MFE when
applied to parabolic PDEs. In one space dimension, however, it is possible to get some insight by
examining the asymptotic node movement and the asymptotic node distribution for the scalar PDE

ou 9*u

— = yp— + F Ju,t), 2.10

il v LR (2.10)
where F can also contain spatial derivatives of u. Defining ¥ by

ds

— = 2.11

I 2.11)

and making some assumptions with respect to the smoothness of u, F and x and the rate of conver-
gence of U, one can derive, in an analogous way as is done by Thrasher and Sepehrnoori[15], that the
asymptotic node movement satisfies the relation

ag u.XX.X ‘Sxx

(= -2 o3
X o PO T

where £ is defined by a transformation analogous to (2.2), but now restricted to one space dimension.

), (2.12)
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This relation is valid only in intervals without points with a zero asymptotic node density or with zero
curvature. Grid points cannot pass a point with zero curvature (cf. Baines[3]), with the consequence
that grid points are confined to regions between two zero-curvature points (the so-called anti-cluster
property of singular points).

If p # 0, then equation (2.12) can be integrated to obtain the asymptotic node distribution

= KO | exp(5 - [(—5, = £)dv) 213)

For p = 0 and F = F(u,t) equation (2.12) means that a grid point will propagate along the charac-
teristic x = —9%, and is not dependent on the grid distribution. This is the situation as described in
Section 2.2. For . # 0 one can easily derive asymptotic node distributions for restricted choices of F.
For instance, the node distribution of the so-called shifting pulse, which we used as an example in
[19], once every point travels with the velocity of the pulse, is given by

& = K@) |uy |*? (2.14)

which can be derived from (2.13) provided that x = x(r) and F = F(x,r). So once every point trav-
els with the velocity of the pulse, the nodes should be distributed by MFE according to (2.14) and the
plots in [19] show indeed that MFE approximately equidistributes some power of the second deriva-
tive of the solution.

For convection-diffusion equations like (2.9), one can derive from (2.13), assuming that x = 0,
u, = 0 and F = F(u,t), a steady-state distribution

£ = KOt | |3, 2.15)

indicating that in this case a combination of first and second order derivatives is equidistributed.
3. NUMERICAL EXAMPLES

3.1. Example I (‘Anisotropy’)

Our first example is an anisotropic wave front (see Whitham[18, p.254]). In short, anisotropy
means that a difference exists between the directions of the characteristic curves of the PDE (the
movement of the ‘fluid’-particles) and the movement of the wavefront. This phenomenon can not
occur in one space dimension. In 2D, anisotropy may give rise to a distorted MFE grid eventually
leading to a breakdown of the numerical time-stepping procedure.

Probably the best way to illustrate this effect is by giving a PDE-example. Consider, for this pur-
pose,

du du du

Py Bi ax B, dy €Au, (3.1
on the domain £ = (0,1)X(0,1), with

B =u,

B= (- w,

u lt=0 = Uexact ItZOa
u | 90 = Uexact |39’
and

1

—4x +4y —t ‘
P 32

u exact

-3 _1
4 4
1+ex




The exact solution of this model problem (a scalar version of the system in [4, p.89]) describes a
wavefront with a steep transition area of thickness O(e), that moves, under an angle of 135° with the
positive x-axis, from the middle of @ to the upper left corner. For €|0 the transition area becomes
steeper, and for e=0 a pure hyperbolic situation is created with a discontinuous moving shock.

(2/3,1)
((BY) } (1,1
///
(0,1/3) //
0.0) / (1,0)

f
(1/6,0)

FIGURE 3.1. Node movement by characteristics from 7 = 0 toz = 1.

