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from [BK 84] in order to incorporate stable signals in process algebra. Semantically this involves
assigning labels to nodes of process graphs in addition to the actions that serve as labels of edges.
The labels of nodes are called signals. In combination with the operators of BPA, two signal
insertion operators allow to describe each finite tree labeled with actions and signals. In the context
of parallel processes there is a new feature connected with signals: the signal observation
mechanism. This mechanism is organised on basis of a signal observation function in very much the
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1. INTRODUCTION.
This paper is concerned primarily with concrete process algebra in the sense of [BB 88]. Concrete process
algebra is that part of process algebra that does not involve Milner's silent action T [MI 80, MI 89] or the empty
action £ due to Vrancken [VR 86]. This paper is a revised and substantially extended version of [BE 88a]. An
extended abstract of [BE 88a] was published as [BE 88b].

Process algebra is a well-established part of computer science ([AB 84], [BW 90], [HE 88], [HO 85], [MI
80, 89]). We discuss process algebra in the setting of ACP (see [BK 84], [BW 90]). The new feature that we
hope to contribute to process algebra with this paper is the presence of explicit signals of a persistent nature. In
addition we discuss the use of conditional expressions in process algebra. The original set-up of process
algebra inherited from Milner's CCS views processes semantically as trees of actions. These actions are best
thought of as atomic actions because otherwise the intuition behind the axioms becomes rather obscure. A
mechanism of particular importance, that has not yet been analyzed in the setting of ACP, is the presence of
visible aspects of the state of a process. Usually in process algebra the state of a process can only be
understood (or observed) via the actions that can be performed from that state. In the set-up that will be
presented here some aspects of the system state are visible not so much through the actions that will follow but
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much more directly as signals that persist in time for some extended duration. Typically, one might think of
some light signal on a control panel. Several signals may be visible simultaneously and one is easily led to a
boolean algebra of signals based on an empty signal and a composition operator on signals. The main step is to
introduce two operators called signal insertion operators. In terms of a graph model of processes these signal
insertion operators are able to place a signal as a label to a node in the graph. Given finite sets A and AS, using
the root signal insertion operator and the terminal signal insertion operator it is possible to describe every finite
tree with edges labeled by atomic actions from A and nodes labeled by compositions of atomic signals from
AS. Without problem the operators can be used to give guarded recursive definitions of infinite processes with
signals.

There is a need for motivation for this work. It seems that every extension of the operator set of process
algebra makes the subject less focussed and comprehensible in the eyes of mathematically oriented observers.
Our point of view, however, is that whenever it is difficult to model process phenomena in terms of existing
operators of process algebra there is a reason to investigate extensions of the formalism. An essential restriction
is that existing axioms remain valid in a each new setting. In other words one may extend the set of operators
and axioms of ACP but may not modify it grossly. This does not imply that we expect that all phenomena can
eventually be modeled in process algebra. On the contrary it is quite likely that process algebra will come to real
limits sooner or later. The reason for this restriction is that it should be quite clear when a departure of process
algebra is needed in order to find an adequate modeling of some sequential or concurrent mechanism.
Respecting these restrictions, it is excluded that process algebra becomes a moving target altogether which
claims universality but in fact shows lack of commitment to its basic principles. Now these basic principles are
exactly the operators and axioms of BPA, PA and ACP (sce e.g. [BK 84]) or the exposition below) but not the
semantic models that have been defined for these axiom systems. Therefore we feel that the approach of this
paper is methodologically adequate: all axioms of ACP are preserved, more operators and axioms (and in fact
processes) are added that nevertheless all satisfy the axioms of ACP. Moreover the recursive definitions of the
new operators all have the spirit of term rewriting that underlies the design of ACP.

The term rewriting analysis of ACP with signals has been carried out in BROUWER [BR 90]. He uses this
analysis to obtain an implementation of ACP with signals. Moreover he has designed syntax that allows to
incorporate signals in the process specification language PSF of MAUW & VELTINK [MV 90].

Of course it remains to be seen that the approach to the problem of incorporating stable and nonatomic signals
in the framework of process algebra as presented in this paper is a useful one. As weak points we see the
following ones:

(i) There is very little structure on the signals in terms of data structuring. Of course such a structure can be
found by simply requiring that the signals come from some sort in an abstract data type, but that is certainly not
a connection between process structure and data structure.

(ii) In cases where a signal is present before as well as after an action this model presents in an unavoidable
way an atomic interruption of the signal during the execution of the action. This interruption is not always
adequate in view of the intuitions behind the mechanism.

