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Abstract. Call a link well-connected if its diagram has no 2-edge cut sets, and the only
4-edge cut sets are those made by a crossing. We prove Tait’s flyping conjecture for well-
connected links, i.e., any two well-connected alternating links are equivalent (= ambient
isotopic), if and only if their diagrams are the same (up to trivial operations).
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1. Introduction

A knot is a subset of R® homeomorphic to the unit circle S;. A link is a (nonempty)
disjoint union of knots.

For the purpose of this paper we may assume that for each link K considered, the
projection 7[K] of K to R? is a 4-regular planar graph, with a finite set of vertices, edges,
and faces. Here w denotes the projection from R® onto R? with n(z1,23,23) := (21, 22)-
Throughout, by projecting we mean projecting by .

We can associate with a link K the diagram of K that arises by projecting K to R2,
indicating at each crossing which of the two curve segments goes over the other:

(1)

The link, or its diagram, is called alternating if, when following each component of the
link in its diagram, we go alternatingly over and under. like in
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Two links K and K’ are equivalent if there exists an isotopy of R® bringing K to K'.
(An isotopy of a topological space X is a continuous function @ : [0,1] X X — X such
that $(0,u) = u for each u € X, while for each fixed ¢ € [0,1] the function &(¢,.) is a
homeomorphism of X. It brings Y to Y' if (1,Y) =Y".)

Two link diagrams are called equivalent if one arises from the other by a series of the
following operations:

(3) (i) turning the diagram upside down,
(ii) rerouting one of the edges of 7[K] through the unbounded face, as in
£ -~ W
(The box denotes the rest of the diagram.)

Remark 1. It has been shown by Reidemeister [5] that if K and K' are equivalent, then
their diagrams can be obtained from each other by the following operations:

0~ | TR e
7\

s
These operations are called the Reidemeister moves. In our proof below, we make no use
of this result (except for deriving tameness of isotopies). |

Clearly, if two links have equivalent diagrams, they are equivalent. The converse need
not hold in general. However, as we show in this paper, for well-connected alternating links
the converse does hold. We call an alternating link K well-connected if the graph n[K] has
no 2-edge cut sets, and the only 4-edge cut sets are those determined by one vertex of n[K].

Theorem. Let K and K' be well-connected alternating links. If K and K' are equivalent,
then their diagrams are equivalent.

This is a special case of the Tait flyping conjecture [6], which does not require well-
connectedness but the weaker reducedness instead (link K is reduced if the graph 7[K] has
no loops and no cutpoints), while the operations (3) should be extended by flyping:
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(up to exchanging up and down). Note that flypes are not possible for well-connected links.
(Tait: ‘The deformation process is, in fact, simply one of flyping, an excellent word, very
inadequately represented by the nearest equivalent English phrase “turning outside in.” ’;
‘When we flype a glove (as in taking it off when very wet, or as we skin a hare), we perform
an operation which changes its character from a right-hand glove to a left.’)

Remark 2. By an idea of Tait, any link K gives a planar graph Hx as follows. Color the
faces of 7[K] black and white such that adjacent faces have different colors, and such that
the unbounded face is colored white. Put a vertex in each black face, and for each crossing,
make an edge connecting the vertices in the two black faces incident with the crossing (in
such a way that the edge crosses the crossing).

Now a link K is well-connected if and only if the graph Hg is 3-vertex-connected (i.e.,
has no vertex cut of less than three vertices and has no parallel edges (except if it has only
two vertices connected by at most three parallel edges)). |

2. Proof of the theorem

We will associate with any link K a compact bordered surface g in R3, with bd(Zg) =
K. (bd denotes boundary.) A pictorial impression of S is given by

(6)

(7)

More precisely, X g is defined as follows. For any link K, let Vx denote the set of vertices
of 7[K], and let v(K) := |Vk]|.



For each vertex v of the graph n[K], let p] and p} be the two points in K N 7~1(v),
where p] is above p!. (Here and below, above and under refer to larger and smaller z3
coordinate.)

Moreover, let e, be the open line segment in #=1(v) connecting p] and p!. Define

(8) T:=KU {J e.
veVy

So T forms a 3-regular graph embedded in R3, with 2v(K) vertices and 3v(K) edges.
Call a face F of n[K] even if F is bounded and when following the boundary of F in
clockwise orientation, we follow the edges from up to down, as in
]

VTR
~ F (
/\'}/—} ™

or if F' is unbounded and when following the boundary of F in clockwise orientation, we
follow the edges from down to up. The other faces are called odd.

Note that of any two adjacent faces, one is even and the other is odd. So if the unbounded
face is even, then the white faces are even, and the black faces are odd. If the unbounded
face is odd, then the white faces are odd, and the black faces are even.

Note moreover that any link can be transformed to one in which the unbounded face is
even, by (possibly) rerouting through the unbounded face (operation (3)(ii)). So putting
the condition that the unbounded face be even, is not a restriction.

Let K be a link, such that the unbounded face of n[K] is even. Let B denote the
collection of odd faces. Consider an odd face F. The set 7= 1[bd(F)] N T is a simple closed
curve, consisting of parts of K and of the line segments e,, for those vertices v of 7[K]
that are incident with F. So it is the boundary of some open disk DF so that # maps Dp
one-to-one onto F. Fix for each odd face one such open disk Dy. Then we define:

(10) Yk :=TuU |J D
FeB

(9)

So Y i indeed is a compact bordered surface with boundary K.

Our proof is based on the following two theorems, which might be interesting in their
own right:

Theorem A. Let K and K' be well-connected alternating links such that the unbounded
faces of [K| and w[K'] are even. If K and K' are equivalent, then there is an isotopy of
S3 bringing Tk to Tg.

(53 is the 3-dimensional sphere, considered as one-point compactification of R3.)

Theorem B. Let K and K' be well-connected alternating links, such that the unbounded
faces of 7[K| and w[K'] are even. If there is an isotopy of S bringing Tx to Tk, then the
diagrams of K and K' are equivalent.



Theorems A and B clearly directly imply the theorem. Although Theorem A above
holds in general, to avoid several technicalities, in this paper we prove Theorem A only
under the condition that

(11) the unbounded face of 7[K|] is bounded by at least four edges of #[K].

This is enough to derive the theorem, since we may assume that either 7[K] or 7[K'] has at
least one face that is bounded by at least four edges. (If all faces of #[K] and of x[K'] are
bounded by at most three edges, then, by the well-connectedness of K and K', n[K] and
#[K'] have either at most three vertices or both are the octahedron, for which the theorem
trivially holds.) Then by rerouting and, possibly, reflecting the diagram, we can obtain
condition (11).

Remark 3. In fact a more general statement than Theorem A holds:

(12) Let K and K’ be reduced alternating links such that the unbounded faces
of 7[K] and w[K'] are even. If K and K' are equivalent, then there is an
isotopy of S3 bringing £k to X z,, where K' is a link the diagram of which
can be obtained from that of K’ by a series of flypings.

Remark 4. The following can be proved by methods similar to those used in this paper to
show Theorem B:

(13) Let K and K’ be reduced alternating links, such that the unbounded faces
of 7[K] and 7[K'] are even. If there is an isotopy of S 3 bringing Tk to Tk,
then the cycle spaces of Hx and Hg: are isomorphic.

Here the cycle space of a graph is the collection of cycles. A cycle is an edge-disjoint union
of circuits.

Statements (12) and (13) imply that if K and K' are equivalent reduced alternating
links such that the unbounded faces of #[K] and #[K’] are even, then the cycle spaces of
Hyg and Hg are isomorphic. By a theorem of Whitney [10], (13) directly implies Theorem
B. |

3. Preliminaries on links and surfaces

We give some preliminaries on links (cf. Kauffman [2]) and surfaces.

Kauffman [1], Murasugi [3], and Thistlethwaite [7] (cf. Turaev [9]) showed that if K and
K' are equivalent reduced alternating links, then v(K) = v(K'). In fact they showed that
any reduced alternating link K attains the minimum number of crossings (in its diagram)
among all links equivalent to K.

A second invariant is obtained as follows. Give each component of K some orientation.
This way we obtain an oriented link. Then there are two types of crossings, positive and
negative:
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The writhe w(K) of K is the number of positive crossings minus the number of negative
crossings. This number is not invariant under equivalence of links. However, Murasugi [4]
and Thistlethwaite [8] showed that if K and K’ are equivalent reduced alternating links,
then w(K) = w(K"'). Similarly, Murasugi and Thistlethwaite showed that the number b(K)
of odd faces is an invariant for reduced alternating links.

Let K; and K, be two disjoint oriented links. Consider the diagram made by K; U K.
Define ’

(15) 1k(K1, Kz) =
2((# positive Ky — K, crossings)—(# negative K1 — K, crossings)).

(A K; — K, crossing is a crossing of K; with K;. # means ‘number of’. Here no con-
dition is put on which of K; and K, is above the other at the crossing.) This number is
invariant under isotopy of $3: if K| and K} are equivalent to K; and K, respectively,
then 1k(K, K4) = Ik(K1, K,) (assuming that K and K, are oriented as induced through
the isotopy by the orientations of K; and K,). This invariance of 1k(.,.) follows directly by
considering the Reidemeister moves.

Let K be an oriented link and let ¥ be a disjoint union of compact bordered surfaces
embedded in R® and containing K. We define a number 7(K, X) as follows.

If each component of K is an orientation-preserving curve on X, we take for each com-
ponent K of K a curve & parallel on ¥ to k. The union of these & forms link K. Then
7(K,3) := 2Ik(K, K), where we orient K and K in the same direction.

If at least one component of K is orientation-reversing, we consider a link J homotopic
on X to the set of closed curves that follow the components of K twice. So each component
of J is orientation-preserving. We define (K, X) := 1r(J, T).

