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The Energy Complexity of Threshold and Other Functions

1. INTRODUCTION

This paper obtains upper bounds on the switching energy used to compute threshold, majority and
counting functions with VLSI circuits. The bounds on K -threshold and count-to-K functions, for K a
constant, are optimal, ie. linear in the length of the input.

Switching energy is theoretically interesting because it is believed [MC80] to be intrinsic to compu-
tation and a fundamental complexity measure of VLSI computations. Energy is practically motivated in
VLSI design because energy consumed by a circuit is transformed into heat. How well a circuit can dissi-
pate heat determines its operational limitations. Thus, the less heat produced the better. Further, energy
considerations determine a significant portion of the overall costs of a computer [Me86].

Common to all physical devices is the switching energy [MC80] consumed when a wire or gate
changes state from 1 to O or vice versa. The amount of switching energy consumed is proportional to the
area switched.

The results in this paper are obtained in the Uniswitch Model (USM) of energy consumption,
described in the next section. USM was first defined by Kissin [Ki82] and has become the primary model
for the asymptotic analysis of switching energy ([Le84], [ST86], [Ty87], [ACR88]). Kissin [Ki85] also
described the first energy saving design technique, by obtaining energy-efficient circuits for OR , AND
Compare and Addition functions. Lengauer and Mehlhorn [LM81] showed that n—input functions
realizeable in AT2 = O(n2) require Q(AT) switching energy, where A is area and T is time in the
Thompson model [Th80]. Aggarwal et al [ACR88] improved the result of Lengauer and Mehlhorn to
obtain an (n?2) energy bound for the class of transitive functions [Vu83]. Leo [Le84] showed that, for
a specialized circuit basis, the parity function requires {2(A ) average switching energy, where A is the
area of the parity circuit. Tyagi [Ti87] studied the average energy consumption of logic level structures
such as PLAs.

USM measures the differences between two stable states of a circuit. Race conditions (aka
hazards) are neglected; they are the domain of the Multiswitch Models, which are defined and dis-
cussed in [Ki87] and [Ki90]. USM provides a lower bound on the total energy consumed by a circuit.

The rest of this paper is organized as follows. Section 2 describes and motivates the Uniswitch
Model of energy consumption, aka uniswitch energy. (The term energy refers to switching energy
for the duration of this paper). The definition of a circuit is extended to include wires with bandwidth >
1. In section 3, upper bounds are obtained in USM . In particular, a fast VLSI circuit is described for
K —threshold functions, which is optimal in consuming O(#n) worst case uniswitch energy. The thres-
hold construction also yields bounds on majority and counting functions. Conclusions follow in section
4.

2. THE SETTING

The Uniswitch Model of energy consumption defines an energy cost measure for VLSI circuits.
USM measures the differences between pairs of states of a circuit. The following discussion sets the
stage for a precise definition of USM .

A VLSI circuit is a combinational circuit [Bo77] embedded in a plane as in [BK81]. Salient
assumptions of the VLSI circuit model that are important to USM are as follows. A circuit is acyclic. A
wire (edge) in a VLSI circuit has constant width >0 and constant bandwidth 21. At most a constant
number of wires, v 22, can overlap or intersect at any point in a VLSI circuit. A gate (aka node) has con-
stant area > A2, Input nodes have fanin 0 and fanout 1. Output nodes have fanout 0. A non-input node
has constant fanin 1. A non-input, non-output node has constant fanout 21 and <r. A non-input node
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computes a binary function of <27 inputs in constant time (see discussion below). Gates are separated
by distances > A.

Definition:

Let w be a wire in a VLSI circuit such that w has bandwidth b. If b > 1, then w is a cable consisting
of b parallel wires, each of minimum width A, bandwidth 1, and separated by distance A. w has constant
width 2A b — 1.

The threshold circuit described in this paper uses a circuit basis that includes addition, subtraction,
minimum, and comparison functions of 2 k -bit numbers, for & a constant. These functions can be
decomposed into standard boolean subcircuits that use only a constant amount of resources, as long a k
remains constant. In the analysis that follows, node complexity is neglected when & is constant.

