4

Centrumvoor Wiskunde en Informatica
Centre for Mathematics and Computer Science

J.A. Hoogeveen, H. Oosterhout, S.L. van de Velde

New lower and upper bounds for scheduling around a small common due date

Department of Operations Research, Statistics, and System Theory Report BS-R9030 October

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
1946, as a nonprofit institution aiming at the promotion of mathematics, com-
puter science, and their applications. It is sponsored by the Dutch Govern-
ment through the Netherlands Organization for the Advancement of Research
(N.W.0)).

Copyright © Stichting Mathematisch Centrum, Amsterdam

New Lower and Upper Bounds for Scheduling
Around a Small Common Due Date

J.A. Hoogeveen

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

H. Qosterhout

Department of Economics, Tilburg University
P.O. Box 90153, 5000 LE Tilburg, The Netherlands

S.L. van de Velde

School of Management Studies, University of Twente
P.0. Box 217, 7500 AE Enschede, The Netherlands

Suppose a set of n jobs has to be scheduled on a single machine, which can handle no more than
one job at a time. The problem is to find a schedule that minimizes the sum of the deviations of the
job completion times from a given common due date that is smaller than the sum of the processing
times. This problem is known to be P-hard. There exists a pseudo-polynomial algorithm that is
able to solve instances up to 1000 jobs. Branch-and-bound algorithms can solve instances up to
only 25 jobs. We apply Lagrangian relaxation to find new lower and upper bounds that coincide for
virtually all instances with n not too small. Both bounds are computed in O(nlog n) time. For the
case that these bounds do not concur, we present refinements of the bounds, which are obtained
by solving a subset-sum problem to optimality by a pseudo-polynomial algorithm; this subset-sum
problem is of considerably smaller dimension than the common due date problem. We also show
how the lower bounding approach and the heuristic can be extended to the problem where all early
completions are weighted by a common weight « and all late completions by a common weight 8.

1980 Mathematics Subject Classification (1985 Revision): 90B35.

Key Words & Phrases: single-machine scheduling, common due date, Lagrangian relaxation,
subset-sum, approximation algorithm, branch-and-bound.

Note: This paper has been submitted for publication.

1. INTRODUCTION

The just-in-time concept for manufacturing has induced a new type of machine scheduling
problem in which both early and tardy completions of jobs are penalized. We consider the fol-
lowing single-machine scheduling problem that is associated with this concept.

A set of n independent jobs has to be scheduled on a single machine, which can handle no
more than one job at a time. The machine is assumed to be continuously available from time
zero onwards only. Job J; requires processing during a given uninterrupted time p; and should
ideally be completed at a given due date d;. Without loss of generality, we assume that the
Report BS-R9030

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

processing times and the due dates are integral. We assume furthermore that the jobs are
indexed in order of nonincreasing processing times. A schedule ¢ defines for each job J; a com-
pletion time C;, such that the jobs do not overlap in their execution. The earliness and tardi-
ness of J; are defined as E; = max{d; — C;, 0} and T; = max{C; — d;, 0}, respectively. The
just-in-time philosophy is reflected in the objective function

F©= 3 @E+ B T)
p:

where the deviation of C; from d; is penalized by either o; or B;, depending on whether J; is
early or tardy, for j = 1, ..., n. For a review of problems with this type of objective function,
we refer to Baker and Scudder (1990).

An important subclass contains problems with a due date d that is common to all jobs. The
common due date is either specified as part of the problem instance, or is a decision variable
that has to be optimized simultaneously with the job sequence. As the first job may start later
than time zero, the optimal schedule is identical for both problems unless the common due
date d is restrictively small (d < Zp;). Therefore, the first variant is referred to as the restricted
problem and the second variant as the unrestricted problem.

