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1. Introduction

1.1. In order to treat problems of drawing statistical inference in the setting of the general
theory of stochastic processes (as presented e.g. in Jacod and Shiryaev (1987) or Liptser
and Shiryayev (1989)), the experiment in question is supposed to be a filtered probability
space with a family of probability measures, and an observed object is supposed to be a
semimartingale with respect to all these measures. A solution then, sought in terms of the
predictable characteristics of the observed semimartingale, is applicable to various statistical
models in discrete or continuous time such as, for instance, the classical independent
observations scheme, or those risen in regression, time series and survival analysis, where
the models are only partially specified in terms, e.g., of the first or second order
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characteristics (regression or spectrum in time series analysis), or the intensity of a
counting process (in survival analysis). We consider here the asymptotic setting of the
problem with the observation time (sample size) increasing unboundedly, though adequate
considerations can be carried out for sequences of experiments.

1.2. In the present paper we restrict our attention to the common situation in which the
model under consideration admits a finite dimensional parametrization, reducing the model
identification problem to the statistical estimation of a parameter. Specifically, the following
problem of estimation will be treated: deriving in the present general setting the Cramer -
Rao type lower bound for a class of so - called regular estimators, and indicating particular
estimators which attain this bound and therefore are optimal. Of course, those are nothing
but the maximum likelihood estimators (rather a class of estimators asymptotically
equivalent to MLE) whenever the model is fully specified as, for instance, in the classical
case of independent observations from the fully parametrized density. In regression
analysis, however, the best linear unbiased estimators are sought, in time series analysis
the so - called Gaussian estimators, and in survival analysis the partial likelihood
estimators. As applied to these special models, our unified approach leads naturally to the
same optimal estimators. We present our findings in two parts: in this Part I the general
approach is developed, and in Part II the applications of above type are descussed.

1.3. As the usual scheme for deriving the Cramer - Rao inequality assumes a full
parametrization of an experiment (see e.g. Ibragimov and Has'minskii (1981), 1.7 and
II.11) and therefore becomes unapplicable here, we need in the first place a proper
formulation of the problem, which is then simply solved by applying the Schwartz
inequality. To this end a number of adequate definitions is introduced restricting the class
of considered estimators, which otherwise are viewed as arbitrary processes of the same
dimensionality as the parameter itself, calculable from observations.

Firstly, using the observations of the semimartingale, we form all kinds of local
martingales as the stochastic integrals with respect to this semimartingale (in statistical
context the corresponding predictable integrands are usually called the scoring functions),
and then use them for estimation; cf. Jacod (1990) and the references therein, in particular
Godambe and Heyde (1990), Greenwood and Wefelmeyer (1989), Gushin (1990),
Sorensen (1990). Due to the representation property (see e.g. Jacod and Shiryaev (1987),
III.4) all local martingales are representable as such integrals plus, perhaps, some
orthogonal term which will be assumed negligible in the sense indicated below. Besides, a
local martingale used is assumed square integrable, which means according to Liptser and
Shiryayev (1989), Lemma II1.5.1, assertion 3, that a possible extra term is also assumed to
be negligible. Specifically, for each fixed value of the parameter all estimators considered
admit a martingale representation in the sense that they can be represented, after an
appropriate centering and scaling, as a certain square integrable martingale plus a remainder



term (absorbing eventually negligible terms mentioned above), which can be ignored when
determining the principal part of estimation precision (see 1.4 below). Accordingly, we say
that two estimators are asymptotically equivalent if they have one and the same martingale
representation (with different remainders, of course). Hence, a particular scoring function
defines a class of asymptotically equivalent estimators.

Secondly, the fact that the model is not fully defined entails here that we can use only

certain integrals with respect to the observed semimartigale (cf. regression and time series
where only the linear and, respectively, quadratic forms from observations are admissible;
see Part IT). The martingales so obtained, as well as corresponding scoring functions, are
called admissible. Correspondingly, an estimator is called admissible if it has the
martingale representation with an admissible martingale.
1.4. The principal part of estimation precision then is naturally determined by the scaling
factor and the sharp brackets of the involved martingale in the form of a dispersion
ellipsoid, called below the spread of an estimator. By applying the Schwartz inequality we
get the lower bound for the spread of all admissible estimators. Note that even
superefficient estimators obey this lower bound (see Part II). In order to give the lower
bound the usual Cramer - Rao form, we have to exclude this kind of abnormalities
restricting the class of estimators by a certain regularity assumption.

It seems natural to call an admissible estimator with martingale representation for each

fixed value of the parameter regular if the representation extends to a shrinking
neigbourhood of the fixed parameter value, with the appropriate shrinkage rate related as
usual to the grow of information. Note that as applied to regression the present definition of
regularity turns into "local differential unbiasedness" used for deriving Gauss - Markov
theorem, and it is in accordance with Hajek's definition in case of fully defined models (see
Part II).
1.5. In view of the fact that the spread of an estimator is defined as an asymptotic notion -
the principal part of the estimation precision - it makes a sense to assume the asymptotic
differentiability (weakly in the class of all admissible scoring functions; see section 4) of
the predictable characteristics of an observed semimartingale. (One can easily trace the
simplifications caused by the differentiability assumption for a fixed sample size like in
Jacod (1990); see Ibragimov and Has'minskii (1981), 1.7 for the classical result and
Barndorf - Nielsen and Soérensen (1990) for examples).