Clearly, if K and K’ are homotopic on X, then 7(K,X) = 7(K', X). Moreover, if some
isotopy of S3 brings K, X to K', ¥’ then (K, %) = 7(K',X').

Direct calculation shows that for any alternating oriented link K for which the un-
bounded face of #[K] is even:

(16) 7(K,Zk) = 2(v(K) + w(K)) = 4(# positive crossings of K).

Finally, we note that the Fuler characteristic x(¥k) of Xk (= number of faces, minus
number of edges, plus number of vertices) is equal to

(17) x(Zk) = b(K) - v(K),

where b(K) denotes the number of odd faces of the diagram of K. (This follows from the
facts that T has 2v(K) vertices and 3v(K) edges, and that ¥x \ T consists of b(K) open
disks.)



4. Theorem A
In this section we consider:

Theorem A. Let K and K' be well-connected alternating links such that the unbounded
faces of n[K] and of n[K'] are even. If K and K' are equivalent, then there is an isotopy
of S3 bringing Sk to Tk,

We show Theorem A under the condition that the unbounded face of #[K] is bounded by
at least four edges of 7[K].

Proof. It suffices to show:

Lemma. Let K be a well-connected alternating link such that the unbounded face of n[K]|
s even. Let X be the disjoint union of compact bordered surfaces satisfying:

(18) (i) bd(E) = K,

(i) x(Z) > b(K) - v(K),

(iii) 7(K,X) = 2(v(K) + w(K)).
Then there ezists an isotopy of S2 bringing ¥ to Tg.

(‘Disjoint union of compact bordered surfaces’ implies that each component of ¥ has a
nonempty border (being a nonempty disjoint union of closed curves). Observe that condition
(18)(iii) is independent of the orientations chosen for K. The conclusion in the Lemma
implies that ¥ is connected and that equality holds in (18)(ii).)

We prove the Lemma under the condition that the unbounded face of K is bounded by
at least four edges.

Remark 5. The Lemma also holds if this last condition is not satisfied. In fact, the
Lemma can be extended to reduced, not necessarily well-connected links. In that case the
conclusion is that there exists an isotopy of S bringing ¥ to &> Where K is some link the
diagram of which is obtained from that of K by a series of flypings. |

To derive Theorem A, let K and K’ be equivalent well-connected alternating links such
that the unbounded faces of 7[K] and #[K'] are even, and such that the unbounded face of
7[K] is bounded by at least four edges.

Let @ be an isotopy of 52 bringing K’ to K. Let ¢(z) := &(1,z) for all z € §3. So
K = y[K"].

Applying the Lemma to ¥ := 9[Z /] gives Theorem A (since
(19)  7(K,¥[Zx]) = ($[K'], ¥[Ex]) = 7(K', Ex) = v(K') + w(K') = v(K) + w(K)

and

(20) x(¥[Zx]) = x(Txr) = b(K') — v(K') = b(K) - v(K)).



Proof of the Lemma.

Let
(21) G := 7[K],
V = Vxg
P = {pllveV}u{pllveV},

Throughout we identify an embedded graph with its image. We consider edges as open
curves, and faces as open regions.

In proving the Lemma, we make the assumption that ¥ is tame and in general position
with respect to the link K and the projection function 7. In particular we assume that X
has a simplicial decomposition into a finite number of vertices, edges, and faces, in such a
way that each edge and each face projects one-to-one to R%2. So the number:

(22) w(z) = |ZNn7 7 (z)

is finite for each z € RZ.

Moreover, there exists a planar graph H in R%, with a finite number of vertices, edges,
and faces, such that w is constant on each edge and on each face of H. We may asume that
w(z) = 0 in the unbounded face of H. (So ¥ does not contain the point in §3\ R3. This is
no restriction as we can easily shift ¥ slightly.)

The simplicial decomposition of ¥ implies that there exists a finite set W of points on
K that do not have a neighbourhood in ¥ that projects one-to-one to R2. We may assume
that the neighbourhood of any point in W is like one in:

(In this and following pictures, the bold lines indicate parts of K or of #[K]. The wriggled
lines give the cuts through ¥ bounding the neighbourhood.)



We may assume that PN W = (. Moreover, we may assume that the projection of any
vertex of the simplicial decomposition of ¥ is not contained in the projection of any edge
of X.

By the tameness and general position assumption,

(24) T:==n=7'G]
and
(25) A=

{z € T | z has no neighbourhood on ¥ that is an open disk
and that projects one-to-one to R%}

are graphs (embedded in R?), with a finite number of vertices and edges.

The link K is contained both in T' and in A. The graph A consists of K together with
all ‘fold’ edges of ¥. The set W can be taken as the set of vertices of A of degree 3, all
other vertices of A having degree 2. Note that we can take

(26) H = =[A].

(It is not difficult to see that these assumptions can be satisfied. In fact, if we take
¥ = ¢Y[Sg] as in Section 3 above, these assumptions are easily fulfilled, as the isotopy can
be described by Reidemeister moves.)

We introduce some further notation and terminology. Let W' denote the set of points
of type (a) or (b) in (23), and let W denote the set of points of type (c) or (d) in (23). Let
W denote the set of points of type (a) or (c) in (23), and let W~ denote the set of points
of type (b) or (d) in (23). This notation is motivated by the fact that

(27) a link K on ¥ parallel and close to K, makes a positive crossing with K near
any point w € W, and a negative crossing with K near any point w € W~.

E.g., in (23)(a) a positive K — K crossing can be seen:

(28)

Let U be the set of points on ‘fold’ points in #71[G]. That is,
(29) U:=An= 1G]\ K.

So U is the set of points u that have in ¥ N #~![G] a neighbourhood as in

(30) >

9



Moreover, define

(31) VX := set of vertices of X,
EX := setof edges of X.
FX := set of faces of X,
C := set of components of ¥\ 771[G],
Fy := unbounded face of G.

Call a component of K \ (PUW) (i.e., an edge of ' on K) a segment.

By extension, define for any z € R® : w(z) := w(n(z)). Call a point z in R? or R® even
or odd if w(z) is even or odd. For any set X, Xeven denotes the set of even points in X, and
Xoaa denotes the set of odd points in X.

For any nonempty subset X of R% or R3 let

(32) #(X) := min{w(z) | z € X}.

Minimality of X.
Suppose X is a counterexample to the Lemma. We may assume that we have chosen ¥
in such a way that:

(33) (i) x(2) is as large as possible;
(ii) ZueVand( R) w(v) is as small as possible;
(iii) Y ,eve w(v) is as small as possible;
(iv) 2o segment #(0) is as small as possible;
(v) |U]| is as small as possible;

(vi) Ypew w(w) is as small as possible.
(In this order: (ii) should hold under condition (i), and so on.)

Y is determined by T.

The surface ¥ is determined by the graph T' (up to inessential deformations). To see
this, note that by our general position assumption, the boundary of any component C € C
is a disjoint union of simple closed curves. In fact it is only one closed curve:

Claim 1. FEach component C € C is an open disk.

Proof. Consider a face F of G. For any component C € C contained in 7w~ 1[F], the
boundary bd(C) of C is a union of pairwise disjoint simple closed curves on bd(x~1[F]).

Moreover, C is orientable, since we can extend C to a closed surface in R® by adding
disjoint closed disks to the boundary components of C (‘outside’ #~1[F]).

Suppose 7~1[F] contains a component in C that is not an open disk. Then we can choose
a component C' € C contained in #~![F] such that C is not an open disk and such that
for one of its boundary components v, one of the components of 7~ 1[bd(F)]\ 7 is minimal
(inclusion-wise). (Minimal taken over all C' that are not open disks, over all boundary
components 7 and over all components of 7~1[bd(F)]\ 7.)
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By this minimality assumption, we know that we can replace C' by two disjoint bordered
surfaces C; and C, in 7~1[F), disjoint from all other components, such that C, is an open
disk with boundary v, and such that:

(34) bd(C1) U bd(C;) = bd(C) and x(C1) + x(C2) = x(C) + 2.

Let X’ be the manifold obtained from ¥ by replacing C' by C; and C;. So x(Z') =
x(Z) + 2.

Let £” be the union of those components of ¥/ that have a border (i.e., are not closed).
So bd(2") = K. If x(E£") > x(X), we would obtain a counterexample with larger Euler
characteristic, contradicting our assumption (33)(i). (It is a counterexample, since x(2") >
x(2) 2 b(K) — v(K) = x(2k).)

So x(2") < x(¥). Hence x(X'\ ") > 2, and hence X'\ 2" is a 2-sphere § (as it is
connected, since at most one component of ¥’ is a closed surface, because each component
of ¥ has a nonempty border).

Then K is either enclosed by S or is contained in its exterior. (Indeed, K attains the
minimum number of crossings among all links equivalent to K (cf. Section 3). Hence there
cannot be a 2-sphere separating two components of K.)

By (possibly) applying an isotopy of S® we may assume that K is contained in the
exterior of S.

It follows that there is an isotopy bringing (S \ (C1 U C3)) U C to a bordered surface
contained in 7~ ![F], fixing £\ (($\(C1UC3))UC). Thereby we decrease |U| or 3 ,cy e w(v),
contradicting the minimality assumptions (33).

It follows that, up to isotopy, we can reconstruct ¥ from I". Note that at edges e of T
not on K, the surface X is attached at both sides of #~![r[e]]. At each segment o on K (=
edge of T on K), X is attached at only one side. We can determine this side, as it is at the
‘odd face side’ if p(o) is odd, and at the ‘even face side’ if (o) is even. (p(o) is determined
by T.)

The graphs G and H.

Note that G = #[K] is a subgraph of H, and if z ¢ H, that w(z) is odd if z belongs to
some odd face of 7[K], and w(z) is even if z belongs to some even face of 7[K].