Definitions:

A legal state , (hereafter also called state or stable state) s, is a function that attributes values to the
nodes and wires of a circuit C. ie. C=(V W) where V is the node set with maximum degree d, and W
is the set of wires. s:V UW — {0,1}", for r £d. Input node x has some value xo where xo€& {0,1}.
Edge w emanating from input node x has value s (w)=1x(. Non-input nodes and edges have values con-
sistent with the inputs and the labeling of the nodes (eg. s (+(1,1)) = 10, s (min(101,100)) = 100). sx
denotes the state of C for input X. X —> sy is a bijection between an input vector and a state of circuit
C. Since a state and its associated input vector are closely allied, they are used interchangeably in the
following discussion. C is in state §; at time #;. Sq is the initial state of C.

The switching energy of a circuit C is defined on a pair of states. In particular, we are interested in
what happens when one input vector to C is replaced by another input vector. In the definitions that fol-
low, the pair of states in question is often denoted as (5o, X ), where 5o is the initial state and X is an
input vector that induces a second (ie. final) state.

Definitions:

Suppose VLSI circuit C changes state from s¢ to 57, denoted C : 5o —> s . Further assume that wire w
has initial value so(w )=wg and final value s (w)=wy where wo, Wy € (0,1}, for b the bandwidth
of w. This change in the value of w is denoted w:wq—> wy. Then w is switched (switches) iff
wo#wys. Let h, be the Humming distance between wg and wy. A wire w of length L that switches
accounts for (h,, XL)/p switching energy, where p >0 is the area of wire that accounts for 1 unit of
switching energy. Let v be the node at the tail of wire w'; then v switches iff w switches . A node of
area A that switches accounts for A/p switching energy If W = {w} is the set of wires in circuit C, V
= {v} is the set of nodes in C, and X is the input set such that C: 59— X, then the wire energy, E,,,

consumed by C is E,, (C,s¢0,X ) A % S hy, x|lw|l, where [|w]|| is the area of wire w; and the

weW
node energy, E,, consumed by C is E,(C,50,X ) a ;1)- > lIv]l, where ||v] is the area of
S0 (W) Es¢ ()

node v. Let Eyp 10 (C,50,X )= EW(C,50,X) + E.(C,50,X ). Epiy(C,50,X)S ﬂe‘%c)- where

area(C) is the total area of C.

Definitions:
If C, is a VLSI circuit computing f, : {0,1}” — {0,1}" such that C, is in state sq at time #¢, and
E, +,(Cn,50,X ) is the energy consumed by f, when X=(xy,..., X,) is the input to C, at time

t >to, then E,ops (C,, ), the worst case uniswitch energy , is given by
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Eyors:(Cr) é max E, ., (C,,50,X)
(S 09X )

and E, (C,, ), the average case uniswitch energy is given by

E,(Cp) & 272" 3 Epiy(Crrs0.X)
(SO’ )

where 227 is the number of (5o, X ) pairs. This definition of E, (C, ) assumes that the input vector is

uniformly distributed over {0,1}".

Definitions:

A function f: {0,1}* — {0,1}* is energy efficient iff 3 a family C =(C,)(n ¢ N) Of circuits with
C,, realizing 7 [{0,1}", and Eyyors(Cr )=©(n). Circuit family C =(C, ) e N) is energy efficient
iff V families C = (C,, )(x e N) of circuits with ®(C)=®(C ) : Eyorst (Cn)=Q(Epora (Cn )).

Throughout this paper, log #n means logn .
2.1 Model Motivation

The intent of this section is to motivate the Uniswitch Model in light of physical considerations.
USM is a good model for obtaining lower bounds because it conservatively estimates a circuit’s switch-
ing behaviour. Thus, a lower bound in USM is an equally valid lower bound on multiswitch energy.