The main statement of the present paper can be described now as follows: under the
differentiability condition just mentioned, the spread of a regular estimator obeys the
Cramer - Rao lower bound.

1.6. As was mentioned above, for fully defined models this lower bound is attained by a
special scoring function, namely that of involved in the likelihood equation. Surely, if the
solution (approximate, may be) to this equation has the martingale representation, then it is
an optimal estimator. The question on existence of this representation lies beyond the scope



of the present paper (see e.g. Ibragimov and Has'minskii (1981), 1.8 and III.1 or
Chitashvili et al., 1990). For not necessarily fully defined models, however, the optimal
scoring function can be viewed as the projection of the above scoring function to the space
of admissible scoring functions. Note that generally the projection operation requires the
knowledge of some extra parameters which are supposed known or at least estimable by
the given sample, as for instance in linear regression with independent residuals where the
best linear unbiased estimator involves the variances of residuales (they cancel only in the
i.i.d. case; see Part II for more details).

Acknowledgments. This paper is largely expository in nature and reflects the viewpoint
of the authors on the presented subject, discussed with R. J. Chitashvili and J. Jacod at
various stages of its preparation.

2. Preliminaries

2.1. Let (Q, &, F, P) be a stochastic basis with a filtration F = (F Dizp- Assume for
simplicity that & is trivial P a.s. Let X be an adapted R¢ - valued locally square integrable
semimartingale having on a set QF C Q with P (QF) = 1 the Doob - Meyer decomposition
X =Xy +M + A with the compensator A € Q, and the martingale part M = X® + x *

n-v)e ‘m,foc. As usual X° and . are the continuous part and the jump measure of X with
the quadratic variation C and the compensator v respectively, chosen to satisfy the
following relations: for each " € B (R4)

(2.1.1) vV (0,I'x{0})=0, a(w)=Vv (o, {t} x RY) <1 identically and C=c - v

with a continuous increasing process v and a nonnegative definite RIxR9Y - matrix valued
predictable process c (see Jacod and Shiryaev (1987), section I1.2 for more details). Then
the quadratic variation of Mis < M>=C + x xT * v - [A].

. 2 . .
2.2. With the continuous part X € N, loc> WE may associate the linear space L2(X°) of all

+

loc > S€€ Jacod and

R !xRY - valued predictable processes H such that Hc HT - v e ¢

Shiryaev (1987), section II1.4a. For H € L2(X°) we define the stochastic integral H - X as
in Jacod and Shiryaev (1987), theorem II1.4.5. For RXR ¢ - matrix valued predictable
processes H and K with rows in LZ(XC) we have

(2.2.1) <H-XK-X°>=HcKT-v.

2.3.Denote @ = Q xR, xR%and ® = ® ® B (RY) where ® is the predictable o-field on

QxR,. Let W be a ®- measurable function on Q such that for each Markov time T



I(T<oo)JIW(0), T,x)|v(w; {T}xdx) <eoP-a.s.

Associate with it the predictable process
W,(@) =JW (0, t, x) v (0; {t}x dx),

and note that a=1 by (2.1.1). If GA(W) e &1 with

23.1) GAW), = | W-WRxv+ X, (1-a) W2,

s<t

2 2
then we say W & 9, (). If W is R¥ - vector valued with components in 9,,.(1), then

W @-v)e M

loc

and for a couple W and U

<Ws@-v),Ux@U-v)>=WUT *vt-ZWSﬁST.
s<t

(cf. (2.3.1)) and
(232) WUT xv,=<Wx@-v),Usx-v)> withW=W+ 1,3, W/(1-a).

2
2.4. For brevity, use the following notations for H € L2(Xc) and W 9100(;1):
241) MMHW) =H -X+Wx*x@-v)andM (H, W)=H- X+ W% (u-V).
By (2.2.1) and (2.3.2)

(2.4.2) <M H W),M (K, U)>=HcKT v, + WUT % v,

while

(2.4.3) <ML(H, W) - M (H, W), M (K, U) > = 2, W, 0T
s<t

and

(2.4.4) <M H, W), M K, U) - M (K, U) >, =Z Lia.ey W U7/ (1 - a).

s<t

. . 2 .
2.5. Along with any R¢ - valued locally square integrable martingale M € M ,.> consider