Note moreover that if e is an edge of H, and F and F' are the two faces of H incident
with e, then |u(F) — p(F')| = 1 if e is part of G, and |u(F) — p(F')| = 2 otherwise.

H has three types of vertices: vertices that are also vertices of G, vertices that are on an
edge of G, and vertices that are in a face of G. Consider a vertex v of H, and let a := w(v).

If v is also a vertex of G, it has degree 4 both in G and in H. Its neighbourhood is like
that in

(35)

In this and in following figures, the numbers in the faces of H give their y-values.
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If v is on an edge of G, it has degree 3 or 4. If it has degree 3, it is the projection m(w)
of some point w in W, and its neighbourhood is as in

=1 o1

(36) v o or v &K

() (b)

If v has degree 4, it is the projection m(u) of some point u in U, and its neighbourhood
is as in

(37) o¢

If v is in a face of G, it has degree 2 or 4 in H. If it has degree 4, its neighbourhood is
as in

fod ‘ K+2
(38) e
-2 fod

Sometimes, we will indicate by a little arrow crossing any edge e of H which of the two
faces incident with e has highest p-value:

& X+ 4 S X%
ek

Moreover, we orient each edge e of H so that the face of H with highest p-value is at
the right hand side of e:

(40) o To(-n on Po 4 T X+1

The set W.

For any w € W, let ¢, be the (unique) edge of H incident with 7(w) but not being part
of G. Note that

(41) w belongs to W+ if either w € W' and ¢, is oriented towards 7(w), or
w € W! and ¢, is oriented away from 7(w).
Similarly, w belongs to W~ if either w € W' and ¢, is oriented away from
m(w), or w € W! and ¢,, is oriented towards m(w).

‘We show:

Claim 2. Let w and w' be two points in W connected by a segment. Then one of w and
w' belongs to W71, the other to W'.

Proof. Suppose to the contrary that both w and w’ belong to W1, say. Let e be the edge
of G containing 7[¢]. Then locally in 7=[e], T looks like one of the configurations in

12



(42)

Replace T locally by the corresponding configuration in

(43) Yy ANEAN AN N
W w' w w' W

w’

As before, the new graph I uniquely determines a surface 3’ (up to vertical shifts). It is not
difficult to see that ' arises by an isotopy from ¥. Moreover, for I the number of points
of degree 3 along K is smaller than for I'. Thus we would have a smaller counterexample,
contradicting the minimality assumptions (33). |

Moreover: yanvd \___l L\ \_____._,/

Claim 3. Let w and w' be two points in W connected by a segment. Then one of €y, €y
is oriented towards w or w', the other one away from w or w'.

Proof. Suppose

(44)

would occur. Then p(F3) = pu(F2) + 2 = p(Fy) + 4. However, u(F,) differs by at most one
from both p(F;) and p(F3), a contradiction.
Similarly

w 1T

lead to a contradiction. *’ |

and

As a direct corollary we have:

Claim 4. For each edge e of G, either all points w € W with n(w) € e belong to W, or
all belong to W—.

Proof. Directly from Claims 2 and 3 (cf.(41)). |
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The set U.

Consider an edge e of G, connecting vertices v and v’ of G. Consider the intersection
J:=Xn=x"1e].

The set J forms a graph with vertices of degree 1 on the boundary of #~1[€] and vertices
of degree 3 in each point in W N w~1[€]. Moreover, one of p], p} and one of pl,, ptl,, might
be an isolated vertex of J. All other vertices of J have degree 2.

By the minimality of |U|, Z,evew(v) and Y, cw w(w), we know that (up to ‘vertical
shifts’) each component I of J \ K is a straight line segment, or the union of two straight
line segments ‘above each other’, making an angle at a point u in U, as in

. w .
(46) Pl :

9

| —~——— v
w-'[e]

In the latter case, the straight line segment connecting the end points ¢ and ¢’ of I contains
a point p € P, which is an isolated point of J. Moreover, above or under I there is no point
in W (i.e., [I] N «[W] = 0). So there is a segment o of K such that n[I] C #[¢] and such
that o is incident with at least one point in P.

The neighbourhood of 7~1[v] for vertices v of G.
Consider a vertex v of G and its neighbourhood, as in

(47) F'L' K-1 o1 E

o=
}:; 2

Here Fy, F,, F3, F4 denote the faces of G incident with v. Let o4, 03, 03,04 be the segments
incident with p] and p} so that 7(o;) is incident with F; and Fiy; (i = 1,...,4, taking
indices mod 4).

For each 7 = 1,...,4, choose some subinterval J; of 7[o;] U {v} U m[o;_1] containing all
points in 7[U] N (7[o;] U 7[o;_1]).

First consider the case where o := w(v) is odd. Then the diagram is locally as in

3 N %
F
4 4
(48) den o1t
\
F.
o/ % o-2 a;



Consider now w~1[J3] as ‘seen’ from Fj. It is either as in

i { 360
T ¢
wf !

AR

(49)
Yoy
boy
} %,
¥ - A
?‘v{ . }Fv

i | R
w{

a3

4

Kf’v{ | : 1,

(50) ” //

L Y
: Yoo
61 M

The numbers 8], 8L, @1, ¢}, ¢y, 7 are the number of occurrences of the given type of
curve.

N
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We set 7, := 0 if (49) applies, and (, := 0 if (50) applies. Define

(51) Pov = SDI: + So-ia p = Z v, €= Z Co, M= Z M-
vEV veEV vEV

Note that

(52) |U| =9 +2¢.

The plane 7~ 1[J;] seen from F; is as in

81

Mﬁ

(53)

ov+1.{ : e,

Q3,48 { : }*(’f%*?f

A symmetric pictures applies to 77}[J4] seen from Fj.
Finally, #~1[J;] seen from Fj is as in

Breey { ‘ MY

[

(54) i 1y,

Py

?»}""‘Qj{ : ) } @j—f‘ﬁ}

-

R

N

Symmetric pictures and notation hold in case w(v) is even.

Segments connecting P and W.

Consider a segment o incident at one end with a point p], and at the other end with
a point w in W. Let e be the edge of G containing 7[o]. Let I be the component of
(m~[e] N 2) \ K incident with w. Then we have:

Claim 5. Locally in m~1[e], the configuration is like one of the following:

* W + w ) 1
ot o ot

b5 o
(55) Ve :I pty/I— pv‘c ‘1\ ple v
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Proof. Indeed, the alternative would be that it is one of the configurations in

P o W 4 I
(56) PV:I’._- fv ;——

o pe "
In both of these two cases there is an isotopy shifting along K reducing ), .y w(v), con-
tradicting the minimality assumptions (33). |

Similar statements hold for segments connecting p! and a point in W.

The boundaries of components in C.

Consider a component C € C. Let w[C] be contained in face F of G. Then either
bd(C) is a homotopically trivial circuit on #~![bd(F)], or not. Let Co be the collection of
components of the first kind, and let C; be the collection of components of the second kind.
Note that if F is the unbounded face Fy of G, then all components C' € C contained in
7~ 1[F] belong to Cq (since = C R3).

In order to study C, consider a segment o. Let e and e’ be two parts of edges of I' above
o, in such a way that e and e’ have the same projection as o:

(57) e

(Here e might be incident with one of the end points of 7). Let e and e’ be on the boundaries
of components C' and C’ in C, respectively. Then:

Claim 6. C and C' are different.

Proof. Suppose C = C’. Then we may assume that there is no other edge part of T in
between of e and e’ with the same projection as 0. Otherwise there would be two such
edges e’ and e"' inbetween being part of the boundary of the same C” in C. (This follows
from the fact that if [ is a line segment in #~*[n[¢]] connecting e and e’, then ! is contained
in some circuit in /Ubd(C) that is homotopically trivial in #~1[bd(F)], where F is the face
of G containing 7[C].)

By replacing e, e’ by e”, e’ and repeating the argument, we obtain two ‘neighbouring’
e e
Now modify T by replacing the configuration in figure (57) by that of
o

(58)

It is not difficult to check that the new graph I gives a surface X’ isotopic to X, contradicting
the minimality of 3°, segment #(7)- |

It follows that for any C' € C, with 7[C] contained in face F of G, and for any = € bd(F),
bd(C) has at most three intersections with #=1(z).
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For any C € C, let B(C) denote the set of all points in C' for which no neighbourhood
in C projects one-to-one to R2.

So
(59) A=Ku |J B(C).
ceC
and hence
(60) H ==x[A]l=GU U #[B(C)].

ceC

If C € Co, then Claim 6 implies that bd(C') has exactly two acute angles, and #[bd(C)] #
bd(F,). We may assume that |7~1(z) N C| < 2 for all z € F, and that B(C) is a curve
connecting the two acute angles on bd(C).

Moreover, we may assume that C = D’'U B(C)U D" for two open disks D’ and D" such
that both D’ and D" project one-to-one to R2.

If C € Cy, then bd(C) can have some acute angles, but only at the Z-type curves in
figure (49) or at segments o on K that are incident with two points in W, and that are
locally as in

(61) LI Siap ...‘:’1_7“_

Let us call such a segment a Z-{ype segment.

We may assume that |7~}(z) N C| < 3 for all z € F. In fact, we may assume that the
set {z € F | |v~Y(z) N C| = 3} forms a collection of pairwise disjoint open regions, each
corresponding to one Z-type curve or Z-type segment.

The set B(C) forms a disjoint union of curves, each of them connecting two acute angle
points on some Z-type curve or segment on the boundary of C. We may assume that B(C)
projects one-to-one to R2, as in

(62)

ANATA

The graph H along an edge of G.
Consider an edge e of G, let it go from v to v":

I even l
(63) —_ - —
\Y lv'
I add

18




When following e from v to v/, we first meet some (or none) points in #[U], each having
degree 4 in H. Next we meet some (or none) points in x[W], each having degree 3 in H.
Finally we meet again some (or none) points in w[U], each of degree 4 in H.