USM takes no notice of how a circuit arrives at a particular state. This is the domain of the Mul-
tiswitch Models , which are discussed in [Ki87] and [Ki90]. However, in order to discuss the relevance
of using USM to obtain upper bounds, the following multiswitch notions are introduced.

The switching behaviour of physical circuits is influenced by various delay functions, such as gate
delay 8, wire delay A and input delay /. & determines the switching speed of a gate. A determines the
time to transmit a bit along a wire. / determines when an input value arrives at an input port.

Definitions:

Let (C,,8,A,I ) denote a circuit scheme , where C,, is a VLSI circuit with gate delay d, wire delay A,
and input delay /. A circuit scheme (C,, 8, A, ) exhibits the uniswitch property if each node or wire
of C,, switches at most once when C,, changes from one input setting to another, according to §, Aand /.
Otherwise, (C,, 0, A, I ) exhibits the multiswitch property.

Using USM to obtain upper bounds is justified for circuit schemes that exhibit the uniswitch pro-
perty. For example, if each node of a circuit receives its inputs at the same time, race conditions cannot
arise. The uniswitch property is thus ensured. Some real circuits have this timing property. Where race
conditions derive solely from a circuit’s asynchrony (ie. the paths to a node vary in length), a circuit
scheme can acquire the uniswitch property if the circuit can be made synchronous. A "bad" input
schedule can be offset by varying gate delays. These approaches to designing circuit schemes that
achieve the uniswitch property are discussed in [Ki87] and [Ki90]. Further, according to C. Mead
[Me86], many CMOS designs are synchronized to ensure that the corresponding circuit schemes have the
uniswitch property.

USM is the first step in the systematic asymptotic analysis of switching energy consumption in
VLSI circuits. As such, USM is justified as an upper bound model. In addition, USM is motivated by
designers’ practical efforts to prevent hazards and thus ensure the uniswitch property. USM is used for
upper bound analysis in [Ty87] and [ACRS88].

USM is defined for acyclic circuits. The study of combinational circuits (without loops) has a long
and distinguished history. Krohn and Rhodes’ [KR65ab] seminal work in this area showed that each
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sequential machine (with loops) can be decomposed into structures consisting of only combinational cir-
cuits and flip-flops.

A recommended architecture for sequential machines is the finite state machine in which the combi-
national logic is isolated from the looping structure [MC80]. See Figure 2.0. This architecture lends
itself to analysis of the combinational logic distinct from the looping buffers.

3. WORST CASE UPPER BOUNDS
3.1 Energy-Efficient K -Threshold Circuit

In this section, a novel energy-efficient threshold circuit is described, which uses the techniques of
the energy-efficient OR and AND circuits described in [Ki85] ,[Ki91], and some additional novelty. The
energy-efficient OR circuit used the observation that it is sufficient to turn on one OR input to turn on
the output. Thus, when many inputs to SOR (S mart OR circuit) are "1", all but one of these "1" signals
are "killed". In a completely analagous manner, it is sufficient to turn off one AND input in order to turn
off the output. Thus, when many inputs are turned off, only one "0" signal must propagate all the way to
the output. The principle idea is that the input may provide more information than the function requires,
and suppressing unneeded input bits results in energy savings. This idea was also used in [Ki85] to
design energy-efficient comparator circuits.

A threshold function, Tk, is defined on a boolean vector X = {Xxy,"**,X, } as follows:
Tk (X )=1iff x{+x+ - +x, =K. Hence, at most K input bits that are "1" must reach the output;
the rest can be "killed". The energy-efficient threshold circuit, K—Thr, described below, effectively
uses only necessary information, killing off the rest, resulting in only linear worst case switching energy
consumption.

In a novel way, K —Thr uses (K +1)-ary logic to count to K . It contains 2 types of nodes: +-nodes
that sum the inputs, and min-nodes that "kill" inputs that exceed K . A third node that compares the final
sum with K occurs once.

Like the layout of the SOR /SAND circuit, the K—Thr circuit is laid out so that the area used to

"kill" signals is at most linear in the input size, and the area of both the "successful” paths to the output
plus the "killed" paths is at most linear in the input size.