2
another locally square integrable martingale m € T, of dimension d', say. Suppose that

the quadratic variation < M > is positive definite at t - for t large enough, and define the
RY«RY - matrix valued predictable process
(2.5.1) cmM)=<m>-<mM><M>"<M,m>.
In section 5 we will need the following result concerning ¢ (m, M):
Lemma 2.5.1 (Dzhaparidze and Spreij (1990)). The process c (m, M) defined by (2.5.1)



is non decreasing, and ¢ (m, M) = 0 iff there exists a ¥ -measurable random (d'xd)-
matrix C such that m = CM.
Remark 2.5.2. C need not be F -measurable. In Dzhaparidze and Spreij (1990) this

result has been proved for the case where < M > does not necessarily exist, and is
replaced by < M >", the Moore - Penrose inverse process. Notice too that even if C is not

& -measurable, it is such that the product C M is a martingale.
The process ¢ (m, M) is not symmetric. Instead we often use the so - called correlation
process

(2.5.2) p(m,M)=<m S12 o mM><M >12

which is simply related to ¢ (m, M) as follows:

(2.5.3) <m>"cmM) <m>"?=1-p(m, M) p (M, m)=0.
Y Y

The last inequality follows from the assertion of Lemma 2.5.1. In fact this is just the matrix
version of the Schwartz inequality.

3. Parametrization
3.1. Consider a set of probability measures IP, and suppose that under all P € P a process
X, adapted to a filtered measurable space (Q, &, F, P), is an R¢ - valued locally square
integrable semimartingale. :

It will be supposed that a set of probability measures IP allows the parametrization to be
described in the present section.

3.2. For a fixed P € P we single out in the linear spaces of integrands L*(X°; P) and
2
910c(11; P), introduced in 2.2 and 2.3 respectively, the subspaces % € L2(X%; P) and Uf

c 91200(u; P) for all P € IP, related by the condition that also Hx € W for each He % to
have that WP € W'; see (2.3.2).

Since for all P € P the integrals H - APand U * VP withHe % andU=W -Hx
W are well defined, fixing P, P' € [P we may introduce the process
(3.2.1) PP (H,W)=H - (AP - AP) + U * (vV* - V) where U= W - Hx.

Note that on a set QF n QF, which has by assumption in section 2.1 full measure
under P' if P' is locally dominated by P, we have

(3.2.2) XF-XPF = x % (VP - V) - (AP - AP)
and hence
(3.2.3) MF' (H, W) = MP (H, W) - gPF' (H, W)

by definition in 2.4. In this case g™F (H, W) is the Girsanov correction term. Indeed, the
density process of P' € P relative to P, positive P'-a.s. for all t € R4, is then the Dolean's



exponential of the P-martingale MP = MF (B, Y - 1) where B € L%(X"; P) satisfies < X°F,
MP > =cPBT-vand Y - 1 defined by vP'= Y - V¥, is such that
(3.2.4) Y-1+1p 3@ -a0)1-aP)1e 9 P

where aP and aP are defined by (2.1.1) relative to P and P' respectively; see Jacod and
Shiryaev (1987), IIL.5. Under these circumstances one can apply Girsanov's theorem as in
Jacod and Shiryaev (1987), Lemma IV.3.19, to get
(3.2.5) XFXP o xx (VP - V) - (AP - AP) = - cPRT - v
Hence (3.2.3) holds with Girsanov's correction term

gPP M, W)=HcPBT-v+Wx-vh

=<MP (H,W),MP B,Y-1)>.

The last equality is verified by (2.4.2), (3.2.1), (3.2.3) and (3.2.4). It should be noted in
addition that in the most general case where the local domination property does not
necessarily hold, equation (3.2.5) takes a more complicated form involving certain
correction terms; see Jacod (1990) or Jacod and Shiryaev (1987), IV.3.
3.3. Turning back to the restrictions imposed on the sets 3 and W, we suppose that for all
Pe P and

He % C LY(X%P), We W C 91200(“; P)
and all t large enough < MFP > >0 P - a.s. where MP = MP (H, W), and that
L{<MP > 12 MP: tlarge enough | P}

is relatively compact with non degenerate limit points.

For all P € [P define the subset [P] of P by
(3.3.1) [P]={P'eP: H - AP =H - APforeach H € % and

W VP =W *vPforeachWe W}

Hence we have gP'P (H, W) =0foreachP'e€ [P],He 3% and W € W (see (3.2.1)).
Therefore on a set QF n QF we have by (3.2.2) that MP (H, W) = MP' (H, W) for each P’
e[Pl,He ¥ andWe W.

Suppose now that [IP] = {[P]: P € [P} allows a finite dimensional parametrization:
there exists a one to one mapping

(33.2) 9: [P]1 - © C R~

Thus, by definition of [P] (see (3.3.1)) this mapping induces only a partial
parametrization upon the characteristics in 2.1 of the observed semimartingale X. In fact
only integrals of type

(3.3.3) H -A%andW xVv0forHe ¥ and W e W,

in particular WP and 2% =19, are fully parametrized: apart from integrands He ¥ and W €
‘W they depend on a parameter value 6 € ® only. Here and elsewhere below we substitute



the index P by © whenever P € [P] = 9! (0) for some 6 € ®.

