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Two simple, multi-dimensional upwind discretizations for the steady Euler equations are derived, with the
emphasis lying on both a good accuracy and a good solvability. The multi-dimensional upwinding consists
of applying a one-dimensional Riemann solver with a locally rotated left and right state, the rotation angle
depending on the local flow solution. First, a scheme is derived for which smoothing analysis of point
Gauss-Seidel relaxation shows that despite its rather low numerical diffusion, it still enables a good
acceleration by multigrid. Next, a scheme is derived which has not any numerical diffusion in crosswind
direction, and of which convergence analysis shows that its corresponding discretized equations can be
solved efficiently by means of defect correction iteration with in the inner multigrid iteration the first scheme.
For the steady, two-dimensional Euler equations, numerical experiments are performed for some supersonic
test cases with an oblique contact discontinuity. The numerical results are in good agreement with the
theoretical predictions. Comparisons are made with results obtained by standard, grid-aligned upwind
schemes. The grid-decoupled results obtained are promising.
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1. INTRODUCTION

Many upwind schemes used in multi-dimensional (multi-D) flow computations are based on the appli-
cation of some one-dimensional (1-D) shock capturing scheme in a grid-aligned, direction-split
manner. Despite the rigorous mathematics involved in these 1-D upwind schemes, in most multi-D
flow computations, the underlying 1-D upwind results are just superposed without any (equally)
rigorous mathematical justification. Besides this inconsistency in methodology, the grid-alignment (i.e.
grid-dependency) is inconsistent with the upwind principle that discretizations should be dependent
on the solution only. Yet, for many practical purposes, very satisfactory results are obtained by
applying the direction-split 1-D upwind approach. However, sometimes the aforementioned flaws
become clearly visible. In particular, the resolution of layers which are not aligned with the grid may
be insufficient. Changing from one shock capturing scheme to another (for instance from some flux
splitting scheme to some flux difference splitting scheme) usually does not help in these cases. Simply
lowering the magnitude of false diffusion by raising the order of accuracy of the underlying 1-D
upwind scheme may help, but possibly at a very high increase in computational cost.

A proper balance needs to be found between both (multi-D) accuracy and solvability. To achieve
such a balance, one needs not just control false diffusion’s magnitude, but - separately - both its mag-
nitude and its direction. A way to do this is to no longer ignore the multi-D nature of a multi-D flow
in the upwind scheme itself. Several grid-decoupled, multi-D upwind discretizations have been pub-
lished already and many are still in development, a development which is at a rapid pace now. Two
main types of multi-D upwind schemes may be considered: (i) those which perform e.g. two flux com-
putations per cell face, the main flux computation upwind in some dominant convection direction and
the remaining one e.g. central in a direction normal to that (see e.g. [2,15]), and (ii) those schemes
which (try to) transform the Euler equations into a set of decoupled partial differential equations and
next apply some well-developed upwind scheme for scalar equations (see e.g. [10,17]).
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Though the emphasis in most multi-D upwind research clearly lies on a good accuracy, some work
has also been directed already towards a good efficiency, even some multigrid work. An example of
multigrid work in the context of explicit time stepping schemes is that of Catalano and Deconinck [1].
For a 2-D advection equation, Catalano and Deconinck optimize both the stability and the smoothing
of an explicit, multi-stage time stepping scheme. As far as we know, the only implicit multigrid work
for multi-D upwind discretizations is that performed by Sidilkover [18]. Sidilkover considers steady
equations, and solves those directly. A direct multigrid solution approach applied to steady, multi-D
upwind discretizations is more ambitious than the equivalent approaches which have been developed
for steady, direction-split upwind discretizations (see e.g. [4,9,11]). Multi-D upwinding inherently leads
to a greater sensitivity to noise and hence less robustness. Though Sidilkover does not show results of
numerical experiments performed for real flow equations (such as e.g. the Euler equations), but -
instead - still confines himself to rather simple model equations, from a viewpoint of both accuracy
and efficiency, the numerical results presented in [18] are promising. They show that it is worthwhile
to investigate direct multigrid methods for multi-D upwind discretizations of the steady Euler equa-
tions.