We consider the restricted variant of the problem in which all earliness penalties are equal to
a and all tardiness penalties are equal to 8. Bagchi, Chang, and Sullivan (1987) propose a
branch-and-bound approach for this problem, and Szwarc (1989) presents a branch-and-
bound approach for the case that « = . These branch-and-bound algorithms are able to solve
instances up to 25 jobs. Sundararaghavan and Ahmed (1984) present an approximation algo-
rithm for the case a = 8 that shows a remarkably good performance from an empirical point of
view. Hall, Kubiak and Sethi (1990) and Hoogeveen and Van de Velde (1990) establish the
NP-hardness of the problem, even if a = B, thereby justifying the enumerative and approxima-
tive approaches. Furthermore, Hall et al. (1990) propose a pseudo-polynomial time algorithm
running in O (nZp;) time and space, and provide computational results for instances up to
1000 jobs.

Their experiments, however, show that the space requirement rather than the time require-
ment limits the applicability of the algorithm. In general, there is always need for a branch-
and-bound algorithm that solves instances for which the space requirement is prohibitive. We
present a branch-and-bound algorithm that solves virtually al/l instances without branching. It
is based upon new lower and upper bounds, which are computed in O (nlogn) time. If these
bounds do not concur, they can be refined by solving a subset-sum problem to optimality by a
pseudo-polynomial algorithm. This can be done very fast, since the subset-sum problem in our
application is of a considerably smaller dimension than the common due date problem. Hence,
the branch-and-bound algorithm is more than competitive with the pseudo-polynomial algo-
rithm for the common due date problem.

This paper is organized as follows. In Section 2, we review Emmons’ matching algorithm
(Emmons, 1987) to solve the unrestricted variant of the common due date problem with arbi-
trary « and B. In Section 3, we develop a lower bound based upon Lagrangian relaxation for
the restricted variant with @ = 8 and show how it can be extended to the case a = 8. In Section
4, we use the insight gained in Section 3 to develop a heuristic for the restricted variant. In Sec-
tion 5, we describe some details of the branch-and-bound algorithm. Finally, in Section 6, we

present some computational results.

2. EMMONS’ MATCHING ALGORITHM FOR THE UNRESTRICTED PROBLEM

Kanet (1981) presents an O (nlogn) algorithm for the unrestricted variant with « = B. Bagchi
et al. (1987) and Emmons (1987) propose O (rlogn) algorithms for the case a5~ 8. We prefer
to analyze Emmons’ matching algorithm, since this provides the insight needed for the subse-
quent sections. We first present some properties of an optimal schedule for both variants of the
problem.

THEOREM 1. No optimal schedule has idle time between the execution of the jobs. [

THEOREM 2. There is an optimal schedule for the unrestricted variant in which the due date d coin-
cides with the start time or completion time of the job with the smallest processing time. [

Emmons’ matching algorithm is based upon the concept of positional weights, which stems
from the following observation. If J; is early, then E; is equal to the sum of the processing
times of all early and just-in-time Jobs scheduled aftcr J;. This implies that 2E; can be rewrit-
ten as the sum of the weighted processing times of the early and just-in-time JObS where the
weight of p; is equal to the number of jobs scheduled before J;. Therefore, the positional weight
of position k before d (which is also the kth position in the schedule) is equal to a(k —1). The
weights for the positions after the common due date are determined in the same way. The
weight of the last tardy position (which is the last position in the schedule) is then equal to S,
the weight of the second last position is equal to 28, and so on. This scheduling problem
reduces then to an assignment problem, where jobs have to be assigned to positions. The cost
of assigning J; to the kth early position is equal to a(k —1)p;; the cost of assigning J; to the
kth tardy posmon is equal to Bkp;.

The assignment problem is solved in O(nlogn) time by matching the job that has the jth
largest processing time with the position that has the jth smallest weight, forj = 1,...,n

3. A NEW LOWER BOUND FOR THE RESTRICTED VARIANT

We first analyze the restricted variant in which earliness and tardiness are equally weighted,
that is, a= . Note that for this case the objective function f (o) can be written as
271G —d].