CH<¢1 C”(¢2
1 1
| 0
] B Combinational t

u Logic P

1 t
—

Feedback Paths

Figure 2.0. Preferred Sequential Circuit: a Finite State Machine
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The following recurrences describe the boolean K —threshold functions Tk : {0,1}" —{0,1} in a
novel way. n is assumed to be a power of 2; the generalization to other values of n is straightforward.
"min" is an abbreviation for "minimum”. The reader can verify that Tg(xy,...,x,) = 1 iff
X1+Xx3+ -+ +x, 2 K. The USM realization of Ty is the energy-efficient K —=Thr circuit.

Recurrences:

Te (Xt X)) =T (X, X 2) ¥ RT (X 12y 10 - - - X)) 2K
LT (x;,xj)=RT(x;, xj)=x; +Xj
LT(X[, . ’xn)zLT(xl’ L. ,xn,2)+min (RT(X(,,/Z)+1, C. ,x,,), K—LT(le N ,xn/Z))

RT (xqy, ... ,Xp)=min (LT (xq, . .. JXni2), K —RT(X(,,/Z)+1, e X)) + RT(X(n/2)+1, e, Xn)

Tg(x1y,...,Xx,)is abbreviated by Tg(n). LT(xy, ..., X,) is abbreviated by LT (n). RT is similarly
abbreviated. (X7, ... ,X,) is also written as (X7; X, ).

The discussion that follows is a formal description of the construction used to obtain energy-
efficient threshold circuits. To clarify the formalism, the reader is advised to refer to Figures 3.0, 3.1 and
3.2, which illustrate a VLSI circuit called LF. LF is an embedding in the plane of circuit K-Thr,
which computes threshold function T . Figure 3.0 illustrates the bottom level of the construction; Figure
3.1 recursively depicts LF on n inputs without the top level; and Figure 3.2 illustrates the top level. Cir-
cuit K—Thr is formally defined below.

Definition:

K—=Thr(n)=(Vsp,Wsp ) is a circuit, illustrated in Figures 3.0, 3.1 and 3.2, such that
Vsp =1 U L where

I are the input nodes {x, X7, ..., X, }.

L =L, UL,V L3, the set of interior nodes, is defined as follows. Each node v € L is labelled by a
pair consisting of the function computed at v and a unique identifier.

Li={(+viH5), (+vE5) | ISks% 1
Ly={(+,vi-*), (+,vh*), (min,v5-F), (min,vi-*) | 2€i<logon -1, 1Sks_;_ }. and

Li={(+,vien-1),(2K,vlerthl)}
y Jog7 +1.1 is the output node. For consistency, X; is also denoted as v f-¥.

Wsp =W U W, U W3, the set of edges, is defined as follows. Each edge in Wsp is a pair consisting
of a unique identifier and the integer valued bandwidth of the edge.

Wi={(l,ejl-%) | 1£j<4,1<k<n/2 and
ek = (P 2k=1 y Lk) o)k = (y P2k y].ky
3k = (P2 ph) ek = (PR ) )

Wa={([log (K+1)],e/t %) | 15jss,2s,'s1og2n-1,13k32"—,. and



The Energy Complexity of Threshold and Other Functions

ik = (il 2kl yiky ehk = (vl 2k bk,
bk = (VirL2k-1 i k) pilk = (pi-1.2k yik)
ek = (Vi L2kl yh k) efk = (v~ 2k yh.k),

ek = kiR, ek = (kb))

Wa={([log(K+1)],efoen 1) ([log(K+1)1,edoem.1) ([log(K+1)]+1,efrn+1.1) where
elogn,l =(v£ogn—1,1’v{ogn,1), e}ogn,l =(v}ogn—l,2’v{ogn,l)’
elogn+l.l =(v}ogn,l’v{ogn+l,l) }

The indices i, j and k are used to label the nodes and edges of K —Thr uniquely. The subscript j
distinguishes between types of nodes and edges, and superscripts i and & distinguish within a type. In
particular, i indexes K—Thr along a vertical axis, increasing from O at the inputs along the bottom to
logn +1 (ie. depth of K—Thr) at the top. i is thus called a vertical index. k indexes K—Thr along a
horizontal axis, increasing from left to right, and is called a horizontal index .