Our aim is to develop for the steady, 2-D Euler equations, in a cell-centered finite volume context:
a multi-D upwind method with some appropriate balance between crosswind diffusion and efficiency.
The steady equations will be solved directly. Herewith, for obtaining a good efficiency, we rely on
nonlinear multigrid (multigrid-Newton) iteration. As the smoothing technique for the multigrid itera-
tion, we prefer to apply point Gauss-Seidel relaxation, using the exact differential matrices (exact
Newton). The latter requires the cell face fluxes to be continuously differentiable. If multigrid does
not easily meet our standards, we will not try to repair it, but - instead - we will rely on defect correc-
tion iteration as an additional iteration. The multi-D upwind schemes to be considered here will be
very simple schemes only. They will use neither decoupling of the Euler equations (as in [10,17]), nor
rotated fluxes (as in [2,15]). The schemes will be based on rotated left and right states solely. Per cell
face, just as with the grid-aligned schemes, only a single numerical flux is computed: that normal to
the cell face. The numerical flux function to be applied should allow a good resolution of both
oblique shock waves and oblique contact discontinuities, fixing choices to flux difference splitting
schemes. Given the good experience with Osher’s scheme [16] in combination with multigrid - (exact)
Newton [9], here we will apply the latter flux difference splitting scheme.

The contents of the paper is as follows. First, in section 2, to set a frame of reference, on the basis
of a linear, scalar model equation, an accuracy analysis and a simple solvability analysis are per-
formed for the standard, grid-aligned first-order upwind scheme. Then, two multi-D upwind schemes
are derived. Next, in section 3, on the basis of the same model equation, solvability properties of the
two schemes derived in section 2 are investigated by Fourier analyses. Finally, in section 4, the
theoretical results found in the previous sections are verified for some steady, fully supersonic Euler
flows on the unit square.

2. DERIVATION OF GRID-DECOUPLED UPWIND SCHEMES

We will try to derive positive, grid-decoupled upwind schemes which have a low crosswind diffusion
(preferably zero), and which (hopefully) still have enough artificial diffusion in characteristic direction
to preserve good solvability. An important property required from these schemes is that their stencils
are as compact as possible. The motivation for compactness is to avoid: non-consistent boundary
condition treatments and - if possible - non-positivity. Compactness will result in a close relationship
with the grid-aligned first-order upwind scheme, which therefore will be used as the main reference for
comparison. Another property strived for is continuous differentiability, this because of the intended
application of exact Newton iteration. The schemes will be investigated on the basis of the linear,
scalar, 2-D model equation

Qu
dy
with ¢ the angle made by the characteristic direction and the x-axis (Fig. 2.1a). Discretization of (2.1)
on a square, cell-centered finite volume grid yields

cosqb%-!—sinqb =0, O<¢o=<n/2, 2.1

COSP(U; + 15, — Ui — 15, ;) +SINP(U; j 1y — 8y j— 1) =0, (22)

where the non-integer indices refer to the cell faces in between the (integer-indexed) cell centers (Fig.
2.1b).
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Fig. 2.1. Geometric situation.

In the grid-aligned first-order upwind scheme, given the being positive of cos¢ and sing, for the cell
face states we take

[u,»w,j] = [Z’f ] , 0<¢<m/2. (2.3)

Uij+1 i,

Similar choices are made for u;_, ; and u; ;. Substituting these cell face states into (2.2) and apply-
ing next truncated Taylor series expansions, the following modified equation may be derived:

2 2
cosqbg—z + sinqh%yu— - % {mng—‘; + sin¢%y—"2‘— —0(h?), O<¢<m/2. (2.4)
By transformation to characteristic coordinates (Fig. 2.1a), (2.4) becomes
dou h 3 5. 0%u . . 0%u
= - — - +
% 2 [(cos ¢+sin”¢) 552 2cos¢sing(cosd — sing) e
2
cos¢sing(coso+ sinqb)% =0(h?), 0<¢<n/2. 2.5)
n

From (2.5) now, it appears that for the grid-aligned first-order upwind scheme, zero-crosswind
diffusion (i.e. both cos¢sing(cosp—sing) =0 and cos¢sing(cos¢ + sing) =0) occurs only in case of ¢=0
or ¢=mx/2, i.e. in case of grid-alignment of the characteristic direction. For the sake of comparisons
to be made hereafter, in Fig. 2.2a we give the distributions of the diffusion coefficients from (2.5), over
the complete range of ¢ considered. In here and also in the following, p, py, and p,, denote the
coefficients of 8%u/ds?, 3%u/ds0n and d*u/dn>, respectively.