3.4. We want to stress that our knowledge of P is expressed by the finite dimensional
parametrization (3.3.2) in terms of the functional form of the integrals (3.3.3) only, with

integrands H € ¥ and W € W'. The problem of identifying the sets [P], P € P is then
equivalent to estimating 6. Therefore, we say that the family of R¥- valued martingale
transforms

(3.4.1) MCH, W) =H - X®+ Wx@u-v®,0ec©

we will deal with in the sequel, is admissible for the above estimation problem if He %
and W e W, that is R*R? - matrix valued H's and R¥ - vector valued W's in (3.4.1)

consist of R¢ - valued columns in % and components in ‘W respectively.
3.5. We close this section with an important observation. Suppose we have parametrized
the integrals (3.3.3), that is we have specified the functional dependence of these integrals

on 6. In the practical situation one does this for all @ € Q. In a more sophisticated way one

might then say that all measures P € [P] = O] (8) solve a martingale problem that is
formulated by imposing that the integrals (3.3.3) are compensators of certain processes.
Hence we are in a sense in this section in a converse situation as in section 2. There the

measures P define on the sets QF the characteristics which can be changed arbitrarily
outside this set, whereas here we have candidates for the characteristics, depending on 6,
and we assume that there are measures P such that under these measures the candidates are
indeed versions of the characteristics. As the consequence of this set up the processes ghF
now denoted by g%, are defined on the whole set Q and we may assume that equations
(3.2.3) and (3.4.1) are also valid on the whole set Q.

This approach can be applied also to the situation where the measures are mutually

singular (as, for instance, in case of X; =0 (t + w,), where w is a standard Brownian
motion under all measures in [P] = 97! (6): here Ate is defined to be Ot, and of course Mte
= X, - 0 tis then a martingale under any P & [P] = 9! (9)).

4. Asymptotic differentiability
4.1. Let ¢, be a certain predictable RXxR¥ - matrix valued symmetric positive definite
process, used below as a norming factor. It may depend on the parameter  but this is
irrelevant in the present context; see definition 4.1.1 (iii) where ¢ is specified, as well as
another norming factor y which is of the same type, but unlike ¢ it may depend on
particular H € 3% and W € W involved in definition 4.1.1, so that v =y H, W).

To a fixed 6 € © relate the set of directions U, = ¢t-1 (® - 90), and assume for



simplicity that a perturbation 6 + ¢,u considered below of a parameter value 8 in a direction
u is again a parameter value: 6 + ¢,u € ®. Furthermore, considering below any
parametrized predictable process {a; (0)} we will always assume that {a; (6 + ¢u)} is a
well defined predictable process.

Definition 4.1.1. For each fixed 8 € ® and each direction u € U, the compensators A®

and V® are called asymprotically differentiable (weakly in ¥ and W', with norming factors
¢ and ) if there exist an R¥xR¢ - matrix valued predictable process b® & % and R -
vector valued predictable process A% € W' such that for each RX<RY - matrix valued H €
96 and RX - vector valued W € W all integrals introduced below are well defined and in
probability P for all P € [P] = 0! (8) we have as t > oo that
() W W (B0 vy WAST Ve ou > 0,
(i) wH - (A°+ % - A% -y, H P bPT - v, + Hx A%T % v®) o > 0 and
(iii) the norming factors ¢ and \ are such that ®;» ®@and ¥;> ¥ where @ and ¥ =
¥ (H, W) are certain non singular (random) matrices, while
O=<M >"¢pand ¥ =y <M >"

with (cf. (2.4.2) - (2.4.4))

<M>=<M®H, W) >t=HceH'r v+ WWT *Vet-ZWSWST

s<t
and

<M > =<M® (68, 29 > = b° P b7 - v, + AOAOT v°t+21

s<t

A A
Ao AST (1 - 2.

{a% <

Here and elswhere below we usually use the following abridged notation
M = M® = M® (H, W) and M = M8 = M® (6°, 19).

4.2. The choice of the norming factors ¢ and y in (iii), with the same asymptotic behaviour
as < M > and < M > respectively, is motivated as follows.

Define first A% = A® - x * v®. Note that - (A% - A®) = X®. X% on the set where
(3.2.2) holds. Then (i) and (ii) in definition 4.1.1 are equivalent to (i) and
() v, {H - A%+%" - A%, -H®b® - v;¢,u} > 0in probability P € [P] = (6).
Next, by (3.2.3)
(4.2.1) %0+ 0u (H, W), =H - (A®+0p - A®) + U * (vO+ou-v8) U=W -Hx,
so that (i) and (ii') are equivalent to
(4.2.2)  y, g%0 +0m (H, W), - W< M, M>,0u > 0 in probability P € [P] = 01 ()
with

<M, M>=<M®H, W), M 1% 1% >=Hc®bT- v+ WAT %+
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.0
cf. (2.4.2) and (2.3.2) withA = A8+ 11013 A® / (1 - a®). Due to (2.4.1) and 4.2.1)

MO + 0w (H, W) - M® (H, W) = - g8, + o (H, W),
hence (4.2.2) in turn is equivalent to

(4.2.3) Y, £80+ 0 (H, W), > 0 as t> o in probability P € [P] = o! (9)
where
(4.2.4) £0.8"(H, W) = MO (H, W) - M® (H, W) + <M, M > (8- 9).