We first show:

Claim 7. The following configurations do not occur on any edge e of G:

1
~> -t—) et 1> & —t>
v
(64) + o+ 5 & 4

(%) (b ()
where v is a vertez of G. Similarly for those configurations arising by exchanging up and
down and left and right.

Proof. Configuration (64)(a) gives in the plane 7~1[e]:

€, & B
(65) £a Kn
\%»/

(up to exchanging up and down). Then the boundary of some component C' € C contains
€1,...,65 (at one side of m~[e] or the other). So bd(C) contains both &; and e5. This
contradicts Claim 6.

Similarly, configuration (64)(b) gives

€ &,
v

£,
\ .
\53/
(up to exchanging up and down), again leading to a contradiction with Claim 6.
Finally, configuration (64)(c) gives

(67) £, \ \s
£ ~

(up to exchanging up and down), again contradicting Claim 6. |

L 4
——.?\l

There exists a unique partition of W N w~![e] into classes W1, W, ..., W} in such a way
that



(69) (i) k is even;

(ii) =[WA),...,®[Wi] occur consecutively along e, as in:

A P A
b 0 e

(111) WZ"' -aWk—-l 7£ 01

(iv) the arrow crossing any edge ¢,, with w € W; goes from right to left if
i is odd, and from left to right if 7 is even.

(Again, €, denotes the edge of H incident with (w) not being part of G.)

As configuration (64)(a) does not occur, we know that |Ws,...,|Wi_;| < 2. Moreover,
the forbidden configurations (64)(b) and (c) imply that |W;| = |[Wiyq| fori=2,...,k - 2,
1 even.

Now if we have two neighbouring edges ¢,, and ¢, with arrows pointing towards each
other:

(10) e o

(up to exchanging up and down in this picture), then they are in fact one and the same
edge:

(71) ._-Q—_

This follows from the fact that they are projections of some component of B(C) for some
C € C;, as the segment on K in between is a Z-type segment.
If |W;| = |Wit1]| = 2 with 2 < ¢ < k — 2 and i even, then we have

(72) +’+‘++

(up to exchanging up and down in this picture). In that case they are part of

) £ 4
T

since in 77![e] we have

£\
(74) A

(up to exchanging up and down), and hence
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(75) /s’//

Concluding, when following e from v to v’, we first meet a number ¢ of points in #[U]
(t > 0), each having degree 4 in H: '

M tet
T

e
tz¢

(76)

We say that these points of #[U] (and their liftings in U) are near to v.
Next we meet a series of points in #[W] of degree 3. First:

R PO OO s s s s & SRS, S 2tk
=T " FF F TFF F TR I

Again we say that these points of 7[W] (and their liftings in W) are near to v.
Next we meet a series of configurations as follows, in some amount and in some order:

DEE T

(In fact, Claim 3 gives conditions which configurations can succeed each other.)
After that we have:

(79) |+ +’ '{"'l" or +’ ++’ .
- e e e el e

These points (and their liftings) are called near to v'.
Finally, we meet again points of degree 4 in 7[U]

reir b
b

(80)

f‘?o

These points (and their liftings) are called near to v'.
Note:

Claim 8. All points in U near to a vertez v of G project to at most two edges of G
incident with v.

Proof. This follows directly from (49) and (50). |
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The graph H in the faces of G.
Let F be a face of G. Let C and C’' be two different components in C contained in
x~1[F]. It follows from the results in the previous part that

(81) 7[B(C)] and 7[B(C’)] have a crossing in F, if and only if there are points
u,u’ € U such that u € bd(C) and v’ € bd(C"), such that u and u’ are near
to the same vertex v of G, and such that 7(u) and 7(u') are on different
edges of G (incident with v).

We say that such a crossing is near to v. So

(82) each vertex of H of degree 4 in some face of G is a crossing near to some
vertex v of Gj it can occur in only one of the four faces of G incident with
v (viz. the one with smallest y-value near to v).

If C and €’ belong to Co, then their neighbourhoods near to 7~1(v) as seen from n~1[F]
are as in:

Pl

bd(c) ba(e!)

(83)

(up to exchanging up and down).
If C € Co and C’ € Cy, then 771(v) as seen from 7 ~![F] is as in:

' - bd(c)
&:
ba(c)

>

(84)

"

(up to exchanging up and down and left and right).
If C,C’ € Cy, then then 7~(v) as seen from 7#~1[F] is as in:

bc(((.,)
— bd(c")

/
< P!

(85) _ :
o >
/

(up to exchanging up and down).
There are no other types of crossings of B(C) and B(C").
We finally note:
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Claim 9. Let v be a vertez of G and let F be a face of G incident with v. Let w € W and
u € U be near to v. Then there is no directed path in H from m(w) to w(u) or from 7(u) to
7(w) that is contained in F.

Proof. Let D be a directed path in H from m(w) to =(u):

D
(86) W) T(w)

v

By (81), D does not traverse any other vertex of H. So there exists a component C € C
contained in 7~![F] such that some component of B(C) connects w and w.

If C € Cy, then each arc in B(C) corresponds to a Z-type curve or Z-type segment, and
hence either would connect two points in U or would connect two points in W.

So we know C' € Co. Let F be the face of G containing #[C]. Then the boundary of C
on 7~ 1[bd(F)] is as

(87) : >

(up to exchanging up and down and left and right). This contradicts Claim 5. |

[ ]
A lower bound for Z X(Rak)-
k=1
Define for any k:

(88) Ry, := closure of {z € R? | w(z) > k}.

So Ry = 0 if k is large enough. Moreover, let p be the number of Z-type segments ((61)).
We show that the Euler characteristics x(R2z) of the sets Ry satisfy:

Claim 10. 4 x(Rzk) > 2|Veveal + |[Woadl + U] + 2|W 34l + 27+ 25.
k=1 '

Proof. We first prove:

. s 1 1 wv)—1, 1 1
Subclaim 10.1. Z X(Rz2k) = 5]61[ - Eb(K) - Z L—E_J + §|Wodd| + =|U].
k=1 ve€VG 2
Here | | denotes lower integer part.

Proof. We first show that for each face F of G,

(89) > x(Rax 01 F) = 2z,
k=1

where kr denotes the number of components in C; contained in #~![F]. Note that xp is
odd, if and only if F is odd.

For any component C in Co one has x(7[C]) = 0 (since C is a union of two disks above
each other). Moreover, for any component C in C; the set
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(90) Ro:={z€F||="(z)nC| > 2}
has x(R¢) = 0. This implies

(91) i X(Rzk n F)
k=1
= > x(=[C)+ > x(Ro)+ L— > x(C)]
C € Co,C C 7 1[F] ceC, CGCI,CQW_I[F]

-; X xo)

C €€;,C Cni[F]
= L%n Fl.
(The first equality follows from the modularity of the Euler characteristic, i.e., x(4)+x(B) =

x(ANB)+ x(AU B).)
Adding up (89) over all faces F' of G gives:

(92) > x(Ba\G)= Y L3nr] = 5G] - 25(K).
k=1

FeFG

Next, let for any vertex v of H, fi(v) be the maximum value of yu(F) where F ranges
over all faces of H incident with v. So fi(v) is equal to the largest integer k such that v
belongs to Rk. Note that, for each edge e of H with e C G, p(e) is equal to the largest
integer k such that e is contained in Rj. Hence

(99) Sxrxne)= ¥ (B2 w49
k=1 veVH e€c EH,eCG

Consider a vertex v of H. If v is also a vertex of G, then ji(v) = w(v). Let e;,e3,€3,€e4
be the edges of H incident with v. We can choose indices so that p(e;) = p(ez) = w(v) and

p(es) = p(es) = w(v) — 1. Hence
(v ple; w(v
(94) B9 ZL()J—L() w1
If v = m(u) for some u € U, let e; and e; be the two edges of H incident with v that are

contained in G. We can choose indices so that p(e1) = fi(v) and p(ez) = fi(v) — 2. Hence

o) 1 jpe)) L)1
(95) (B - 1B - e =

If v = 7(w) for some w € W, then ji(v) = w(v) + 1. Let e; and e; be the two edges of
H incident with v that are contained in G. We can choose indices so that p(e;) = fi(v) and
p(e2) = fi(v) — 1. Hence

#(v) #(61) #(62) 1
(96) 1= =515 -5l =3
if fi(v) is even, i.e., if w € Woaa. Simjlarly,
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(97) I_#(U)J I.“(el)_l [/‘(32)_' =0

if fi(v) is odd, i.e., if w € Weyen.
Adding up (94) over all v € VG, (95) over all u € U, (96) over all w € Woqq, and (97)
over all w € Weyen, gives by (93):

w(v
(98) > xExn0) = - 3 1202 Y + 101
k=1 veVG
Combined with (92), this gives the claimed equality. |

Multiplying by 4 gives:

(99) 4 Z X(Rax) = 2|Ca| — 26(K) — 4 3 L“’(”) | +2[Woadl + 2|U]|.
veVGE

Rewriting the right hand side gives
1
(100) 2(ICl-51W1= 3 (w(v)=1))=26(K)~2ICol +2|Vevea| +|W|+2|Woaal +2|U].
veVG

The first term here contains the Euler characteristic of ¥ as it can be expressed as
follows.