Let F,, be the function realized by circuit K—Thr(n). Let X € {0,1}".

F,:{0,1}" —{0,1} such that F,, (X )= v jogn+L1
The reader can verify that v [°87+L1 = T (xy,...,x,)
Fp(xy,...,x,)isabbreviated as F,, (X ) or F (n).

Let LF(xy,...,Xx, ) be an embedding of K—Thr (n), as illustrated in Figures 3.0, 3.1 and 3.2.
Recall that an embedding is a mapping of a circuit into the plane. Typically, circuits are embedded into
regular structures like the grid shown in Figure 3.3b. To account for the cables in K =Thr (n), the circuit
is embedded into a fat grid like that shown in Figure 3.3a. To simplify the presentation of LF, the
bandwidth of wires is not shown in Figures 3.0, 3.1 and 3.2. In particular, each wire or cable is illustrated
as a single edge. In the complexity analysis of LF below, constant bandwidths are shown to increase
resource use by only a constant factor; hence they can be neglected.

Note that in Figure 3.1, each min-node is shown to incorporate two operations - a subtraction fol-
lowed by the min function. It is easy to see that this does not affect the asymptotic complexity of the cir-
cuit. Hence for simplicity of presentation, the two operations are combined into one node. This was also
possible in Figure 3.2 for the final addition and comparison. Hence they too could be abbreviated into
one node, but are also easily illustrated as two nodes.

Also note from Figures 3.1 and 3.2 that the value of K, the threshold bound, is used at many nodes
of the circuit. We assume that K is "hardwired" into the circuit, using a small amount (eg.
flog (K +1)1) of memory at each node where it is used. It is easy to see that this strategy uses O(n ) area
and energy since a constant amount of memory is needed at O(xn ) nodes in the circuit.

The following specifies layout parameters of LF (x,X7, .. .,X, ). Input nodes are separated by
distance 2A[ log (K +1)] on a line. The relative location of interior nodes of K=Thr (1) in the layout is
evident from the recursive description, illustrated in Figures 3.0, 3.1 and 3.2. Wire (cable) lengths are as
follows.
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Bottom Layer of an Embedding of Circuit K ~Thr (n)

Figure 3.0.
"4 Vs
e7 3 1 es
V1 min (r, K-1') min (I, K-r)
e 1 es 4 s
l 1 C3
/ / r

Middle Layers of an Embedding of Circuit K ~Thr (n)
Figure 3.1.

output node
v 1Iog n+1,1

Top Layer of an Embedding of Circuit K —~Thr (n)
Figure 3.2.
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— (3.0 (3.3)
% N

Z, AN
N ’/
% N

AN 74 0,0) 0,3)
Figure 3.3a. GD24.2 Figure 3.3b. GD3,3

led-*ll=lled-*lI=2,lled-*l=|le-*||=2¥2 for 1<k< n/2;

let:*I =1l eh Xl =1l 5[ =1l eb:kll =1, || -] = |l ek-¥]| =2, and
| eb-k| =]l eb-*| = (2 =2)[ log (K +1) | for 2<i<logn —1, 1<k< 2%

llefogn .|| =]|efosn+L1||=2, || eJogn.2| = 2v2.

LF(xy, ..., x, ) is abbreviated by LF (n) or LF . Some facts about LF (n) and K -Thr (n):
1) height(LF (n)) < c[log(K+1) | + height(LF (%)) for some constant ¢ >0
= O(logan (loga(K+1)))

2) area( LF (n)) = height(LF (n)) X width( LF (n))

< ¢ (logan xlogy(K+1)) x 2n—1)[log(K+1)] for some constant ¢ >0

= O(nlogyn (logy(K+1)))
3) Let D (n) be the depth of the K —Thr (n ) circuit.