As opposed to the poor accuracy properties, the smoothing properties of point Gauss-Seidel relaxa-
tion applied to the grid-aligned first-order upwind system are known to be good. The fact that these
smoothing properties are at least not bad is reflected by the fact that the discretization is positive,
which clearly appears from the stencil

bi | —cosp | cosp+sing |, 0<¢<m/2. (2.6)
j—1 —sing ‘
i—1 i

2.1. A positive, continuously differentiable scheme
The most compact, grid-decoupled upwind schemes use

Uiy | _ [1(D)uy;+[1—01(P)]uy; -
Uij+y 8a(P)u; j +[1=82()ui -1 5|

[N

0<<61(9),6,(p)<1, 0<op<7/2. 2.7)

The coefficients §,(¢) and 8,(¢), whose choice determines the scheme, are taken in the range [0,1] in
order to prevent unphysical features such as e.g. a negative density. The stencil corresponding with
(2.7) reads



Jj —8;cosp+(1—48,)sing 8,cos¢p+8,sing , O<<o=<a/2. 2.8)
j—1 | —(1—38;)cos¢—(1—8,)sing | (1—8;)cosp—d,sing
i—1 i

A natural requirement imposed to the discretization is that of symmetry with respect to ¢==/4; in
formula:

82(p)=8(n/2—¢), 0<¢p<<7/2. (2.9)

Notice that the grid-aligned first-order upwind stencil (2.6) is also covered by (2.7) and (2.9); it is
obtained by simply taking &;(¢)=1, 8,(¢)=1, 0<¢p=<m/2.
The modified equation corresponding with (2.7) reads in characteristic coordinates

ou h

2
s 2 [(1 + cos¢sing)(cose + sing) — 2(8cosp+ 8, sinqb)cos¢sin¢] g—zu— +
s

2
2(cos¢ — sing) (1 + cosgsing — (6;cos¢ + 6, sing)(cosp+ sinqb)] —ai Bl; +

2
2cos¢sing [(8 | — ¥o)cosp+ (8, — ’/z)simp] % =0(h?), 0<¢<m/2 (2.10)

n

Following (2.10), s, =0 and p,, =0 lead to respectively
. 1+ cos¢sing
4 = << 2.11

8y cos¢+6,sing cosp+sing O<o¢p<mn/2, (2.11a)
8,cosp+08,sinp = %(cosp +sing), O0<p<<m/2, (2.11b)

which clearly is an inconsistent system of equations, leading to the following theorem:

THEOREM (2.1) :
No most compact grid-decoupled upwind scheme exists for which both i, =0 and p,, =0.

Next, concerning crosswind diffusion, we only require p,, to be zero, i.e. we assume (2.11b) to hold
solely. Further, following (2.8), positivity can be expressed as:

1 0
(81cosg+8,sing) | | |> f:g;‘g ., 0<¢<m/2 (2.12)

—1) | —cosp—sing
It appears that the system (2.11b)-(2.12) is inconsistent as well, leading to the theorem:

THEOREM (2.2)
No most compact grid-decoupled upwind scheme exists which is positive and for which p,,=0.

Finally, we require p,, =0 to hold (i.e. (2.11a)) in combination with (2.12). It can be verified that this
system is consistent. Assuming the form §,(¢)=(cos¢+asing)/(cos¢+sing), a being a constant, with
symmetry requirement (2.9) we get 8,(¢)=(sing+acos$)/ (sing+cosg). Substitution of these forms of
01(¢) and 6,(¢) into (2.11a) yields a=13, so