Thus, we have shown that the following statement is true.
Statement 4.2.1. The asymptotic differentiability at © € ® and each direction u U,

of the compensators A® and v® (in the sense of definition 4.1.1) is equivalent to (4.2.3).
Turning back to the choice of the norming factors ¢ and , observe that since we are

interested in weak differentiability of the functionals A® and v® (or equivalently, A® and

vO) acting on (H, W), the natural scaling of the differences H - (A% - Ae) and W x (V9 -

v®) (or equivalently of the difference M8 - M® = - g9.8") should be related to an L? - norm
of the pair (H, W). The reasonable choice is then a positive definite square root of the
predictable process < M >; cf. (4.2.3). This explains the choice of y. Furthermore, in
order to give the weak asymptotic derivative a sensible meaning the norming process ¢ has
to be such that the scaled difference y; {M® + ¢ (H, W), - Mm® (H, W),} is bounded by a
finite random variable P € [P] = 9! () - a.s. But then, if differentiability (that is (4.2.3))
holds also y, < M, M >, 0,1s bounded in the same way. Again, exploiting the fact that we
require weak differentiability, we have to choose the norming ¢ such that these quantities
are bounded no matter what H and W are. But then, using the Schwartz inequality for
matrices the only way to guarantee this is by choosing ¢ such that ¢, < M >, ¢, is bounded
as in (iii). Certainly, to make the notion of differentiability the strongest possible we should

require that ¢, tends to zero, but not too fast, otherwise this would render the notion
vacuous.

For the sake of simplicity the norming factors ¢ and  in (iii) will be identified below

with < M>"?and < M >1?2 respectively, as the necessary modifications to the general
case are obvious. The relation (4.2.2) for instance can be rewritten then as follows:

v, g%+ o (H, W), - p(M, M), u » 0in probability P € [P] = %! (6)
where p = p (M, M) is the correlation process between M and M; see (2.5.2).
4.3. As was mentioned in section 3.2, in the specific situation in which the model is fully
parametrized and all measures involved are mutually locally absolutely continuous,

Girsanov's theorem applies and the process g%9 is Girsanov's correction term. Hence for
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instance b® in definition 4.1.1 is the derivative in the above sense of B° that replaces P in
the definition of the martingale MF (B, Y - 1). Similarly, in this case A® can be interpreted

as "logarithmic derivative" of v®. Moreover, < M > is the genuine Fisher information
process (see Jacod (1990)).

5. Admissible estimators

5.1. To estimate the unknown parameter value 6 € ® C RX at time instant t, a certain
class of &, - adapted statistics, say {é\t}, is considered as a class of potential estimators.
We consider here an asymptotic setting of the estimation problem by assuming that when t
> oo an estimator é\t"estimates" the unknown parameter value 0 in the sense that the

appropriately scaled difference B, (§t - 0) has a non degenerate limit distribution, where

the scaling B, is a R&RK - matrix valued predictable process, non singular P € [P] = 91

(0) - a.s. for t large enough (depending usualy on the parameter 8 but this is irrelevant in
the present context). For the sake of generality, however, we do not exclude the possibility
of a certain bias in estimation by taking into consideration also estimators )  for which the

limiting distribution of the scaled difference %, (é)\t - a, (9)) is non degenerate with a certain

deterministic function a; ©® — R* for each fixed t, violating the condition

(5.1.1) B, (0-2a,(0))> 0 ast> o in probability P € [P] = o1 (9).
We will say that such estimators ) . are (asymptotically) biased. The difference
(5.1.2) d, (0)=6-a,(0)

will be called the (asymptotic) bias of ) - Accordingly, we will say that an estimator é\t is

(asymptotically) unbiased if it "estimates" 0 in the sense mentioned above, i.e. if B, (é\t -

0) has a non degenerate limit distribution.
5.2. In this paper we will restrict our attention to estimators called admissible as they will
be represented below by means of admissible martingales; cf. (3.4.1). Note meanwhile that

by this representation we will associate with a particular admissible martingale M® H, W),
for fixed He ¥ and W € W, a set of asymptotically equivalent estimators [@t (H, W)].
The corresponding H € ¥ and W € W are usually called the scoring functions.

Definition 5.2.1. Let B be as above, and &, (0), 0 € © an RX - vector valued F,-
adapted process for each fixed 6 € ©. An (asymptotically) unbiased estimator é\t of 0 is

called admissible if it is representable for each fixed 6 € ® by means of an admissible
martingale m® H,W) = M? as follows:
(5.2.1) B, 6,- a4, ®) = <M >12M0
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with some O, and ®, such that

(5.2.2) 3 (6),=B®,(Q,(8)-6)> 0 ast> o in probability P € [P] = 9 ©).