Subclaim 10.2. x(X%)=|C| - %IWI - > (w(v) - 1).
veVG

Proof. Since each component in C is an open disk, one has:

(101) X(Z\ = G)) = [c].
Moreover,
(102) X(2N7G]) = x(T) = ~1W] — 3 (w(2) - 1).

v€VGE

This follows from the fact that all vertices of I' in W U P have degree 3, and all vertices of
T in #71[V]\ P have degree 4. All other vertices of I' have degree 2. Hence

(103) x(T) = |VT| - |EI'|
=|WUP|- —]WUP| + ) (w(v)-2)— = Z (w(v) - 2)
veVG vGVG
—lwi- Y (o) -1,
veVG
since |P| = 2|V G|.
Combining (101) and (102) gives the claimed equality. |

So (100) is equal to:
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(104) 2xX(Z) — 26(K) — 2|Col + 2|Veven| + |W| + 2|Woaa| + 2|U]|.
By assumption (ii) in the Lemma, this is at least
(105) — 2|V| = 2(Col + 2AVerenl + W] + 2[Woaal + 2|U].

Now |C0| satisfies the following equation (recall that p is the numBer of Z-type segments
(61) and that ¢ is the number of Z-type curves in (49)):

Subclaim 10.3. |Co| = 2[W|+ |U| - p—¢.

Proof. For any C in Cy, the boundary bd(C) of C should have exactly two acute angles.
Such an acute angle should occur at a point in W or U.

In fact, each point w serves as acute angle for exactly one component in C. For let
w € W1, say

(106) = z

Then there is one component C, say, in C that is incident with 7 and &, and one component
C'’, say, in C that is incident with 7 and ¢’. C and C' are at different sides of 7.

Now w can serve as acute angle only for C. In fact, w is an acute angle for some C in
Co if and only if w is not contained in some Z-type segment. So exactly |W| — 2p points in
W serve as acute angles for components in Cy.

Any point u in U is acute angle for at least one component in Cq (viz. in the face F, or
F4 as in figures (53)). In fact, u is acute angle of two components in Cy, if and only if u is
not on a Z-type curve.

Since there are { Z-type curves, and each of them contains two points in U, it follows

that the points in U make 2|U| — 2{ acute angles for components in Cq.
So

(107) 2(Col = W] — 20+ 2/U| - 2,

and the claimed equality follows. |

Therefore, (105) is equal to
(108) — 2[V| + 20+ 2¢ + 2|Veven| + 2[Woadl-

Rewriting gives

(109) =20V + [Waadl + 20Woad + 5(W* — [W-))

4 5Wd + 1Weeal = Wiz = [Wehal) + 20+ 2¢ + 2[Veva.
This rewriting being helpful is seen by the following two subclaims.
Subclaim 10.4. |WT| - |[W~| = 2v(K).

Proof. One directly derives from (27):
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(110) 7(K,X) = |[WT| = [W™| + 2w(K).
Since (K, X) = 2(v(K) + w(K)) by assumption, we have the required equality. |

Sub(:laim 10.5. I oddl + I evenl I ddl I evenl - 2'0(K) + 2‘P + 477

Proof. Consider a component e of K \ P. Let it connect p} and pv, as in

even. l
\ 2'
(111) % < = all
V'
‘ odd l

In this figure, a, 8, &', ' denote the p-values in the corresponding faces of H incident with
v and v'. Note that a and o' are even.

Define £(e,v) := 1if 8 = a+1 and (e, v) := 0if B = a—1. Similarly, define £(e,v’) :=1
if B/ = o' + 1 and £(e,v’) := 0if B’ = &’ — 1. (So £(e,v) indicates at which side of p] the
surface ¥ is attached. Similarly for £(e, v').)

Let v'(e) denote the number of points in U that are above e, and let vi(e) denote the
number of points in U that are under e. Let v(e) := vT(e) + vl(e).

For any z € R3, let x(z) denote the number of points in ¥ strictly under z, minus the

number of points in ¥ strictly above z.
We show

(112) K(py) — K(p}) =
(e v)—{—{(e vl)+2v(e)+l dnel+| evennel | ddnel ‘ evennel'

Indeed, when traversing e from p} to pl,, near p! the number of levels above deleted is

&(e,v) + 2v7(e), while near pl, the number of levels under added is £(e, v') + 2v!(e).

Moreover, at traversing any point w in W:;ld, if w € W1, then one level above is deleted
(cf. (23)(a) and (36)(a)), and if w € W, then one level under is added (cf. (23)(c) and
(36)(b))-

Similarly, at traversing any point w in W4, if w € WT, then one level above is added
(cf. (23)(b) and (36)(b)), and if w € W!, then one level under is deleted (cf. (23)(d) and
(36)(a))-

Symmetric statements hold for w € W, and w € W[,,. This shows (112).

Now, for any v € VG, if e and €’ are the two components of K \ P incident with p!,
then £(e,v) + &(e’,v) = 1. Similarly for p].

Hence, adding (112) over all components e of K \ P we obtain:

(113) 2( Y (@)= Y w(p}))

veVG veVG

= 2’0(‘[{) + 2IU| + ' ddl + | evenl | ddl | e-t'enl
Now from (49) and (50) we see that for any v € VG,
(114) w(p]) = K(p}) = 200 + 20, + 27 + 2.
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Hence

(115) IWc-‘Izidl + 'We—\-renl - lWo:ldl - IW:\-wenl
= 4o+ 40+ 40+ 4v(K) - 2v(K) - 2|U| = 2v(K) + 2¢ + 49
since |U| = ¢ + 2¢. |

Subclaims 10.4 and 10.5 imply that (109) is equal to

(116) = 2|V]+ [Woadl + 2|Woaal + VI + V] + @+ 204 2p + 2¢ + 2|Veven!,
which equals

(117) [Woadl + 2[Weaal + ¢ + 20+ 2p + 2¢ + 2|Veveal.

By (52) this is equal to the right hand side in the Claim. | |

(e ]
An equality for Y |8(Ra)|-
k=1
For any closed subset R of R?, let §(R) denote the set of edges of H on G ‘sticking out’ of
R, counting multiplicities. More precisely, it is the set of pairs (e,v) where v € VH,e € EH
such that e is incident with v,e C G, and v € R,eN R = 0.
So if one makes a set of closed curves in R? \ R close to the boundary components of R,
then these curves will have |§( R)| crossings with G.

Claim 11. Y |6(R2t)| = 2|Veven| + |Woad| + |U].
k=1

Proof. Consider a vertex v of H. Let a := w(v). First let v € VG. Consider a neighbour-
hood of v:

(118)

If o is even, then (e1,v) and (ez,v) belong to §(R,), and there are no other pairs (e, v)
in any of the sets §(Rzx). If a is odd, then no pair (e, v) belongs to any 8(R2k)-
Next let v € 7[U]. Consider a neighbourhood of v:
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& o+ k41 «

(119) y or v

e, €
If  is even then (ez,v) belongs to §(R,), and if  is odd, then (e, v) belongs to §(Ra41)-
No other pair (e, v) belongs to any §( Raz).
Finally, let v € x[W]. Consider a neighbourhood of v:

e

P

X +1 «~1

4

(120)

-1 ol +1

€2 €

If a is even, no (e, v) belongs to any §(Rzx). If a is odd, then (es,v) belongs to §(Rat1),
and no other pair (e, v) belongs to any §( Rax)-
Adding up over all vertices v of H on G we obtain the Claim. |

The remainder of the proof now is to make the following intuitive argument precise. By
Claims 10 and 11,

[= o] [ <]
(121) Z 16(R2k)| = 2lVeven| + [Woad +|U| < Z 4X(R2k)°

k=1 k=1
On the other hand, roughly speaking, since G is well-connected, for each k, §(R2x)| >
4x(R2t), with equality holding only if each component of Ry covers exactly one vertex of
G. Hence it is of type (124)(a) with a = w(v) even. Since |W*|— |W~| = 2|V, this should
hold for each vertex v, while W~ = @ and W = W*. Then it is easy to see that there exists
an isotopy bringing ¥ to k.

The graph H'.
Let H' be defined by
(122) H':= | bd(Rax).
k=1

So H'is the subgraph of H consisting of those edges e of H for which | 2x(F)] and | Fu(F")]
differ (by 1), where F' and F’ are the faces of H incident with e.
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So H' contains all of H \ G, while an edge e of H on G is in H’, if and only if p(e) is
even. H' inherits the orientation from H (cf. (40)).

Note that any edge e of H' that is on the boundary of an odd face of G is oriented
counter-clockwise with respect to that face. (So it is oriented clockwise with respect to
even faces, except for the unbounded face).

We show:

Claim 12. Let Dy,..., D, be a decomposition of the edges of H' into simple directed
circuits such that D.,. .., DD, are oriented clockwise and D,,;, ..., D; are oriented counter-
clockwise. Then:

(123) o= (t-5) = 3 x(Ra).
k=1 C

Proof. We can successively uncross Dy, ..., D;. If D; and D j cross, we can find two crossings
of D; and D; such that we can exchange the parts inbetween in such a way that we obtain
again two simple directed circuits D] and D’. Now the number of clockwise oriented circuits
among D/, D’ is equal to that among D;, D;, as one easily checks.

By repeating this, we obtain D;,..., D; pairwise noncrossing. Then they should form
the boundary components of the sets Ry;. For each fixed Roy, X(Ra2k) is equal to the
number of boundary components that are oriented clockwise, minus the number of boundary
components that are oriented counter-clockwise. So (123) follows. |

Consider the following configurations:

a ceven

Vi LY - F 4
\‘ ,,
N
V4
* . 7 .
odd VN odd. odd odd  odd odd
(~ 4
Y x K
" r €VE.A., \ 4 ¢ \
2
(124) (a) even
evon €ven Evien,
odd odd oddd sdel

@) (e) () (4)

Here the interrupted line is part of G not in H'. We call the components in (124)(a)(f)
small components of H'.
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If one of the configurations (124) occurs in H', no other edge of H' is connected to it
(by (81) and (82)).