We look upon this 9P-hard problem as an ‘easy’ problem complicated by the ‘nasty’ con-
straint that the machine is only available from time zero onwards. If this constraint were not
present, then the problem could easily be solved through Emmons’ algorithm. This is exactly
the approach Szwarc (1989) follows to determine a lower bound. The structure of the problem,
however, suggests that the technique of Lagrangian relaxation might be more successful. We
remove the nasty constraint, and put it into the objective function, weighted by a nonnegative
Lagrangian multiplier. The resulting problem is easy to solve. It will be referred to as the
Lagrangian problem; its solution provides a lower bound for the original problem.

The nasty constraint can be formulated as

W <d,

4

where W denotes the total amount of work that is processed up to time d. If we introduce a
Lagrangian multiplier A > 0 and bring this constraint weighted by A into the objective func-
tion, then we get the following Lagrangian problem, referred to as problem (Ly): find the value
L (), which is the minimum of

n
21|Cj—d|+?\(W—d), @y
j=
for a given A > 0. Obviously, L(}) is a lower bound for the original problem. There are two
questions that immediately arise: Given a value of A, can L(A) be determined in polynomial
time? If so, can the value A* that maximizes the lower bound L(A) be found in polynomial
time? The latter problem is referred to as the Lagrangian dual problem. The following two
theorems provide affirmative answers to both questions. '

THEOREM 3. For a given \, the Lagrangian problem is solved by applying Emmons’ matching algo-
rithm with the weights of the positions before d increased by A.

PROOF. Straightforward arguments show that there exists an optimal schedule for the Lagran-
gian problem in which some job is completed exactly on time d. Hence, there is an optimal
schedule with W = 2 J, €6P)> where & denotes the set of jobs that are scheduled in the early
and just-in-time positions. The Lagrangian objective function can then alternatively be written
as

n
{Z1C—d|+ 2N} — M.
j=1 J,€6
Since the last term is a constant for a given A, we need to minimize only the expression inside
the braces. This is achieved by applying Emmons’ matching algorithm to the case where the
weight of the kth early position is equaltok —1+A. O

THEOREM 4. The optimal value N*, that is, the value that maximizes the lower bound, is equal to
the index A for which
(e =2)72) [(r =A=1)/2]
Pra+2;>d= X Pati+yy
j=0 j=0

where |x| denotes the largest integer smaller than or equal to x. If no such index exists, then
A* = 0.

ProoF. Consider an arbitrary value A. If A is not integral, then Emmons’ matching algorithm
yields a unique optimal schedule. If A is integral, then there is a large number of optimal
schedules, which can be generated by breaking ties in different ways. Define for each integer A
(A=0,...,n) o™ as the schedule with the property that the work processed before time d is
minimal among all optimal schedules for the Lagrangian problem (L,). In the same fashion,
the schedule o%** is defined as the optimal schedule for the Lagrangian problem (Ly) with a
maximal amount of work processed before time d, forA =0, ..., n. We define W{“m and Wi
as the amount of work processed before time d in of®® and o§®, respectively. Straightforward

5

calculations show that 62" is identical to 6% and that WRin = ppRaX This implies that L ()
is a piecewise-linear and concave function of A. The breakpoints correspond to the integral
values A =1,...,n, and the gradient of the function between the integral breakpoints A and
A+1 is equal to wRiR — g for A\=0,... ,n —1. The Lagrangian dual problem is therefore
solved by putting A* equal to the index A for which W™ > d > WJ™. Due to the indexing of
the jobs, the theorem follows. [J

Let o* be an optimal schedule for the Lagrangian dual problem. If A* = 0, then o* = o is
feasible for the original problem, and hence optimal. Note that this also implies that
d=py+p3+ -+ +p,ifnisodd,andd =p, +p3--- +p,_, if nis even. This agrees with
the observation by Bagchi et al. (1987) that the schedules (/1,J3, ..., J,,J,—1,...,J,) and
V1:J35--3Jn—1,J5, --.,J) are optimal under the respective conditions.