Formulation (2.8) reveals that the method of characteristics, and, to a great extent MFE as well, at
first will send the grid points to the upper right corner of the domain. This can be seen very easily by
writing out the equations (2.8) for this case (¢ = 0):

fory >x + 1t (3.2.2)
X = U~ 7,
v, =5 - U~

and

for y <x +1¢ (3.2.b)
: 1
X, = U@ = 7,
- 3
v, =3 - U@m~1

The characteristic movement from ¢ = 0 until # = 1 is pictured in Figure 3.1. This grid movement
will lead to a coarse grid in the lower left corner of Q, since all grid points are moved to the upper
right corner. Further, at later points in time, a congestion of grid points near the upper side of the
domain © will arise, due to the boundary effects. Since, in that area, the relative distance between the
nodes will become very small, the penalty functions should keep the points from moving into each
other and thus the ease with which the ODE system (2.6) can be solved (if at all), will become very
dependent upon the correct choice of the penalty functions. It could easily result in a drastic drop of
performance only caused by inadmissible triangle orientations during the Newton process. It must be
noted, however, that for ¢|/0 MFE will resemble the method of characteristics more and more, result-
ing in an almost exact solution in each grid point. In Figure 3.2 a boundary layer of points is shown,



( 1.00, 1.00) ( 1.00, 1.00)

( 0.00, 0.00) ( 0.00, 0.00)

FIGURE 3.2. MFE grid for Example I at z# = 0.5 and 1.0.
Dividing each quadrilateral by the diagonal from upper left to lower right gives the MFE triangles.

obtained by applying MFE to problem (3.1) with e = 5.107° and a uniform starting grid of 11X11
moving grid points. At ¢ = 1.02 the computational process breaks down because of the unacceptable
triangle orientations. This could be prevented by taking larger penalty values resulting in a less accu-
rate solution.

It is obvious that for these situations a procedure to delete and create nodes could be added to
MFE to prevent a congestion of grid points and to keep the finite element approximation of the solu-
tion accurate enough. Also for this special case, a solution to eliminate the anisotropy in the PDE
could be found. One could think of applying a transformation to the PDE that describes a rotation of
the variables over an angle ¢ = 135°. In the new variables the characteristic curves and the direction
of the normal to the wave front would coincide (the anisotropy would then cease to exist). In general
situations, however, it is, a priori, unclear how to choose ¢, especially ¢ could even be time-
dependent. So far, it has not been possible to reformulate MFE in a proper way to generate such a
transformation automatically.

3.2. Example II (‘Grid rotation’)
Our second example, copied from [13], is concerned with the fact that in 2D an unwanted rotation
of the grid can occur. To illustrate this, consider

ou
ot

on the domain & = (—0.5,1.5)X(—0.5,1.5), with
1
:81 = + '77()" - E)’
1
BZ = - 7T(X - 7)’

u)i—o = exp(—80[(x —3) + (y — )],

_ _pOu o, 0u
= =By T By (33)

and
ulsg = 0.

Although the boundary condition is mathematically not consistent with the initial condition, it is
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expected that this will give no problems in numerical computations, since the difference is less than
the machine precision.

The exact solution describes a pulse that moves around in circles with a constant speed. During
this movement the shape of the pulse does not change. The characteristic curves are circles with centre

(%, %), which can be derived immediately from (2.8) and (3.3):
U, =0 and
(Xi—%)2+(Yi—%)2:r%, 0<r,<l,
with ; = 0, Vi

( 1.50, 1.50) ( 1.50, 1.50)

(-0.50,-0.50) (-0.50,-0.50)

( 1.50, 1.50) ( 1.50, 1.50)

|

(-0.50,-0.50) (-0.50,-0.50)

F1GURE 3.3. MFE grid for Example II at ¢ = 0.25, 0.5, 1.0 and 1.5.
Dividing each quadrilateral by the diagonal from upper left to lower right gives the MFE triangles.
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In contrast with the previous example, the movement of the grid points might be called ideal. They
follow the steep parts of the solution in an optimal way and MFE benefits by this property, resulting
in a good approximation. However, since we fixed the corner points of the square, the grid will exhi-
bit an unwanted spiral structure. This occurs when the pulse has moved down to the lower region of
{l. A consequence of this effect is the so-called line tangling, a 2D version of node crossing in 1D.
The numerical procedure will breakdown whenever this occurs, again because of inadmissible triangle
orientations during the Newton process. In this case, however, larger penalty values can only delay
but not prevent the breakdown. We show this spiral effect in Figure 3.3, where we pictured the grids,
produced by MFE, at various time values. The starting grid consists again of 11X 11 points of which
5X5 are distributed uniformly around the cone in (0.25,0.75)X(0.5,1.0). At 1 =~ 1.52 the computation
breaks down. Again the MFE approximation in each grid point is rather accurate and the perfor-
mance of MFE in the time stepping process is satisfying until the spiral structure leads to line tan-
gling.