An admissible (asymptotlcally) biased estimator et with the bias (5.1.2) is defined similarly
but with

(5.2.3) 0 (0),= B, (U, ()-2,(8))> 0 ast> o in probability P e [P] = 0 (8)

~ instead of (5.2.2).

Obviously, (5.2.1) and (5.2.2) (or (5.2.1) and (5.2.3)) are equivalent to

(5.2.4) B, (8,-0)=M?+n (), (orB,(B,-2,(8)=M2+7 ®),)
where
(5.2.5) VB, = B, and y,n (6), = 5 (6),> 0

as in (5.2.2) (or (5.2.3)). Recall that y = < M® >"1/2; cf. the last paragraph in 4.2. Of
course, if the asymptotic bias (5.1.2) is small in the sense of (5.1.1), then the two
expression in (5.2.4) are equivalent.

5.3. By the assumptions imposed in 3.1 on the right hand side of the representation (5.2.1)

the scaling factor ® characterizes the convergence rate of the estimator é\, and for t large
enough the ellipsoid generated by the inverse of the symmetric matrix

(5.3.1) BT®B, =BT <M°>-1B,

characterizes the spread of 6 around 9. -

Definition 5.3.1. Let 6 be an admissible estimator of O for each fixed 6 € ® (see
Definition 5.2.1). For fixed t large enough the ellipsoid generated by the inverse of the
matrix (5.3.1) with ® involved in (5.2.1) is called the spread of § around 6 or a, (9)
depending whether 6 is asymptotically unbiased or biased. In the latter case the spread of
6 around 6 is defined as the ellipsoid generated by the matrix

(5.3.2) Z,(0) = (BB +4,(0)d, (0T,

for the bias (5.1.2) which violates the condition (5.1.1) has to be taken into account.

5.4. Denote

(5.4.1) D=Bl<M,M>-1I
where M = M® (b®, %) as in 4.1. By Lemma 2.5.1 we have
cM,M)=<M>-<M,M><M>1cM, M>>0.

Therefore

(542) BTBY!=1+D)(«M>- cM, M) 1(I+D)T21+D)<M>1(+D)T.
This means that the spread of 6 raround 6 (or a, (0)) exceeds the ellipsoid generated by

the matrix on the right hand side of the last inequality. This lower bound for the spread

around O (or a, (0)) of any admissible estimator lies at the basis of the Cramer - Rao
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inequality which will be obtained in section 6. Meanwhile, even the spread of
supperefficient estimators satisfy (5.4.2); see Part II for more details. In order to exclude
such abnormalities and, consequently, render the inequality (5.4.2) in the usual Cramer -
Rao form, we shall, according to the common practice, restrict the class of estimators by

certain regularity assumptions; see 6.1 below. Since < M > can be interpreted in the
present setting as the Fisher information matrix (see section 4.3), we say that the
inequality (5.4.2) takes usual Cramer - Rao form if the matrix D on the right hand side is
replaced by the "derivative" (in the sense of remark 6.1.2 below) of the bias (5.1.2) with

respect to 0; see (6.2.2) below. Consider for instance the following situation. We will
return to this situation in section 6.2.

5.5. The inequality (5.4.2) already gives the desired Cramer - Rao lower bound for
estimators admitting the representation

(5.5.1) <M, M >, 6,-08) =M?+n(8),
i.e. the representation (5.2.4) with special B = <M, M > and a (8) = 9, for in this case D =
0 and hence
(5.5.2) BTR)12<M>1L
Note that the matrix valued process D is related to the bias of an admissible estimator 6 in
the following sense. If an estimator satisfies (5.5.1), then D = 0 and d (0) = 0, so that by
(4.2.4) and (5.2.4) it also satisfies the following relation: for each 6' € ©
(5.5.3) <M, M >, (é\t— o) =M® (H, W), - 98 (H, W), +n (0),.
Next, evaluate (5.5.3) at 0' = 6 + ¢,u under condition (4.2.3) to see that £9.8 + 0u has the
same behaviour when t > oo as 1 (0), i.e. it can be absorbed in the remainder term. Thus
the estimator § has the linear representation not only at 6 but also in its neighbourhood 8' =
0 + ou.

Now, assume D does not vanish, then the bias appears in the representation, as even if
d (8) = 0 we get by (4.2.4) and (5.2.4) that

B, (8 - [6'+D, (8- 6)]) =M’ (H, W), - £ (H, W), + M (8),

where - 89" (H, W) + 1 (0) at 6' = 6 + ¢,u can be considered as a remainder term.
5.6. According to lemma 2.5.1, we get equality in (5.4.2) iff M = C M with some random

matrix C, not depending on time. Hence equality in (5.4.2) is only attained for estimators
that have the representation (5.2.4) of the following special form:

CB,(8,-0)= M2 +Cn@®),

Notice that C 1 (8), is indeed a rema:nder term in the sense of (5.2.5): since now
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<M>=C<M>CT
(see Dzhaparidze and Spreij (1990)), we immediately get _
(Cn@®))T<M >1Cn (8),> 0 ast> oo in probability P € [P] = &1 (8).