PROPOSITION 1. If A* = 1, then the first job in any optimal schedule for the original problem must
be started at time zero. [

In the remainder, we assume that A* > 1. Depending on whether n — A* is odd or even, o* has
the following structure. First, suppose n — A* is odd. Then the jobs Jy, .. .,Jy«—; occupy the
last A* —1 positions in o*, the pair {Jj«,Jx+ 11} occupies the first early position and the A*th
tardy position, the pair {J)s 45,/ \++3} occupies the second early position and the (* + 1)th
tardy position, and so on. Finally, the pair {J,_;,J,} occupies the positions around the due
date. Second, if n — A* is even, then ¢* has the same structure, except that J, is positioned
betweenJ, —; and J,, -1, and is started somewhere in the interval [d — p,, 4]

PROPOSITION 2. If there exists a schedule o* that is optimal for the Lagrangian dual problem in
which the first job is started at time zero, then the Lagrangian lower bound L (*) is tight and o* is
an optimal schedule for the original problem. [

If no such schedule o* exists, then there is a gap between the optimal value for the original
problem and the Lagrangian lower bound. This lower bound, however, can be strenghtened by
solving the modified Lagrangian problem, which is to find a schedule that minimizes

n

2IC—d|+MW—d)+ |W—d|.

j=1

Clearly, the modified Lagrangian problem yields a lower bound for the original problem if
A*¥ =1

THEOREM 5. The modified Lagrangian problem is solved by a schedule from among the schedules
that are optimal for the Lagrangian dual problem, for which | W — d | is minimal.

PROOF. Suppose that « is optimal for the modified Lagrangian problem, but not for the
Lagrangian dual problem. We show that 7 can be transformed without additional cost into a
schedule 7 that is optimal for the Lagrangian dual problem by conducting pairwise inter-
changes. Let w, be the schedule after 7 interchanges; hence, 7, = 7, and 77 = 7, for some

6

T = 1. Note that it is possible to specify a series of pairwise interchanges that lowers the
Lagrangian cost £|C; —d | +A* (W —d) at every interchange. Consider two successive
schedules 7, and 7, 1, and suppose that J; and J; with p; > p; have been interchanged. The
interchange must have decreased the Lagrangian cost by at least p; — p;, and may have
increased the term | W —d | by at most p; — p;. This means that every interchange does not
increase 2| C; — d | + A*(W —d) + | W — d |. Therefore, 7 must also be optimal. [l

Suppose that the first job in ¢* is not started at time zero. According to Proposition 1, we shift
o* to ensure that it starts at time zero, thereby either making it feasible or decreasing its cost.
Shifting o* implies that some jobs or parts of jobs are transferred to the other side of the due
date. First, suppose n —A* is odd. If o* starts before time zero, then shifting o* increases
Z|C;—d| by A*+1 per unit of the first job that is transferred, by A* +3 per unit of the
second job that is transferred, and so on. If o* starts after time zero, then shifting 6* decreases
2| C; —d| by A*—1 per unit for the first job that is transferred, by A* —3 per unit for the
second job that is transferred, and so on. As W — d is weighted by A*, the scheduling cost of o*
after shifting is equal to L(A*) + A;+ 34+ ---, where A, is the amount of the jth job that
has been transferred. Second, suppose that n —-)* is even. A similar analysis shows that the
scheduling cost of o* after shifting is equal to L(A*) + 2A;+ 4A; + ---, where 4; is the
amount of the jth job that has been transferred.

PROPOSITION 3. The cost of the schedule determined in Theorem 5 after shifting such that the first
job is started at time zero, is equal to the strengthened lower bound if both n —X* is odd and if
either J,, —1 orJ, is executed at timed. L[l

However, in order to determine that schedule, we have to solve the tie-breaking problem. We
will deal with this problem in the next section.

The lower bound approach can be extended to the restricted variant of the problem with
a =~ B. Without loss of generality, we assume that « and f are integral and relatively prime. A
similar analysis shows that the optimal value A* can be determined as the value
A* €{1,...,nB} for which Wi¥* =d > WER . Furthermore, Theorem 5 still holds, but the
strengthemng of the lower bound is less meaningful, since the cost of transferring one unit of
processing time of the first job to the other side of d has been increased from 1 to either a or B,
in case n —A* is odd.