(iii) It is not clear that both the root signal insertion operation and the terminal signal insertion operator are
needed. Having two primitive operators for the simple concept of putting a label on a node seems quite
overdone at first sight. Nevertheless the presence of both operators gives rise to a flexible and efficient algebra.
It turns out that in the presence of an empty step terminal signal insertion is not needed.
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Besides signals, this paper introduces a conditional expression and relates it with the guarded command of
[BBMYV 89]. These constructs are unproblematic and could (should) have been introduced in the ACP setting
much earlier indeed. In designing the syntax for the extra operators we will make use of algebraic abstract
syntax. Thus as much as possible the syntax will be no more than an algebraic signature and diagrams will be
added to illustrate these signatures.

2. ADDING SIGNALS TO BASIC PROCESS ALGEBRA.

2.1 BPA AND ACS

In order to make the paper somewhat self contained all axioms of process algebra from [BK 84] are repeated.
The reader is supposed to have some familiarity with these axioms, however, as there is no explanation of the
intuitions behind the original operators of process algebra. Let A be a finite set. The elements of A will be
called atomic actions. Every atomic action is an element of P, the sort of processes. There are also two binary
operators on P, viz. + (alternative composition) and - (sequential composition). The core system BPA (Basic
Process Algebra) over this signature has the following axioms (x,y,z € P).

X+y=Y+X Al
X+y)+z=x+(y+2) A2
X+ X=X A3
X+y)yz=xz+yz A4
(x-y)z=x(yz) AS

TABLE 1. BPA.

In the sequel a rather large number of new operators and axioms will be presented. The first step is to introduce
the algebra ACS (algebra of composed signals). This involves the introduction of a sort AS of atomic signals
which is in fact a parameter for the design of the algebras and which should be defined specifically for each
application.

FIGURE 1.
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The interpretation of AS will be a finite set and for each element of this finite set a constant is added in AS.
Then there is sort CS of composed signals. CS is just the power set of AS and it is equipped with the usual
operators on sets. The axioms of ACS are as follows (a,b € AS, u,v,w € CS):

uuv=vuu CS1

(Uuviuw=uu(vuw) CS2

uuu=u CS3

uud=u CS4

uNnv=vnu CS5s

un(vnw)=Uunv)Nnw CS6

uNnu=u CS7

uNd=9J CS8

uu(vnw)=(uuv)n(uuw) CS9

uNn(vuw)=Uunv)u(unw) CS10
ae J=false CS11
ae {a}=true CS12
ae {b}=false ifazb CS13
aeuuw=(ae u)v(aew) CS14
aeunw=(ae uya(aew) CS15
TABLE 2. ACS.

2.2 CONDITIONALS.

A useful feature in the coming examples is the addition of conditionals or guards to our language. It should be
noted that this extension is independent of the presence of signals. We use letters ¢,y to range over conditions
COND. We first consider the ternary operator .<.b>.: P x COND x P — P. The expression x<1¢>y should
be read as if ¢ then x else y. We take this notation from [HHJ+ 87]. We think the notation with triangles is
preferable over the one with key words, because the former notation does not have scoping problems and is
more mathematical. We will also add this operator to our signal algebra, i.e. we will have a ternary operator
.<.>.: CS x COND x CS.

The advantage of adding the conditional expressions is easily understood in the use of parametrized process
specifications. Let for instance, for n € N, P(n) be the process a"b. One obtains a uniform specification for
the P(n) as follows (nN>0):

P(n) =b < n=0 > a-P(pred(n))

(here pred is the predecessor function: pred(0) = 0 and pred(n+1) = n).

Besides this operator, we will use a variant of it that is a binary operator, the guarded command, that was
introduced in [BBMV 89]. We have the notation .:—.: COND x P — P. The expression ¢:—X is read as if ¢
then x. We have a similar operator on signals. There is the basic identity:

d:—X = X<1p>9.
We sce that the existence of this operator presupposes the presence of the & constant. This is why the ternary
operator is more basic and therefore preferable to the binary operator. Nevertheless, the binary operator will
turn out to be very useful in examples.

In the presence of the empty process € (see [VR 86] or [BW 90]) we can even use a unary operator {}:
COND — P (called guard, see [GP 90]) with the definition:

{6} = e<10>d.
Notice that this implies the following identity:
O:—x = {d}-x.
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In [GP 90] a substantial amount of theory is developed for this notation for guards. In this paper, we will
concentrate on the conditional and guarded command notation. As the guard operator presupposes the existence
of the € constant, it leads us out of concrete process algebra, and thus out of the scope of this paper.

Throughout this text we will discuss conditionals in two settings:

i. conditional expressions and guarded commands with conditions ranging over the set BOOL = {true,
false}. Notice that in this case, conditionals may be removed from all closed expressions. It follows that no
additional theory is required and that no consistency problem is raised whatsoever. The signature is shown in
figure 2.

ii. conditional expressions and guarded commands in the more general case that the condition is taken from
the free Boolean algebra By, with generators 01,...,0n. In this case we will usually add a distributive law for
each new operator. Only in the case of the state operator some complications arise that can be solved in a
natural way however. The signature is shown in figure 3.