Dn)<2d+D (%) where d > 0 is the maximum depth of a node in K ~Thr (n).
= O(logn)

Theorem 3.1:
For all pairs of legal states, the worst case uniswitch energy consumed by embedding LF (n) of thres-

hold circuit K—Thr(n) is E, o (LF (n)) = O(n xKlog%K+1)), where K—Thr(n) has depth
O(logn).

Proof Sketch:

The proof proceeds as follows:

(i) Show that the "short” wires use only linear area and hence linear uniswitch energy. In the K—Thr
circuit, nodes are not always minimum area, but can also be shown to occupy linear area and linear
energy, when K is constant.

(ii) Show that only constant area of "long" wires switch for any pair of inputs, using at most O(n)
uniswitch energy, for K a constant.

(i) The short wires in K-Thr are { e} k| 1<j<6,1<i<logn, 1<k< n/2'}, which are each
<2V2) long. Most of these short wires are cables containing up to [log 0.4 +1)-| individual wires.
Hence, the width of a cable is <2A flog (K +1)-| —1. Clearly the size (ie. number of nodes) of
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K-=Thr(n) is O(n) and the total number of wires is O(n). Since each short wire uses constant area, the
total area contributed by the short wires is O(n2). Hence, the total uniswitch energy consumed by the
short wires is O(n).

Consider the node energy consumed by LF (n). Nodes {v{-*,v4-k | 1<i<logon, 1Sk<n/2!} each
compute addition of two binary numbers. The inputs to a +-node may be two cables, each of width
< I-Iog K+D]. The area of a +-node must be at least large enough to accomodate its inputs. Further,
fast addition of 2 m -bit numbers is known to use &(mlogm) worst case uniswitch energy, when the
inputs are laid out as in LF (n). Hence, the energy used by a +-node is O(log K loglog K'). Since there
are O(n) +-nodes in K—=Thr (n), the total energy contributed by these nodes is O(n log K loglog K),
which is linear when K is constant. Similarly, the min-nodes (eg. v3 and v4 ) and the cdmpare node (eg.
v {o8" + 1) contribute at most linear energy when K is constant.

(i) The long wires of LF (n) are {e4*, e+ | 1<i<logyn, 1<k<n/2'} Each long wire is a cable
that is < 2¢ X[log(K +1)] long and < 27»|—log(K +1)] wide. Since there are O(n) long wires, the total
area contributed by these wires is O(n logn log2(K +1)). However, the uniswitch energy used by these
long wires is asymptotically less, by the following argument.

In the embedded SOR /SAND circuit [Ki91], when a long wire L switches, none of the long wires
"underneath" L switch. In the embedded K —=Thr circuit, at most K long wires "underneath each other"
can switch. To see this, consider the {e7} long wires. (The {eg} long wires follow by the same argu-
ment.) At the head of each ¢7 wire is +-node v . It is not difficult to see that each v | node sums up to
K. As soon as node vi-* sums to X, no additional e7 wires "above" node v} % can become active, ie.
take on non-zero values, because min-nodes at the tails of these long wires "kill" any incoming non-zero
values. However, to arrive at a sum of up to K, up to K long wires "underneath each other" can be used
to propagate the K inputs. These long wires are cables of width O(log (K +1)). Hence, the area of long
wires that may switch on is O(n XK logz(K +1)). In particular, for constant values of K, the worst case
uniswitch energy needed to compute a K -threshold function quickly is ©(#n). []

Theorem 3.1 yields the following bounds for counting and majority functions.

Corollary 3.1:

For K a constant, to count to K in O(log n) depth, the worst case uniswitch energy is O(n).

Proof:

Immediate from the construction above of LF (n). Clearly, the v; and v, nodes at level logn—1 in
LF (n) (Figure 3.1) each count to K .

Corollary 3.2:
The majority function can be computed using worst case uniswitch energy O(n log?n).