4. A NEW UPPER BOUND FOR THE RESTRICTED VARIANT
We start with the case @ = . The analysis in the previous section suggests to find an optimal
schedule for the Lagrangian dual problem with minimal | W — d |. This requires the develop-
ment of a tie-breaking rule in Emmons’ matching algorithm that minimizes | W —d |. Such a
schedule induces an approximate solution to the common due date problem. This schedule is
provably optimal if W = d or if the conditions of Proposition 3 are satisfied.

We show that the problem of minimizing | W —d | boils down to solving the optimization
version of the subset-sum problem. This problem will be defined below; it will henceforth be

7

referred to as the subset-sum problem. Although this problem is 91%-hard in the ordinary sense
(Garey and Johnson, 1979), the instances occurring in our application virtually always belong
to an easy-to-solve subclass if 7 is not too small. In general, the subset-sum problem is solvable
by a dynamic programming procedure that requires significantly less effort than the O (n 2p;)
time and space algorithm for the common due date problem.

The problem of minimizing | W — d | can be transformed into an instance of the subset-sum
problem in the following way. Define a;= P2j—2+3 —Paj—14as, for
j=1,...,[(n—=A* +1)/2], and define D =d —W}i:". Note that all a;=0. Remove the
values a; that are equal to zero; let m be the number of remaining values a;, and let @ be the
multiset that contains the values ay, . . . ,a,,. First, suppose that n —A* is odd. The problem of
minimizing | W —d | is then equivalent to determining a subset A C @ whose sum is as close
to D as possible.

Second, suppose that n —A* is even. An optimal schedule for the Lagrangian dual problem is
also optimal for the original problem if W € [d — p,, d]. Finding such a schedule is equivalent
to determining a subset 4 C@ whose sum falls in the interval [D — p,, D]. If no such subset
exists, then the goal is to find a subset 4 whose sum is as close as possible to either D — p, or
D.

Given a subset A C @ (optimal or approximate), we determine the corresponding schedule
for the common due date problem in the following way. Start with o™, Interchange the jobs
that correspond to a;E4 for j = 1,...,m, thereby increasing the amount of work processed
before d by a;. Finally, shift the schedule to ensure that the first job is started at time zero.

We show now how to determine a suitable set 4 C @ We reindex the values a; in order of
nondecreasing values. For # not too small, the instances of the subset-sum problem virtually
always possess the divisibility property.

DEFINITION. A multiset of values {ay,. .. ,ay}, withl =a;<a; < -~ <apis said to possess
the divisibility property if for every j (j = 1,...,m) and for every value D €{1,2,...,2{= a;}
there exists a subset A C{a, . . . ,a;}, whose sum is equal to D.

THEOREM 6. A multiset of values {ai,...,an), With 1 =a)<a; < ' <a, possesses the

divisibility property if and only if a; 41 < g+ Lforj=1,...,n—1 0O

An intuitive reason explains why virtually all instances have this property. Every g; is equal to
the difference in processing times between two successive jobs in the shortest processing time
order. This implies that for randomly generated instances of the common due date problem the
values a; tend to be small if » is not too small. Note that 7| a; < max; <j <npj-

THEOREM 7. If an instance of the subset-sum satisfies the divisibility property, then Johnson’s algo-
rithm (Johnson, 1974), which is described below, solves this instance to optimality in O (mlogm)
time. [

JOHNSON’S ALGORITHM

Step 0. Reindex the values g; in order of nonincreasing values.

Step 1. Select the largest remaining value a; with a; < D. If there is no such value, then stop.
Step 2. Put g; in the subset; D <~ D — a;.

Step 3.1f D = a, and if @, is not in the subset, then go to Step 1.

8

Johnson’s algorithm always yields a subset whose sum is no more than D. This handicap is
overcome by not only applying the algorithm with the value D but also with the value
271a; — D. If A is the subset in the latter case, then an approximate schedule can be con-
structed as described above by taking 4 = @\ 4.