Note that (124)(a) implies that v belongs to Veyen, and that (124)(b) implies that v
belongs to V,qq. Moreover, (124)(a) as seen from F, is as in

j
(125)
4

Since w(v) = a in (124)(a), both z and y belong to x[W]. Since w(v) = a in (124)(Db),
z,z',y,y all belong to #[W]. Hence, by Claim 9, also z and 2’ belong to #[W]. Similarly,
by Claim 9, all vertices traversed in (124)(c) belong to #[W].

By the results following Claim 7, the number p is equal to the number of occurrences of
configurations (124)(d), (e), (f), and (g).

For any simple closed curve D in R? we denote

(126) R(D) := closed region enclosed by D.

‘We observe:

Claim 13. Let D be a simple directed circuit in H', oriented clockwise, such that R(D)N
VG = {v} for some vertez v of G. Then D is of type (124)(a),(b) or (c).

Proof. Note that if D traverses some point in #[U] or #[W] near to a vertex v’ of G, then
v’ belongs to R(D), implying v' = v. Hence D cannot traverse any other points in 7[U] and
7[W] than those near to v. (If D would traverse any other point in #[W], then it is part of
one of the configurations (124)(d)-(g), and hence either R(D) would not contain v, or D
would traverse a point in 7[W] near to some vertex v’ # v.)

So if D intersects one of the edges e incident with v, it intersects e in one of the following
ways:

e € e € €
odd § ewn eien, odd odd § evon even. § odd
>8> or on 3 or or
-
(127)
v v v v v
(o) (b) (@) (&) (&)

First suppose that D does not traverse v. Then by Claim 8, D traverses a point in 7[W],
and hence, by Claim 9, D does not traverse any point in 7[U]. So all vertices of H traversed
by D belong to #[W], and hence each crossing is of type (127)(b) or (c). Therefore, we have
(124)(c).

Second suppose D traverses v and v belongs to Veyen- Then D contains

\ eden. o
§\ ’!
(128) otd W odd
X
elem,
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So it contains both (127)(d) and (e). Therefore, D is of type (124)(a).
Finally, suppose D traverses v and v belongs to V,q4. Then D contains

even o
L]

L4
v, ,*

4
(129) odd X ot odd
L 4
>

[

So it contains both (127)(d) and (e). By Claim 9, it follows that D is of type (124)(b). 1

The space A'.
Consider the set

(130) A':= (AU U ey) \ {o|o segment on K with p(o) odd}.
veVG

(As before, e, denotes the open line segment connecting p} and p}.)

Each point in P U W is incident with two segments on K, one with even p-value and
one with odd u-value. Hence A’ is a 2-regular graph embedded in R3. So each component
of A’ is a circuit.

Note that

(131) H' = x[A).

The orientation of H' induces an orientation of A’. Each line segment e, is oriented from
! to pl
Py 1O Py

Let D be some component of A’, and consider #[D]. Each of the components in (124) of

H' corresponds to a component of A’. We call a component D of A’ small if #[D] is small.

The length function l.
For each edge e of H' define the ‘length’ I(e) of e by:

(132) l(e) = |eNVeen| ifeCG,
= |enG]| if e is contained in an even face of G,
= 0 if e is contained in an odd face of G.

For any H" C H' define
(133) WH") := > ).

e€EH',eCH"

Then:

Claim 14. Let R be a closed region in R?such that the boundary bd(R) of R is part of H'
in such a way that R is at the right hand side of any edge e of H' on bd(R). Then

(134) [(bd(R)) = |&6(R)|-
Proof. Since for any vertex v of H' of degree 4 the edges incident with v are oriented as in
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(135) ><

bd(R) consists of pairwise disjoint simple directed circuits.

For any vertex v of H on G N bd(R), define a(v) as follows. If v € VG, let a(v) := 2 if
¥ € Veven and a(v) := 0 if v € Vogq. f v & VG, let a(v) be the number of edges e C bd(R)
with v € €, and e being contained in an even face of G. By definition of [,

(136) I(bd(R)) = > a(v).

v€VHNGNbA(R)

Now, on the other hand, for any v € VH NG N D, a(v) is equal to the number of edges
e of H such that v € € and eN R(D) = . So by definition of §(R),

(137) |6(R)| = > a(v).

v€VHNGNbd(R)

Combining (136) and (137) gives (134). |

We next show:

Claim 15. FEach simple directed circuit D in H' is oriented clockwise and has length
(D) = 4. Moreover, W34 =0, n =0, and configuration (124)(g) does not occur.

Proof. For any oriented curve Q, let zg be its beginning point and yg be its end point
(these points are not part of @ if Q is an open curve).

We first show the following (where we use that the unbounded face Fy of G is bounded
by at least four edges of G): ‘

Subclaim 15.1. There exist vertices vy and v, of G on the boundary of the unbounded
face Fy such that v1 and v are not adjacent in G, and such that for for each i € {1,2} and
for each component Q of A’ N 7w~ [Fy], if the n(2q) — m(yg) part of bd(Fo) (in clockwise
orientation) contains v;, then one of zq,yq is near to v;.

Proof. If for each Q the 7(zq) — (yg) part of bd(F,) contains at most two vertices of G,
we can take any two nonadjacent vertices vy, v; of G on bd(Fp).

If for at least one such component @ the 7(zg) — 7(yg) part of bd(Fp) contains more
than two vertices of G, choose @ maximal in the sense that the w(zq) — m(yg) part of
bd(Fp) is as large as possible. Then we choose v; and v, so that z¢ is near to v; and yg is
near to vs.

Now v; and v, have the required properties. For suppose that for some component Q'
of A’ N 7~ 1[F,)] the n(zq') — 7(yg:) part of bd(Fy) contains v;. Since 7[Q'] can cross 7[Q]
only near to v; or vz, and since we have chosen @ maximal, it follows that zg/ or ygr is
near to v;.

Moreover, v; and v, are nonadjacent, since otherwise we could replace the component
C € Co with B(C) = Q through an isotopy of $2 by a component C’ € Cq so that Q' :=
B(C') is a curve with the property that the w(zg/) — 7(yg:) part of bd(Fo) contains no
other vertices of G than (possibly) v; and v;. As this isotopy reduces EvEVand( ) w(v),
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we obtain a contradiction to the minimality assumption. |

Let D denote the collection of all boundary components of all Ry; that are oriented

clockwise and that are not in (124)(d), (e), or (f). Let p’ denote the number of small
components of type (124)(d), (e), or (f). So

(138) S xX(Ra) < 1D + 4
k=1

Let e, e} be the two edges incident with v; on bd(Fp), and let e}, ey be the two edges
incident with v, on bd(Fg).

For any simple directed circuit D let again R(D) denote the closed region enclosed by
D. Moreover, let 71(D) be equal to the number of sets among e}, {v1 }, e/ that are contained

in R(D). So r1(D) € {0,1,2,3}. Similarly, let r,(D) be equal to the number of sets among
e5, {v2}, e} that are contained in R(D).
This is used in showing:

Subclaim 15.2. There is no crossing (i.e., vertex of H of degree 4) in Fy near to vy or
near to vy.

Proof. Suppose the Subclaim is not true, and suppose without loss of generality that there
exists a crossing in Fp near to v;. This implies that

(139) (#D €D | m(D)=3)< (#D €D | (D) = 1).

The reason is that the crossings in Fy near to v; are locally as in:

b
(140)

%

It implies that v belongs to Veyen and that the curves in D are locally as in:

5

(141) fa K
Y%
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So the number of D € D with ry(D) = 3 is strictly less than those with 7;(D) = 1. (Note
that by the conditions in Subclaim 15.1, all D in D with 7;(D) = 3 occur (partly) in (141).)

It implies that for the curve D € D traversing v; one has that R(D)NV G # {v}, since
otherwise it would be of type (124)(a), implying that there are no crossings near to v; (cf.

(125)).

Now we distinguish two cases.

Case 1. There is no crossing in Fy near to v,. This similarly implies:
(142) (#D €D |r(D)=3)< (#D €D | r(D)=1)

and v, belongs to Veyen-
Now for each D € D we have:

(143) I(D) > 8 — 2|ry(D) - 1] - |ra(D) - 1.

To see this, let D be a closed curve encircling D and very close to D, in a such a way
that D has exactly I(D) = |6(R(D))| crossings with G. Then showing (143) is simple case-
checking, using the facts that R(D) should contain at least one vertex of G (as it is oriented
clockwise, and as it not a small component of type (124)(d), (e), or (f)), and that hence,
by the well-connectedness of K, D should cross G often enough.

[Without loss of generality, ro(D) < 71(D). First assume ro(D) = 0. If 71(D) = 0, then
(D) > 4, since § # R(D)NVG # VG, implying I(D) = |§(R(D))| 2 4. If r1(D) = 1, then
I(D) > 6, since D crosses e| and e} and since v, ¢ R(D), while R(D) N VG # {vl} If
r1(D) > 2, then (D) > 4, since v, ¢ R(D),v, € R(D).

Second assume ro(D) = 1. If 71(D) = 1, then (D) > 8, since D crosses each of
e}, ey, eh, ey, implying that D can be decomposed into two curves D and D, with end
points all in Fo, where D; crosses ¢} and e}, (say), and D; crosses e} and elf. Then each of
D; and D, crosses G at least four times. So D crosses G at least elght times. If r(D) = 2,
then l(D) > 6, since D crosses one of e}, el and each of e}, e). Again by decomposing D
into D; and D, one sees that (D) > 6. If rl(D) = 3, then l(D) > 4, since D crosses both
e; and ej.

Third assume r3(D) = 2. If r;(D) = 2, then I(D) > 4, since D crosses at least two of
the edges e}, e, b, el. If 11(D) = 3, then I(D) > 2, since D crosses at least one of the edges
eh, ey,

Finally, if 7(D) = r2(D) = 3, then {(D) > 0.]