Uit | _ 1 (cosp+ Vasing)u; it Jssing u;, i1 _
[ui,j+’/z}  cosp+sing [(Siﬂ¢+ Yacosp)u; j+ Yocosp u; —y ;| Os¢=m/2, (2.13)
which gives the (positive) stencil
_ 2 i
j coS ¢ 1+cos¢§1n¢ . 0<é<m/2, (2.14)
Ccos¢ -+ sing cos¢+ sing
.1 | —cosgsing —sin’¢p
J cos¢ + sing cos¢ +sing

i—1 i



and the modified equation

du h | 1+cospsing d*u cospsing 0%u | _ 2
- |t 4 — 1 =0(h7), O0<op<m/2 2.
ds 2| cosp+sing 9s2  cosp+sing dn? Ok p<m/ (2.15)

In Fig. 2.2b we give the graph of the present scheme’s diffusion properties. The scheme’s crosswind
diffusion is significantly lower than that of the grid-aligned first-order upwind scheme (Fig. 2.2a). The
lower crosswind diffusion in combination with the properties of positivity and continuous
differentiability makes that scheme (2.13) is possibly more appropriate for our present multigrid pur-
poses than the grid-aligned first-order upwind scheme (2.3).

2.2. A zero-crosswind diffusion scheme

Because of the limitation of the most compact, grid-decoupled upwind schemes with respect to the
elimination of all crosswind diffusion (the limitation expressed by THEOREM (2.1)), in this section, we
will consider wider stencils. To start with, we consider a situation with small ¢. Still striving for
compactness, the extrapolation is done from the nearest lines connecting two neighboring cell center
states, also avoiding negative coefficients herewith:

Ui | _ | S1(@ui;+[1—81(d)u; ;-
[ } {az(qb)ui—],j_'_[l“62(¢)]ui—l,j+l 5 0<81(¢)a82(¢)<1’ O<¢<¢up’ (216)

Uij+4
with the (small) upper bound ¢,, not yet fixed. With (2.16), we find the following modified equation

au h 3 2, . -2 -3 8214

a2 [cos ¢o+2(1—8;)cos“¢sing +2cospsin“ ¢+ (28, — 1)sin q>] 8—2-1—
s

3%u

dson

2 [( 1—8))cos’p+ (8, +28, —2)cos¢psin’p— sin3¢]

2
cosgsing {(28,+282—3)cos¢—sin¢]—g—‘;— —0(h2), 0<¢<é, 2.17)
n

From this, it follows that no crosswind diffusion occurs for 8,(¢)=1, 8,(¢)=%(1+tang), O<¢p=<n/4,
where the indicated ¢-range (with ¢,,=/4) is that for which negative coefficients are just avoided.
Taking for the remaining subrange the symmetrical counterpart of (2.16):

Uiy _ |01(@uy; -1 F[1=81( )i 41,51
8y (P j+[1—82(P)u; 1 ;

Uij+1
with symmetry condition (2.9) we get 8;(¢)=%(1+cotang), 8,(¢p)=1, 7/4<¢<n/2. Summarizing, we
have derived as expressions for the cell face states:

Ui+ nj|
Uij+1

], m/d<dp<7/2, (2.18)

(1 +tang)uy;

ui’j <<
_,‘j—i-’/z(l—tancb)ui_]’jﬂ}’ 0\¢\7T/4’ (219a)

[u” I ] _ | AL+ cotang)ug (1 —cotandlui 1, “] , m/4<¢<m/2, (2.19b)
Uij+1 U j
as corresponding stencils:
j+1 Jssing(1 — tang)
j sing(tang —cotang) | cosp | , 0<¢<mu/4, (2.20a)
j—1 — Ussing(1+ tang)
i—1 i
J sing , w/aA<o¢o<mu/2,
j—1 F Y5cosd(1+cotang) cos¢(cotap¢— tang) | %cos¢(l—cotang) | (2.20b)

i—1 i i+1



and as modified equations:

- _ - 2 <o<7w/4 . .

0s 2 cos¢ ds? O(r%), O<¢=<m/4, (2.212)
ou h 1 du 2
@ 2 - T2 /A<o<<m/2. 2.21
ds 2 sing 93s2 o), = b/ (2.21b)

A geometric interpretation of scheme (2.19) is given in [8]. In Fig. 2.2c, we give the graph with its
diffusion coefficients. Unfortunately, from (2.20) it appears that the scheme is non-positive. A favor-
able property of the scheme is its simplicity.
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¢ 7/2 0 ¢ /2 0 ‘ ¢ I w2
a. Grid-aligned first-order b. Continuously differentiable ¢. Zero-crosswind diffusion
upwind scheme (2.3). scheme (2.13). scheme (2.19).