If Johnson’s algorithm does not yield a provably optimal solution, then we solve the instance
to optimality by dynamic programming. This requires O (mD) time and space. By this, we may
improve both on the upper and lower bound. If the lower and the upper bound still do not
coincide, then we need to apply branch-and-bound to solve the common due date problem to
optimality.

The approximation algorithm described above can be adjusted in an obvious fashion to deal
with the restricted variant of the common due date problem with a=4g8.

5. BRANCH-AND-BOUND

We describe the branch-and-bound algorithm for the case @ = B. The first step in the algo-
rithm is to solve the Lagrangian dual problem. If A* = 0, then ¢* = o™ is an optimal solution
for the common due date problem, and we are done. Otherwise, the jobs must be scheduled in
the interval [0, 27, p;] according to Proposition 1. We then determine upper bounds as
described in Section 4; we also apply the heuristic presented by Sundararaghavan and Ahmed.
If the lower and the best upper bound do not concur, then we solve the subset-sum problem to
optimality by dynamic programming. If the bounds still do not concur, then we apply branch-
and-bound.

For the design of the search tree we make use of the following observation, which is easily
verified through an interchange argument. In any optimal schedule, we have that the jobs that
are completed before or at the common due date d are scheduled in order of nonincreasing
processing times, and that the jobs that are started at or after d are scheduled in order of non-
decreasing processing times. In addition, there may be a job that is started before and finished
after d. For this particular job, it holds that the early or the tardy jobs have larger processing
times. Due to this structure, optimal schedules are said to be V-shaped. Assume now that the
jobs have been reindexed in order of nonincreasing processing times. A node at level j
(j =1,...,n) of the search tree corresponds to a partial schedule in which the completion
times of the jobs Jy, .. .,J; are fixed. Each node at level j has at most (» — j) descendants. In
the kth (k =1, ...,n —j) descendant, J is started before d and the jobsJ; 11, ... ,J;+x—1 are
to be completed after 4. Given the partial schedule for J,...,J j» a partial schedule for
J1, ..., J; 4k can easily be computed.

The algorithm that we propose is of the ‘depth-first’ type. We employ an active node search:
at each level we choose one node to branch from. We consistently choose the node, whose job
has the smallest remaining index. A simple, but powerful rule to restrict the growth of the
search tree is the following. A node at level j (j = 1, ... ,n) corresponding to some J; can be
discarded if another node at the same level corresponding to some J; with Pk = p; has already
been considered. This rule obviously avoids duplication of schedules.

As far as lower bounding in the nodes of the tree is concerned, we only compute the lower
bound L(\"). Hence, we neither solve the modified Lagrangian dual problem nor compute
additional upper bounds.

n t | # O(nlogn) # DP maximum = # greedy # SA # LB
nodes optimal optimal tight

10 0.1 66 20 12 72 71 86
10 02 69 20 22 72 58 89
10 03 68 23 22 68 59 93
10 04 82 1 40 85 62 85
20 01 81 12 94 84 51 94
20 02 94 5 167 94 43 99
20 03 99 0 320 100 42 99
20 04 99 1 0 99 35 100
30 01 100 0 0 100 50 100
30 02 98 2 0 98 51 100
30 03 100 0 0 100 57 100
30 04 100 0 0 100 68 100
40 0.1 100 0 0 100 63 100
40 02 100 0 0 100 64 100
40 03 100 0 0 100 63 100
40 04 100 0 0 100 54 100
50 0.1 100 0 0 100 72 100
50 02 100 0 0 100 63 100
50 03 100 0 0 100 69 100
50 04 100 0 0 100 75 100
75 0.1 100 0 0 100 75 100
75 02 100 0 0 100 79 100
75 03 100 0 0 100 78 100
75 04 100 0 0 100 83 100
100 0.1 100 0 0 100 81 100
100 02 100 0 0 100 86 100
100 03 100 0 0 100 78 100
100 04 100 0 0 100 78 100
200 0.1 100 0 0 100 96 100
200 02 100 0 0 100 98 100
200 03 100 0 0 100 99 100
200 04 100 0 0 100 97 100
500 0.1 100 0 0 100 99 100
500 02 100 0 0 100 100 100
500 03 100 0 0 100 100 100
500 04 100 0 0 100 100 100
1000 0.1 100 0 0 100 100 100
1000 02 100 0 0 100 100 100
1000 03 100 0 0 100 100 100
1000 04 100 0 0 100 100 100

TaBLE 1. Computational results.