Claim 10, (138), (139), (142), (143), and Claims 14 and 11 imply:

(144) 2|Veven| + |Woad| + |U| + 2|W_ 4| + 27+ 2p — 4p’
<472, x(Rak)) — 4p' < 4|D|
< (2|D| - 2(#D € D|ri(D) = 3) + 2(#D € D|r(D) = 1))
+ (2|D| = 2(#D € D|ro(D) = 3) + 2(#D € D|ro(D) = 1))
= Y pep(4—2|r(D) - 1|) + Lpep(4 — 2|r2(D) - 1|)
= X pep(8 = 2|m(D) — 1| — |r2(D) — 1])
< Y pep UD) < (Xi: U(bd(R2k))) — 20
= Xk |6(R2k)|) = 2p" = 2|Veven| + | Woadl + |U| -
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Since p’ < p, this gives a contradiction.
p' < p, this g

Case 2. There is no crossing in Fy near to v3. So
(145) (#D € D | ro(D)=3) =0.
Now for each D € D one has
(146) [(D) > 6 —2|r(D) - 1].

To see this, again let D be a closed curve encircling D and very close to D, in a such
a way that D has exactly (D) = |§(R(D))| crossings with G. Then showing (146) is again
simple case-checking, using the fact that R(D) contains at least one vertex of G and using
the well-connectedness of K.

[If 7y(D) = 0 then I(D) > 4, since v; ¢ R(D), and hence D has at least four crossings
with G. If r1(D) = 1, then /(D) > 6, since D crosses both e} and e and since r5(D) < 2.
If ri(D) = 2, then I(D) > 4, since D crosses at least one of the edges ej,ef and since
ro(D) < 2. If r1(D) = 3, then I(D) > 2, since ro(D) < 2.]

Now by Claim 10, (138), (139), (146), and Claims 14 and 11:

(147) 2|Veven| + [Woadl + |U| + 2|Wyg4l + 20+ 2p — 4p'
< A2 x(Rax)) — 49" < 4|D|
< 4|D| - 2(#D € D|r1i(D) = 3) + 2(#D € D|r (D) = 1)
= Y pep(6 = 2|r1(D) — 1) < Epep UD) = (72, H(bd(R2k))) — 27’
= (21 [6(R2x)]) — 20" = 2|Veven| + [Woad| + |U| - 2p".

Since p’ < p, this is a contradiction. This proves Subclaim 15.2. |
p

This gives:

Subclaim 15.3. Let D be a simple directed circuit in H', oriented clockwise, and not
being a small component of type (124)(d), (e) or (f). Then I(D) > 4.

Proof. By Subclaim 15.2, 71(D) < 2 and r(D) < 2. ¥ VG ¢ R(D), then, as R(D)
contains at least one vertex, I[(D) = |§(R(D))| > 4, by the well-connectedness of K.

If VG C R(D), then 1 < 71(D) < 2 and 1 < 75(D) < 2. So any curve D encircling D
and close to D crosses at least one of e, e} and at least one of e}, ej. So I(D) > 4. |

Now by Claim 10, (138), Subclaim 15.3, and Claims 14 and 11:

(148) 2|Veven| + [Woaal + |U| + 2|[W 34| + 27+ 2p — 20’
< 44X x(R2x)) — 20" < 4D| 4+ 20" < (Xpep (D)) + 20
< Eill l(bd(R%)) = El?;l |5(R2k)| = 2lVeven| + |Wodd| + IUI

Since p’' < p, it follows that we have equality throughout in (148). Hence W, 4 = # and
n =0 and p’ = p. So configuration (124)(g) does not occur.
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Moreover, H' has no simple directed circuit D that is oriented counter-clockwise. Oth-
erwise we could decompose H' into simple directed circuits Dy,...,D; where D; = D,
and where for some s < t, Dy,...D, are oriented clockwise, and D;41,...,D; are oriented
counter-clockwise. This implies by Subclaim 15.3 and Claim 12,

(149) S U(bd(Ra)) = (') = Y (D)

k=1 =1

[ ]
>45—2p">4(s—(t—3))—2p' =4 x(Rak) — 20,
k=1

contradicting equality in (148).
It similarly follows that for each simple directed circuit D one has I(D) = 4. [ | |

This implies:
Claim 16. Configuration (124)(b) does not occur.

Proof. Consider 7~ 1[v] from face F;. We see, since W, 4 = 0:

(150) N o ~

This contradicts Claim 5. |

Moreover:

Claim 17. W = W], and ¢ = 0. Configurations (124)(d) and (f) do not occur.

Proof. By Claim 15, W];; = 0. We next show W, = 0. Suppose W5, # 0. Let
w € W_,.,, and let e be the edge of G containing w(w). So, by Claim 4, all points in W
that project to e, belong to W,

even*

Since by Claim 15 configuration (124)(g) does not occur, it implies that e is as in

| P ]
(151) =T e T "l 1

and there are no other points in 7[W] on e. Without loss of generality, we may assume that

v w(w)

(152) “]r

occurs. Then on e, left to 7(w) all edges of H' are entering e from above, and leaving e

from below. Moreover, right to m(w) all edges of H' are entering e from below, and leaving
e from above:
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(153) I A P — 4
X22ERY vy Lt

Now first assume that v belongs to Veyen. Let a,b,c,d be as in

OM € vem_
Q Vv w
(154) — <
b d
evene T | odd

Then H' contains a simple directed circuit D containing a and b, and a simple directed

circuit D’ containing ¢ and d. We may assume that D’ encloses D (except for touchings).
Again, let R(D) denote the closed region enclosed by D. Suppose R(D)NVG # {v}.

Then VG C R(D), and the boundary of D has crossings with the edges e and e’ as in

( — e

(155)

But in that case D’ cannot enclose D.
So we know R(D) NV G = {v}. Hence by Claim 13, R(D) is the shaded region in

1]

W v W

(156) ——§ T

with w',w"” € W*. We can switch the component C in C with B(C) having w and w' as
angle points, to the other side of v. That is, (156) becomes




(157)

w
However, now @' belongs to W+ while w € W, contradicting the minimality of ¥ (cf.
Claim 4).

Next assume that v belongs to V,a4. Let a,b,c,d be as in

odd even.

%5
v w
(158) e 2o c e
o( [
d
Even ode

€|

Now there are no points in #[U] on part r (since v € Voaq and hence w(v) = a). It
follows that H' contains a simple directed circuit D containing a, b, c and d. Since e is fully
contained in R(D), we know v’ € R(D), and hence R(D) NV G # {v}.

Let e',e”, e be the edges of G as indicated in (158). Let E’ be the set of edges of G
not contained in R(D) but with at least one end point in R(D). Since I(D) = 4, |E'| < 4.

If |[E'| = 4, then two edges from E’ form a cut either with e and e or with e’ and
e". Hence, by the well-connectedness of K, E' = {e,e’,e”, €'}, contradicting the fact that
e C R(D).

Suppose next that |E’| = 3. Then there are exactly two edges in G that intersect R(D)
in exactly one of their end points. This contradicts the well-connectedness of K.

So |E'| = 2. Then either E'U {e,e"} or E'U {e/,e"} is a cut. Hence, by the well-
connectedness of K, E' = {e,e"} or E' = {e’,e"}. Since e is fully contained in R(D), it
follows that E' = {e’,e"}. So €’ is not fully contained in R(D). This implies that D should
have a crossing with edge e’. Since w(v) = a, this cannot be in a point in 7[U] near to v.
So near to v we have

(159)




However, since W, 4 = 0, we have that w/,w” € W*. In particular, w' € W2, . Let

C € C be the component in 7~ ![F3] with B(C) = Q. The angles of bd(C) seen from Fj are
as in

.

wl

~ N\
oY

(160)

This is not possible.
So W~ = 0. Now by Subclaims 10.5 and 10.4
(161) |W:;idl - IW::renl = 2|V| + 290 + 277’
IW:;idl + IWe-l;/enI = 2IVI
Hence W1

e\ren:0 and ¢ =7 =0.
It follows that configurations (124)(d) and (f) do not occur. |

Consider any component @ of A’\ #71[G]. So Q connects two points in W U U. Let
7[Q] be contained in face F of G.
Then @Q can be of one of the following three types:

(162) (i) @ = B(C) for some C € Cy:

(i) @ C B(C) for some C € C;, and Q connects two points in U on a
Z-type curve near to a vertex v of G:

(iii) @ C B(C) for some C € C;, and @ connects two points in W on a
Z-type segment on an edge e of G:

[ F

e

Since Weven = 0, if F is odd then (162)(iii) does not apply. If F is odd and (162)(i)
applies then @ must connect two points in U. Moreover, since ¢ = 0, if (162)(i) applies,
then any end point of @ must be connected to a component Q' of type (162)(ii).
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It follows that each component D of A’ is of one of the following three types:

(163) (i) for any face F of G, any component Q of D Nx~1[F]is of type (162)(i)
if F is odd, and of type (162)(ii) if F' is even;

(ii) for any face F of G, any component @ of DN#~1[G]is of type (162)(i)
if F is even, and of type (162)(ii) if F is odd;

(iii) D is of type (124)(e).

For any z € R® let w'(z) be the number of points in ¥ strictly above z, and let w!(z)
denote the number of points in ¥ strictly under z.

Claim 18. For each v € Veyen, (» = 0.

Proof. Consider a component D of type (163)(i). So D \ #1[G] consists, alternatingly, of
components of type (162)(i) in odd faces and (162)(ii) in even faces, each connecting two
points in U.