Fig. 2.2. Diffusion coefficients modified equation
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3. PERFORMANCE ANALYSIS OF MULTIGRID ITERATION AND DEFECT CORRECTION ITERATION

In the foregoing section, two promising, grid-decoupled upwind schemes have been derived; one being
positive, the other being non-positive, both being compact. The positive scheme; scheme (2.13), is
most compact, continuously differentiable, low-diffusive in crosswind direction, and - possibly - still
enough diffusive in both crosswind and characteristic direction to allow a good smoothing of point
Gauss-Seidel relaxation and hence a successful application of multigrid iteration. The non-positive
scheme; scheme (2.19), is zero-diffusive in crosswind direction and hence most promising from the
viewpoint of accuracy. Probably, its corresponding discretized equations cannot be solved efficiently
by means of multigrid iteration, with point Gauss-Seidel relaxation as the smoother.

In the present section, we will analyze some possible solution methods. The analyses will be done
again for model equation (2.1) on a square, cell-centered finite volume grid. First, the smoothing
behavior of point Gauss-Seidel relaxation will be investigated, both for scheme (2.13) and scheme
(2.19). (Though we do not expect the latter scheme to be sufficiently dissipative to allow a successful
application of multigrid iteration, for sake of certainty we do consider its smoothing behavior.) The
smoothing properties found will be compared with those of the grid-aligned first-order upwind
scheme.

If analysis shows that multigrid iteration applied directly to the zero-crosswind diffusion operator
does not work, to solve the corresponding system of discretized equations, we will rely on defect
correction iteration, with (possibly) positive, continuously differentiable scheme (2.13) as the approxi-
mate scheme in the inner multigrid iteration. In [18], Sidilkover objects that defect correction itera-
tion is not a fully efficient solution technique for non-elliptic problems, and he states that he still
prefers multigrid solely. To our opinion, for a given grid, multigrid solely does not allow sufficiently
accurate solutions, in general it requires too dissipative discretizations. When considering the conver-
gence of defect correction iteration in some general error norm, we agree that for non-elliptic prob-
lems, it is not fully efficient. (See e.g. [3] and [7] for respectively some theoretical and experimental
evidence on this.) However, considering - instead of the error’s convergence to zero - the solution’s
convergence to higher-order accuracy, one gets a more satisfactory picture, both in theory [5] and in
practice [6,12,13].
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3.1. Smoothing analysis of point Gauss-Seidel relaxation

Four different relaxation sweep directions are considered: downwind, upwind and twice crosswind,
each of those four with the i-loop as the inner sweep-loop, and each of those for the complete range
of ¢ considered: [0,7/2]. To perform smoothing analysis, denoting the number of sweeps performed
by n, we introduce: (i) the iteration error

6,’{1‘511,"]_“?2], (31)

with u;; the converged numerical solution in finite volume /,j, and (ii) the Fourier form
i0,+0) (32)
with D constant, p the amplification factor, and 6,=w;# and 6,=w;h, »; and w, being the error
mode in i- and j-direction, respectively. In Fig. 3.1, results of the smoothing analysis are given for
successively: grid-aligned first-order upwind scheme (2.3), continuously differentiable scheme (2.13)
and zero-crosswind diffusion scheme (2.19). In here, the smoothing factor p, is defined as

P:ESUP|p(01702)|’ (lal i,|02|)€ {[O’W]X[O’W] | |01 | E[W/Q.,?T]\/Iozl 6[7/2’77]}* (33)

It appears that the zero-crosswind diffusion scheme does not enable a successful application of mul-
tigrid with point Gauss-Seidel relaxation as the smoother (Fig. 3.1c). Notice that even for the
corresponding downwind relaxation sweep, smoothing is not guaranteed over the complete range of ¢
considered. As opposed to this, for the positive, continuously differentiable scheme we do have
smoothing (Fig. 3.1b).

ij=Dp"e

- -

T T T T

0 ® 7/2 0
a. Grid-aligned first-order b. Continuously differentiable ¢. Zero-crosswind diffusion
upwind scheme (2.3). scheme (2.13). scheme (2.19).