6. Regular estimators. The Cramer - Rao inequality
6.1. As is know in classical statistics, the minimization problem of the spread of an
estimator by proving the Cramer - Rao inequality (see, e.g. Ibragimov and Has'minskii
(1981), or in a more related context, Kutoyants (1984) and Jacod (1990), as well as the
references therein) can be effectively solved only under certain regularity conditions
imposed on estimators. In fully (or partially) specified models with LAN property, more
sophisticated Hajek's type regularity is required. As our parametrization in section 3 admits
such models only as special cases, and besides our assumptions are too wide to admit
establishing asymptotic distributions of estimators, Hajek's definition cannot be taken over
here. However, it will be shown in Part II that our definition of regularity can be, in
principle, considered as a wide sense version of Hajek's regularity. On the other hand our
scheme includes also classical regression models in which the Gauss - Markov estimator
has minimal spread as t % o among asymptotically linear unbiased estimators. The relation
of our definition of regularity to the asymptotic unbiasedness of estimators will be also
shown in Part II. ~

The common idea hidden behind any definition of regularity of estimators representable
as in (5.2.4) consists, roughly speeking, in admitting differentiability in a certain
appropriate sense of the both sides of the representation. Our definition 6.1.1 below is also
based on this consideration. Namelly, the class of all admissible estimators {[’9\t H, W)],
He ¥ and W e W} with the scoring functions He ¥ and W € W' is restricted by the
regularity assumption: an estimator 6: H, W)= é\[with the scoring functions H € 3 and
W e W assumes the representation of type (5.2.4) not only at a fixed 6 € ® but also at &
+ 0,u € O with the same ¢ as in 4.1 (iii) and all directions u U,.
Definition 6.1.1. An estimator ét (H, W) of the value 6 with scoring functions H € %
and W e W, is called regular (with a centering a and scaling B) if
(i) it is representable at each fixed © € ® in all directions u € U, as follows

(6.1.1) B, (8- 2, (8 + ¢,u)) = MO + & (H, W), + 1 (u, 0),

where ¢ = <M >12,

(ii) the remainder term 1 (u, 0), (depending on H € % and W € W of course) is such that
ast> o

(6.1.2) V. N (u, 8), > 0in probability P e [P] = 9! (0)

where y = < M® >172,
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(iii) there exists a function &: [0, ) x ® — R9xRY such that the following holds for each
fixed 6 € © and all directions u € U :

(6.1.3) B, 029 +%"5 0 ast> oo in probability P « [P] = 91 (8)
where
(6.1.4) o9 =2a(0")-a(0)-4(0)(0'-0).

Remark 6.1.2. The matrix a is the "asymptotic derivative” of a with respect to 6. Notice
that if the bias (5.1.2) is small in the sense of (5.1.1) not only at a fixed 0 but also in a
shrinking neigbourhood, that is we may replace here 6 with 8 + ¢,u, then in (6.1.3) we
may take 4, (0) =L

Remark 6.1.3. As u = 0 we get (5.2.4) with an admissible M® (H, W). Note that by
(5.2.5) and (6.1.2) the remainder term 1 (u, 0), in (6.1.1) is asymptotically differentiable
(in accordance with definition 4.1) with derivative equal to zero in the sense that for each
fixed 6 € © and each direction u € U, we have that in probability P € [P] = 91 (0)

v, {n (v, 6),-M (6);} > 0.
Conversely, if an estimator é\tsatisfies (5.2.4) with an addmisible M® (H, W) and
certain 1 (0), then it satisfies also (6.1.1) with 1 (u, 0) such that

(6.1.5) Vin@we)-n®}=-y{M-M-B {a(®)-a(0)}
=yESO- B a®® L eu
where 6' = 6 + o,u and
(6.1.6) e=p-Ba@®O)o
with p = p (M, M); cf. (2.5.2), (4.2.4) and (6.1.4). Therefore the following statement is
true.
Statement 6.1.4. If the compensators A® and Ve are asymptotically differentiable at 6 €

® and each direction u € U in the sense of definition 4.1.1, then by statement 4.2.1
the regularity of 6 is equivalent to the condition that the centering a and scaling B
involved in its representation are such that as t > oo the last term on the right hand side of
(6.1.5) vanishes, that is €,> 0 in probability P € [P] = ©°1 (8) where € is given by
(6.1.6).