So when following z along D we see that w'(z) — w!(z) decreases by 2, + 2 when
traversing any component Q of type (162)(ii) near vertex v of G (s0 v € Veyen):

ST,

v ,//;;'" )
/ =
(164) Seen {er\ F:

F

Y/&

T, { T

Now adding up all changes of w'(z) — w!(z) over D we should obtain 0. Hence, adding
up over all such D, gives

(165) Z (v(2Cv + 2) =0.
vE€Veven
This implies that {, = 0 for each v € Veyen. |

From this we derive:
Claim 19. V,qa=0,U = 0.

Proof. Consider a component D of type (163)(ii) that is not of type (124)(e). So D consists
of parts of K and of components @ of type (162)(i) (in even faces) and (ii) (in odd faces).

Again we will check how w'(z) — w!(z) changes when z traverses D. Since (, = 7, =
Yy = 0 if v € Veyen, w'(z) — wl(z) does not change near to v when v € Viyen. As in Claim
18, at any point v € Voq4, when following one of the components (162)(ii), w'(z) — w!(z)
increases by 2(, + 2.

Near any point v € V,qq4, when traversing the component through e,, the value of
wl(z) — w!(z) increases by 2(,.
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Near any point v € Veven, When traversing the component through e,, the value of w'(z) —
w!(z) decreases by 2. Finally, at any point w € W, the value of w'(z) — w!(z) increases by
1 (since W = W;':id). This last also holds for components of type (162)(iii).

Adding up over all changes and over all D of types (163)(ii) and (iii), we obtain

(167) 3 26(Co+ 1)+ D 2¢+ [W| = 2|Veves| = 0.
v€V,aq v€Voaq

Hence, since |W| = 2|V|, we see that Voqa = 0. Since moreover by Claims 17 and 18,
Co = M = @y = 0 for each v € Veyen, we have U = 0. |

It follows that each component D of A’ not of type (124)(e) has projection like:

Svene

/""""}'—\\\
(168)

However, since |§(R(D))| = 4 (where R(D) is the closed region enclosed by D), it should
be a component of type (124)(a). Since |W| = 2|V|, it follows that all components of A’
are of this type. This implies that there exists an isotopy of R® bringing ¥ to Zk. (1]

5. Theorem B

We finally show:

Theorem B. Let K and K' be well-connected alternating links such that the unbounded
faces of #[K] and w[K'] are even. If there is an isotopy of S bringing Sk to Tk, then the
diagrams of K and K' are equivalent.

Proof. Let & be an isotopy of $3 bringing £k to Zgr. Let 9(z) := &(1,z) for all z € 53,
So ’l,b[zx] = ZKI.

Again, let Hx be the planar graph obtained by putting a vertex in each odd face of 7[K],
joining any two such vertices by an edge if the corrresponding odd faces have a crossing in
common. So for each vertex v of 7[K| there is an edge, denoted by ¢,, of Hx (and an edge
denoted by e, in k).

The graph Hg is derived similarly from K’. Now &, denotes the edge of Hg: corre-

sponding to vertex v of n[K']. Let el denote the edge in g corresponding to vertex v of
[ K'].
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For each even face F of #n[K], we fix a simple closed curve Cr on X as follows. Let
Fi,...,F; be the odd faces incident with F, and let vy,...,v; be the vertices of 7[K]
incident with F. Then CF is a closed curve on X traversing the faces Dp,,..., DF, of g
and crossing each of the edges e,,,...,e,, exactly once, and not traversing any other face
of ¥k or crossing any other edge of X g. :

(Recall that D = #~1[F] N g for each face F of #[K], and that e, is the edge of Zg
connecting p} and p].)

By the well-connectedness of K we can take the curves Cr in such a way that, for any
two faces Fy, F; of n[K], Cr, and Cr, have at most one crossing. In fact Cr, and Cp, have
exactly one crossing, if and only if ; and F; intersect, viz. in a vertex v of 7[K]. (That is,
if and only if F; and F, are contained in adjacent faces of Hgx.) We may assume that this
crossing occurs on e,,.

For any even face F of n[K], let Br denote the circuit in Hx bounding the face of Hx
containing F'.

Now for each even face F' of n[K], 9[CF] is a closed curve on X g:. We may assume that
each edge e}, in Y g is crossed only a finite number of times by ¥[CF]. For each even face
F of 7[K] and each edge e = ¢! of Hg, let

(169) z(F, e) := number of times ¥[CF]| crosses el,.
Define for each even face F of n[K]:
(170) By :={e € EHg: | 2(F,e) is odd}.

Since ¥[CF] is a closed curve, we know that B is a cycle (= edge-disjoint union of circuits)
in Hyor.
We show:

Claim 20. For each edge e of Hg: there ezist even faces Fi # F, of n[K] such that
e € By, N BE,.

Proof. Choose an edge e of Hg:, say e = €/,, where v is a vertex of #[K']. First note that

(171) Ez(F, e) is even
F

(where F ranges over all even faces F of n[K]). This follows from the fact that Uz Cr is
null-homologous on X g, implying that Uz ¥[CF] is null-homologous on ¢¥[Zg]=Zk:.
(171) implies that we only have to show that there exists one face F such that e € Bf.
Make a closed curve D in R®\ k- close to e/, and encircling e,. This can be done in such a
way that Ik(D, Cf) = 1, where F” is one of the two even faces of 7[K'] incident with vertex
v of 7[K'].
Then

(172) Ik(¢~*[D], ¢~ [Cp]) = (D, C) = 1.

So there exists a closed curve C' (viz. ¥~}[Cf]), on Tk such that k(¢y~}[D],C) = 1. Since
C is homologous to a combination of curves Cr in g (for even faces F of n[K]), there
exists at least one even face F of n[K] such that Ik(¢)=}[D], Cr) is odd. Hence 1k(D, 4[CF])
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is odd. This implies that ¥[CF] crosses el an odd number of times. So e belongs to Bg. 1

Next:

Claim 21. For each even face F of 7[K| one has: |Br| = |By|. Moreover, each edge of
Hg: is contained in ezactly two of the cycles Bf.

Proof. For any simple closed curve C’ on X g and any e = e/, on Y g define:

(173) 2(Che) =
[(number of times C’ crosses e in one direction)
— (number of times C' crosses e in the other direction)]’.

(So here we choose, temporarily, a ‘left hand side’ and a ‘right hand side’ of e. Clearly, the
definition is independent of this choice.)
Then it is easy to check that

(174) (C',Bx) = ) 7(Csey),

where v ranges over all vertices of 7[K'].

Moreover, for each even face F of n[K] and each vertex v of n[K'], z(F,e,) is odd, if
and only if 4(¥[CF], e}) is odd.

Hence for each even face F of #[K]:

(175) |BF|l <Y 1(¥[CFl, e)) = T($[CF], k') = 7(CF, Bk) = | Br|

(where again v ranges over vertices of #[K']). Moreover, since by Claim 20 each edge e of
Hg: is contained in at least two edges of Bf:

(176) > _|1BFl > 20(K') = 20(K) = ) | Br|,
F F

where F ranges over all even faces of n[K].
Combining (175) and (176) gives the Claim. |

Next we show:
Claim 22. Let Fy and F; be two even faces of n[K|. Then |B N BR, | is odd, if and only
if F1 and F, are in adjacent faces of Hy.

Proof. First assume that F; and F, are not in adjacent faces of Hg. So by assumption,
Cr, and CF, are disjoint. Then also ¥[CF,| and ¥[CF,] are disjoint We may assume that
the projections 7[¢[CF,]] and #[¢[CF,]] are closed curves in R2such that, they only cross at
vertices of #[K'], in such a way that in a vertex v of n[K'] there are

(177) z(Fy,e,) - z(Fy,el)

crossings of 7[¢[CF,]] with =[¢[CR,]].
Since the total number of crossings of 7[¢[CF,]] with 7[¢[CF,]] is even, we know that
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(178) > z(Fyel) - z(Fy,e)

v

is even. Since (178) has the same parity as | By, N Bf, |, we know that | By, N B, | is even.
If F; and F, are in adjacent faces, one similarly shows that [B’F1 n B;,-.2| is odd. |

In fact we have:

Claim 23. For any two even faces F; and F; of n[K], |Bf, N B, | =1 if Fi and F; are
contained in adjacent faces of Hk, and |By, N B, | = 0 otherwise.

Proof. By Claims 21 and 22 and by the well-connectedness of K,

(179) 2v(K)
= number of pairs (Fy, F2) of two adjacent faces of Hx

< Y IBrNBgl=>() |BgNBgl

(F,FR),h#F; R FR#hR

= 3 1By = X |Br | = 20(K).
F R

So the inequality is attained with equality, and the claim follows. |

We can now define a function
(180) 0: EHxk — EHy

as follows. For e € EHk, let F; and F; be the two even faces of 7[ K| contained in the faces
of Hk incident with e. Let

(181) Bl N B, = {€'}.

Then define §(e) := e’. By Claim 21, this function is one-to-one, and hence onto (since
|EHk| = |EHg|).
Moreover, for each even face F of n[K], 0[Bf] = Bp, since

(182) 0[Brl= | 0[BrnBr]l= |J (BrN Bwm) = By.
F'#F F'£F

So for each cycle B in Hg the set §[B] is a cycle in Hg+ (since B is a binary sum of circuits
Bp, and hence 0[B] is a binary sum of cycles Bf).

Now both Hx and H: are 3-vertex-connected planar graphs (by the well-connectedness
of K and K'), with |[VHk| = b(K) = b(K') = |[VHgs| and |[EHg| = v(K) = v(K') =
|EH+|. Hence, by Whitney’s theorem [10] Hx and Hg: are the same plane graph, up to
rerouting edges through the unbounded face, and up to turning the graph upside down. This
implies that the diagrams of K and K’ can be obtained from each other by the operations
(3). That is, K and K' have equivalent diagrams. i
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