Fig. 3.1. Smoothing factors point Gauss-Seidel relaxation, with i-loop as inner loop
J J
(downwind; T_/:l. —, upwmd;T_{i __7
y/
crosswind up; T:\”. — , crosswind down;bﬂ. (R—— ).

To find a suitable solution method for zero-crosswind diffusion scheme (2.19), in the following, we
will study the convergence properties of defect correction iteration with positive, continuously
differentiable scheme (2.13) as the approximate scheme in the inner multigrid iteration. For com-
parison, a similar study will also be made with grid-aligned first-order upwind scheme (2.3) as the
approximate scheme.

/2
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Fig. 3.2. Convergence factor distributions defect correction iteration.



3.2. Convergence analysis of defect correction iteration
Denoting the zero-crosswind diffusion operator by L, defect correction iteration reads

Ly " Y=L, ) —L; (u}), n=0,1,..,N, (3.4)

with L, denoting the positive operator to be inverted, and with the index n denoting the iteration
counter. From (3.4), it is clear that the closer the resemblance between the target operator L; and
the approximate operator Ly, the better the convergence of the defect correction iteration. Hence, in
this respect, the best convergence of (3.4) is expected from the approach with (2.13) as the approxi-
mate scheme. Introducing, as before, the iteration error (3.1) in its Fourier form (3.2), we can write
for the amplification factor

p(01,0,)=1—L; '(81,0,)L;; (6:,65). (3.5

In Fig. 3.2, for each of the two approximate schemes (2.3) and (2.13), and for successively
¢=0.17,0.27,0.37 and 0.47, we give the distributions of the convergence factor p,;

p=lp(0),02)], (|61],162]) €{[0,7]X[0,7]}. (3.6)

In all graphs of Fig. 3.2, the dashed iso-lines correspond with p.=0.5. It appears that, for all four
values of ¢ considered, scheme (2.13) as the approximate scheme gives better convergence factor dis-
tributions indeed.

4. NUMERICAL RESULTS

To investigate some theoretical results found in the previous sections, in this section, for a perfect gas
with y=1.4, we perform numerical experiments for a set of fully supersonic Euler flows with oblique
contact discontinuity (Fig. 4.la). The discontinuity is considered for the flow angles
$=0.17,0.27,0.37 and 0.47. The flows are computed on the 32X32-grid given in Fig. 4.1b. In all
cases - for simplicity - at each of the four boundaries, the exact solution is imposed
(overspecification). The multigrid method applied for all cases is nonlinear multigrid with V-cycles,
and with per level a single pre- and post-relaxation sweep only. In all cases, the coarsest grid con-
sidered is a 2X2-grid. Further, in all cases we take as the initial solution: the solution with q=q"
(the g% from Fig. 4.1a) uniformly constant over the complete domain. For both grid-decoupled
upwind schemes derived before, as the angle to be considered at each cell face, we take the streamline
angle. In [8], we give a physically proper way of computing this angle.

MLl=4
o | (etp/p)t=2 @
=~ =~

MR=2

S (e+p/p)f= il

° 0 DI.Z UI.1 D'.S (;.8 1 ° 0 DI.2 0.4 0.6 0.8 1
x x

a. Flow with contact discontinuity b. Finest grid (32X 32).

(¢=0.177,0.27,0.37,0.47, p=1).

Fig. 4.1. Test case on unit square.
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4.1. Results positive, continuously differentiable scheme

In Fig. 4.2 we first give, on top of each other, the reference results obtained for ¢=0.17,0.27,0.37 and
0.47 with the grid-aligned first-order upwind scheme; in Fig. 4.2a the multigrid convergence histories
and in Fig. 4.2b the enthalpy (e +p/p) distributions. The iso-enthalpy values considered in these and
all following enthalpy distributions are: 1.1,1.2,1.3, - - - ,1.9. Because of the severe smearing of the
grid-aligned first-order upwind scheme, hardly any distinction can be made between the four solu-
tions. Notice that the layers along x=1 and y =1, in Fig. 4.2b and all following enthalpy graphs, are
only due to the overspecification.

o -

4

IEEN //442//

: o

log (residual)

. 0.27 ® | 7 4;1//
"o 037 1 5 8 10 ) 0.2 0.4 0.6 0.8 1
multigrid cycles x
a. Multigrid convergence histories. b. Enthalpy distributions.