Note that in this case annihilation and creation of points, based on the accuracy of the MFE
approximation, would be no cure for the grid distribution problem. Of course, there are some other
means to check this effect, again for this special case. First, one could allow the grid points on the
boundary to move with the internal points (i.e., ‘move around the corner’). For instance, one could
replace by a circular domain. The grid then would produce no longer spirals, but circles, and the
problem would be solved without any trouble. Another trick to avoid that the numerical procedure
breaks down, is described by Mueller & Carey[13]. They add an extra penalty term to the method,
which brings on an anti-rotation to the grid movement. This regularization term, however, has only a
limited working: with any choice of the constant, appearing in the penalty, there remains some point
of time for which the line tangling takes place. Only, with larger penalty values the method would col-
lapse at a later moment in the time-integration. But, larger penalty values also result in a worse reso-
lution of the pulse, yielding larger errors during the computation.

3.3. Example III (‘Parabolic pulse’)

In the two previous examples we encountered difficulties in applying MFE due to its strong relation
with the method of characteristics for hyperbolic equations. Next, we give an example of a PDE with
an exact solution very similar to that of model (3.3), but now the PDE has a parabolic character. It
has already been treated by several authors ([1, 16]), and is defined by

% = Au + f(xp,0), 3.4)

on the domain & = (—0.5,1.5)X(—0.5,1.5), with
u It:() = Uexact |t=0,
u , 90 = Uexact |852,
The source f(x,y,?) is chosen so that the exact solution is
Uexact — eXP(“SO[(X _r(t))z +(y—s (t))z]),
where
r(t) = Q+sin(me))/4, s(t) = 2+cos(mt))/4.

This solution is a rotating pulse and thus very similar to the solution of Example II. However, in con-
trast with the hyperbolic Example II, the grid points do not move according to a principle like (2.8).
In particular, MFE, applied to (3.4), shows no spiral effect. The points are not stuck to their position
on the pulse and the grid structure remains more or less the same during the time-stepping. This is
illustrated in Figure 3.4, where we pictured the grid at several points in time. Although the error of
the approximation is higher than in Example II (this can be repaired by increasing the number of
points), the procedure does not break down because of grid tangling. On the contrary, once the grid
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(_1.50, 1.50) ( 1.50, 1.50)

—
NN

I
AN

]

/7
/

(-0.50,-0.50) (-0.50,-0.50)
( 1.50, 1.50) ( 1.50, 1.50)
i !
Bl
R

N\

LR ]

(-0.50,-0.50) (-0.50,-0.50)

FIGURE 3.4. MFE grid for Example IIT at 7 = 0.25, 0.5, 1.0 and 2.0.
Dividing each quadrilateral by the diagonal from upper left to lower right gives the MFE triangles.

has been forced around the cone, the time stepping process is satisfying, although the penalty choice
is also in this case of influence.

Finally, noteworthy is that the concentration of triangles in regions with large second order deriva-
tives indicates a similar equidistribution behaviour as stated in Section 2.3 for one dimension.
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4. CONCLUSIONS

For hyperbolic or strongly convection dominated convection-diffusion equations, the grid points are
moved by MFE in a way similar to the method of characteristics. This results in a very good approxi-
mation of the solution but sometimes also in distorted grids, because the grid movement is indepen-
dent of the grid distribution. Such grids then eventually cause the numerical time-stepping to fail. A
procedure to delete and create points could in some cases be a remedy, but will on the other hand
complicate the method considerably.

For scalar parabolic equations one can show that in 1D the MFE movement of a grid point does
depend on the grid distribution. MFE approximates a transformation striving after equidistribution of
derivatives of the solution. An example showed that possibly this remains valid also in 2D.
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