10

6. COMPUTATIONAL RESULTS

The processing times were drawn from the uniform distribution [1, 100]. Computational exper-
iments were performed with d = [¢Zp;| for £ = 0.1, 0.2, 0.3, 0.4, respectively, and with the
number of jobs ranging from 10 to 1000. For each combination of » and ¢ we generated 100
instances. The algorithm was coded in the computer language C; the experiments were con-
ducted on a Compag-386 personal computer.

The results are shown in Table 1, the design of which reflects our three-phase approach. The
third column ‘# O (nlogn)’ shows the number of times (out of 100) that Johnson’s subset-sum
algorithm gave rise to a schedule with cost equal to the Lagrangian lower bound L (A*); this is
the number of times that the common due date problem was provably solved to optimality in
O (nlogn) time. The fourth column ‘# DP’ shows how many of the remaining instances were
provably solved to optimality by dynamic programming applied to subset-sum. The fifth
column ‘maximum # nodes’ shows the maximum number of nodes that was needed for the
branch-and-bound algorithm. The sixth column ‘# greedy optimal’ shows the number of times
that Johnson’s algorithm induced an optimal schedule. The seventh column ‘# SA optimal’
gives the same information for the approximation algorithm presented by Sundararaghavan
and Ahmed. The last column ‘# LB tight’ shows the number of times that the lower bound
(strenghtened or not) was equal to the optimal solution value.

From these results we may draw the conclusion that the common due date problem is
extremely easy to solve from a practical point of view. If n =40, then the O (nlogn) algorithm
solves all randomly generated instances to optimality; for n = 30, dynamic programming
applied to subset-sum suffices to solve the remaining instances; for n < 20, branch-and-bound
is occasionally needed, but requires only a very small number of nodes, and always less than 1
second of running time.

ACKNOWLEDGEMENT
'The authors would like to thank Jan Karel Lenstra for his helpful comments on an earlier draft
of this paper.

REFERENCES

U. BaGcHI, Y.L. CHANG, AND R.S. SULLIVAN (1987). Minimizing absolute and squared devia-
tions of completion times with different earliness and tardiness penalties and a common due
date. Naval Research Logistics 34, 739-751.

K. BAKER AND G. SCUDDER (1990). Sequencing with earliness and tardiness penalties: a
review. Operations Research 38, 22-57.

H. Emmons (1987). Scheduling to a common due date on parallel uniform processors. Naval
Research Logistics 34, 803-810.

N.G. HaLL, W. KUBIAK, AND S.P. SETHI (1990). Deviation of completion times about a restric-
tive common due date. To appear in Operations Research.

J.A. HOOGEVEEN AND S.L. VAN DE VELDE (1990). Scheduling around a small common due
date. To appear in European Journal of Operational Research.

D.S. JouNsoN (1974). Approximation algorithms for Combinatorial Problems. Journal of Com-
puter and System Sciences 9, 256-278.

11

J.J. KaNET (1981). Minimizing the average deviation of job completion times about a common
due date. Naval Research Logistics Quarterly 28, 643-651.

P.S. SUNDARARAGHAVAN AND M.U. AHMED (1984). Minimizing the sum of absolute lateness in
single-machine and multimachine scheduling. Naval Research Logistics Quarterly 31, 325-
333.

W. SzwARc (1989). Single machine scheduling to minimize absolute deviation of completion
times from a common due date. Naval Research Logistics 36, 663-673.