Fig. 4.2. Results grid-aligned first-order upwind scheme.

In Fig. 4.3 we give the similar results obtained with the grid-decoupled, positive, continuously
differentiable scheme. Though not as very fast as the reference convergence in Fig. 4.2a, fortunately,
the present scheme’s multigrid convergence is still fast. Though clearly more accurate than the refer-
ence distributions in Fig. 4.2b, the present enthalpy distributions are still insufficiently accurate.

= T %, N
2 >
.ié/ ® /& -~
) g
L el
o~
=8 4 h
0.27 o
7 —s T T ° T . .
0 2 037 6 8 10 0 0.2 0.4 0.6 0.8 1
multigrid cycles X
a. Multigrid convergence histories. b. Enthalpy distributions.

Fig. 4.3. Results positive, continuously differentiable scheme.
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4.2. Results zero-crosswind diffusion scheme

In Fig. 4.4a we give the enthalpy distributions for the zero-crosswind diffusion scheme, as obtained
after 10 defect correction cycles (with per defect correction cycle a single nonlinear multigrid cycle
only). As a reference, in Fig. 4.4b we give the distributions obtained with the third-order accurate,
grid-aligned k= /-scheme [14]. All four enthalpy distributions in Fig. 4.4a appear to be even less
diffusive than those of the k= /-scheme. Almost in agreement with theory, the distributions in Fig.
4.4a appear to be almost free of crosswind diffusion. Though the being non-positive of the zero-
crosswind diffusion scheme allows solutions with spurious oscillations, its distributions are still mono-

.

Z
T T T
0.2 0.4 0.6 0.8 1
X
a. Zero-crosswind diffusion scheme. b. k=1/3-scheme.

Fig. 4.4. Enthalpy distributions after 10 defect correction cycles.

An impression of the convergence rate of the defect correction iteration is given in Fig. 4.5. The four
distributions in Fig. 4.5a are those of the starting solutions of the defect correction iteration; the solu-
tions of the positive, continuously differentiable scheme after a single multigrid cycle. Notice, as a
side-result, the perfect agreement already between these four early distributions and the corresponding
distributions as found after 10 multigrid cycles (Fig. 4.3b). Concerning the convergence rate of the
defect correction iteration, we are of the opinion that this is good.

W /
° 0 0.2 OI.Q 0.6 []I 8 1 .2 OIA 0|.6 0’.8 1
X x
a. Before /st cycle. b. After /st cycle. c. After 2nd cycle.

Fig. 4.5. Convergence history defect correction iteration,
enthalpy distributions zero-crosswind diffusion scheme.
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5. CONCLUSIONS

In the present paper, for multi-D Euler equations, two promising multi-D upwind schemes have been
derived; a positive, continuously differentiable scheme and a zero-crosswind diffusion scheme. Both
scheme9 are based on a one-dimensional Riemann solver. Their multi-D nature is simply realized
through a local, solution-dependent rotation of the left and right Riemann state, allowing to keep the
number of numerical flux computations per cell face at one only. Good efficiency is strived for by
means of nonlinear multigrid iteration and (if necessary) defect correction iteration. The accuracy
and efficiency of the numerical results obtained are promising. One important result obtained is that
when applying the positive, continuously differentiable scheme, for flows with contact discontinuities,
the performance of nonlinear multigrid with point Gauss-Seidel relaxation as the smoother, is very
good. Another important result is that, again for flows with contact discontinuities, the solutions of
the zero-crosswind diffusion scheme are even less diffused than those of the grid-aligned k= %-scheme.
Moreover, their computation by means of defect correction iteration (with the grid-decoupled, posi-
tive, continuously differentiable scheme as the approximate scheme) is efficient.
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