6.2. As in section 5.5, suppose an estimator 6 satisfies the first of expressions (5.2.4) with
special B = < M, M > which by (5.4.1) means D = 0, or more generally it satisfies the

second of expressions (5.2.4) where a (0) is differentiable in the sense of (6.1.3) with a
special B such that

(6.2.1) 8(0)=I+D=B1<M, M >.
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It follows then from (6.1.5) and (6.1.6) that under the conditions of statement 6.1.4 the

estimator § is regular. Moreover, by (5.4.2) its spread around a () satisfies the Cramer -
Rao inequality
(6.2.2) (BTR)1> 8 <M >14T;
cf. (5.5.2). Therefore the following question is important. Suppose 6 is regular. Does it
then admit the representation (5.2.4) with B satisfying (6.2.1)? The answer given in the
next section turns out to be affermative if we sharpen definition 4.1.1 a little bit.
6.3. Consider a regular estimator ) (H, W) and suppose that it satisfies (6.1.1) not only
with ¢ = <M > /2 but also with ¢'= ¢ p! where p = p M, M); cf. (2.5.2). Note that
00T = ¢'ppTdT <0'¢T by (2.5.3). Hence the perturbation rate ¢' is not faster then ¢. Of
course, if the correlation process p stays bounded away from zero there is no need in
introducing ¢'. Next, suppose that for the scoring functions H and W the relations (i) and
(ii) in definition 4.1 are satisfied with ¢' instead of ¢, that is the differentiability still takes
place, despite of the above remark that the perturbation rate ¢' is not faster then ¢.

Proposition 6.3.1. Under the conditions of the present section
@) 8 admits also the following representation

(6.3.1) <M, M> 4 (0)" @,-2,©) =M H W), +n'®),

where ' (0) is again a remainder term:
(6.3.2) v, N' (0),> 0in probability P € [P] = L (0) ast oo
(ii) The spread of 6 around a () satisfies the Cramer - Rao inequality (6.2.2).
Proof. Assertion (ii) follows from (i) since by definition the spread of 6 around a (©) is
generated by the matrix I' I'T where
(6.3.3) Fr=4<M,M>1<M>12
so that

ITT- 8<M>14T28<M,M>1c (M, M) <M,M>14T>0
by lemma 2.5.1.

Let us now prove assertion (i). By (5.2.4) and (6.3.1) we get
YN =yn+ Ly M+n)where {=€pl I-epl)?

with the same € and p as in (6.1.6). Similar to (6.1.6) we immediately obtain that € p~! and
hence { tends to zero in probability P € [P] = 01 () as t > oo. Therefore (6.3.3) yields
(6.3.2), for by assumption 7 is a remainder term and {y, M,} is a tight family (cf. section
3.1).
6.4. Let us turn back to the general case where fisa regular estimator in the sense of
definition 6.1.1. Regarding a lower bound to the asymptotic spread the following
proposition is true.
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Proposition 6.4.1. Let 6 be a regular estimator with the spread generated by (BTR)L

Let the compensators A® and v® be asymptotically differentiable at® € © and each
direction u € U, in the sense of definition 4.1.1. Then for any symmetric positive
definite matrix & > 0 the event
(6.4.1) BABIBY -4 <M >14TIBT 2-5
takes place with P € [P] = 1 (8) probability tending to one as t > .
Proof. With the notations used in statement 6.1.4 we have
Ba<M>12=p+e.

Therefore the event (6.4.1) is equivalent to

(P +&) (P +EYT I+ 9,
so that the desired assertion follows from (2.5.3) and statement 6.1.4 according to which
p, p,T <Iand > O in probability P & [P] = &' (8).

7. Optimality
7.1. Throughout this section the compensators A® and v® are asymptotically differentiable
at © € © and each direction u € U,in the sense of definition 4.1.1, and all estimators

mentioned are admissible in the sense of definition 5.2.1.
The assertions of propositons 6.3.1 and 6.4.1 can be interpreted as follows: the

minimal possible spread around a, (6) of a regular estimator is generated by the matrix

g, <M, >14T
where M = M® (b%, A9) as usual. Hence the following definition
Definition 7.1.1. A regular estimator 6 (H, W) is called oprimal if it can be represented
as in (5.2.4) with a, () = 6, and if the scoring functions H € ¥ and W € W are such
that the spread attains the lower bound which in this case is generated by < Mt >l

Proposition 7.1.2. A regular estimator § is optimal in the sense of definition 7.1.1 iff
it admits the following special form of the general representation (5.2.4):

(7.1.1) <MP >, (8,-0) = M2+ (6),
Proof. By definition the spread of an estimator ) admitting the representation (7.1.1) is

generated by < M >°1, i.e. § is optimal.
Conversely, if 6 is optimal, then its spread is generated by the inverse of the matrix

(7.1.2) BT<M>1B=<M>.
In notations of (6.1.6) the equality (7.1.2) means that
(7.1.3) p-6)T(p-8)=L

Since 6 is regular, statement 6.1.4 is true: €% 0 in probability P € [P] = o1 (6). Hence
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p.T p,> I by (7.1.3). Therefore we can apply proposition 6.3.1, assertion (i) to write
down the following representation for 6:

(7.1.4) <M,M>@®-0)=M+n.
Thus B = <M, M > in (7.1.2), that is ¢ (M, M), = O for all t. By lemma 2.5.1 this implies

M = C M with a possibly random matrix C independent of t. Hence (7.1.4) can be
rewritten as follows

(7.1.5) C<M,M>@-6)=M+Cn;

cf. (5.5.1). Since C<M, M >=<M > (see Dzhaparidze and Spreij (1990)) and Cnis a
remainder term (see section 5.5), (7.1.5) yields (7.1.1).
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