4. CONCLUSIONS

This paper describes a construction that yields fast, minimum energy VLSI circuits to compute
threshold functions and to count up to a constant. This same construction yields VLSI circuits for major-
ity and general counting functions, but it is an open question whether the energy bounds for these func-
tions are optimal.

ACKNOWLEDGEMENTS:
We thank Evangelos Kranakis, Danny Krizanc and Paul Vitanyi for many helpful discussions.

9.



The Energy Complexity of Threshold and Other Functions

REFERENCES:

[ACRS88]
Aggarwal, A., A. Chandra, P. Raghavan, "Energy Consumption in VLSI Circuits", Proceedings of
20th ACM STOC, May 1988, pp. 205-216.

[Bo77]
Borodin, A., "On Relating Time and Space to Size and Depth", SIAM Journal of Computing, Vol. 6,
No. 4, December 1977, pp. 733-744.

[BK82]
Brent, R.P., H.T. Kung, "A Regular Layout for Parallel Adders", IEEE Transactions on Computers,
Vol. C-31, No. 3, March 1982, pp. 260-264.

[BKS81]
Brent, R.P., H.T. Kung, "The Area-Time Complexity of Binary Multiplication", JACM, Vol. 28,
No. 3, July 1981, pp. 521-534.
[Ki91]
Kissin, G., "Upper and Lower Bounds on Switching Energy in VLSI", JACM, Vol. 38, No. 1, Janu-
ary 1991.
[Ki90]
Kissin, G., "Models of Multiswitch Energy", CWI Quarterly, Vol. 3, No. 1, March 1990, pp. 45-66.
[Ki87]
Kissin, G., "Modeling Energy Consumption in VLSI Circuits", PhD Thesis, Department of Com-
puter Science, University of Toronto, 1987.
[Ki85]
Kissin, G., "Functional Bounds on Switching Energy", Proceedings of 1985 Chapel Hill Conference
on Very Large Scale Integration, May 1985, pp. 181-196.

[Ki82]
Kissin, G., "Measuring Energy Consumption in VLSI Circuits: a Foundation", Proceedings of 14th
ACM STOC, May 1982, pp. 99-104.

[KR65a]
Krohn, K., J. Rhodes, "Algebraic Theory of Machines. I. Prime Decomposition Theorem for Finite
Semigroups and Machines", Transactions of American Mathematical Society, Vol. 116, 1965, pp.
450-464.

[KR65b]
Krohn, K., J. Rhodes, "Results on Finite Semigroups”, Proceedings of the National Academy of Sci-
ence, USA, Vol. 53, 1965, pp. 499-501.

[Le84]
Leo, J., "Energy Complexity in VLSI", M.S. Thesis, University of Nymequen, The Netherlands,
February 1984.

[LMS81]

Lengauer, T., K. Mehlhorn, "On the Complexity of VLSI Computations”, Proceedings of CMU
Conference on VLSI, Computer Science Press, October 1981, pp. 89-99.

[MC80]
Mead, C., L. Conway, Introduction to VLSI Systems, Addison-Wesley, 1980.

-10-



The Energy Complexity of Threshold and Other Functions

[Me86]
Mead, C., private communication

[ST86]
Snyder, L., A. Tyagi, "The Energy Complexity of Transitive Functions", Proceedings of 24th Aller-
ton Conference on Communication, Control and Computing, October 1986, pp. 562-572.

[Th80]
Thompson, C., "A Complexity Theory for VLSI", PhD Thesis, Dept. of Computer Science,
Carnegie-Mellon University, 1980.

[Ty87]
Tyagi, A., "Energy Complexity of Logic Level Structures,” Proceedings of Stanford Conference on
Advanced Research in VLSI,” MIT Press, 1987.

[Vu83]
Vuillemin, J., "A Combinatorial Limit to the Computing Power of VLSI Circuits", IEEE Transac-
tions on Computers, Vol. C-30, No. 2, 1983, pp. 135-140.

-11-