We first consider case (i). The following axioms are obvious. X,y € P, u,v e CS.
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x<trueby = x CO1
xfalsepy =y 607
udtrued>v =u CO3
ufalsepbv=v Co4
true :-»x=x GC1
false :»x=39 GC2
true:»u=u GC3
false . »u=0 GC4

TABLE 3. Conditionals and guarded command.

As we will see, the two operators are interdefinable. In the sequel, we will most often give the extra laws for
the ternary operator, as this operator embodied a more classical construction, and has the advantages outlined
above. Sometimes this is not possible, however. We will also use :— in case the law to be formulated would
look incomprehensible for .<1.>>. The laws for the other operator are usually derivable using the first four
axioms of the following table. This table gives extra axioms needed in case (ii), when we have conditions
ranging over an arbitrary finite Boolean algebra.

d:oX = X16>d CG1
X<OB>Y = ¢:—X + (=) >y CG2
O:—>U=u<P>IT CG3
u<1opv = dp:—u U (—¢):-v CG4
6> =0 GCs
P> uUuVv)=(d:>u)u(d:>V) GC6
dvy)mu=(@0:>u)u(y:>u) GC7
o> (Yo u)=(0Ay):>u GC8
0:—>8=9 GC9
d>X+y)=(0:>x)+(0:>Y) GC10
vy iox=(:>x)+(y:>Xx) GC11
> (Yo x)=(0Ay) =X GC12
(x-2)<16>(y-2) = (x<10>y)-Z CO5

TABLE 4. Conditionals over a Boolean algebra.

As an example, we show two calculations:

L Xovy)by=(0vy) =X+=0vy) o v=>0Vv(0AY) D X+(—dA—y) :iDy=

= (0> X) + (-9 == (Y i X)) + (=0 i (FW 1> Y)) = (¢ 1 X) + (=0 = (X<IYB>Y)) = X<O> (X<DYB>Y).
. XDy == i X+ =(—0) (> Yy =0 > Y + (—0) :— X = y<IdpD>X.

LEMMA. Consider the algebra CS with operators N,U,{.},e and :— over the Boolean algebra B, with

generators 01,...,0n. Let U be a closed term over this algebra. Then U can be written in the form
2n

U= o (%> ui),
i=1
where for 1<i<2M, uj e CS and the ¢j range over all ‘complete’ conjunctions of literals. A literal is a term of
the form 0; or —0;.
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THEOREM. Consider the algebra BPA with operators +,: and :— over the Boolean algebra B, with generators

01,...,0n. Let t be a closed term over this algebra. Then t can be written in the form
t=3% 6> a)ti+ I (61 bi),
le

where I,J  {1,...,2"}, a@j, bj e A, tj again closed terms and the ¢; are as above. Here, we use the convention
that a sum over an empty set is considered equal to d.

A consequence of this theorem is that one may view BPA with guarded commands as a variation of BPA with
atomic actions ¢j :— aj.

2.3 ROOT AND TERMINAL SIGNAL INSERTION OPERATORS.

The next operators to be introduced are the signal insertion operators. [.,.] is the root signal insertion operator
and (.,.) is the terminal signal insertion operator. The intuition behind these operators is that both assign labels
(signals) to the states of processes. Root signal insertion places a signal at the root node of a process. Terminal
signal insertion places one and the same signal at each terminal node of a process. If one is interested solely in
processes that show signals exclusively in nonterminal states one may as well forget about the terminal signal
insertion operator. Leaving out all axioms involving terminal insertion from the coming sections one will obtain
an appropriate description of root signal insertion.

Whereas in process algebra one usually confines oneself to labeling the transitions and perhaps to some
labeling of the nodes that is directly related to the mechanism of transition labeling, here it is intended to have
labelings of states of processes with the same status as the labelings of the state transitions by means of atomic
actions. With some effort it turns out that an algebraic specification of the resulting notion of processes can be
given that indeed constitutes a conservative enrichment of ACP (at least regarding identities between finite
closed process expressions). The following 10 equations are added to BPA thus obtaining BPAS (BPA with
signals). Remarks on models for BPAS are given in section 7.

[u, X]'y = [u, x-y] RS1
[ux]+y=[u,x+y] RS2
[u v, xll=uuv,x] RS3
[D, x]=x RS4

TABLE 5. Root signal insertion.

The first axiom expresses the fact that the root of a sequential product is the root of its first component. Axiom
RS2 can be given in a more symmetric form as follows:
[ux]+v,yl=luuv,x+yl.

This equation depends on the fact that the roots of two processes in an alternative composition are identified.
Therefore signals must be combined. The third axiom expresses the fact that there is no sequential order in the
presentation of signals. Of course one might imagine that a sequential ordering on signals is introduced, but we
think that the introduction of such a sequential ordering is far from obvious (it also leads to problems
concerning the associativity of the parallel composition operator). The combination of the signals is taking
‘both’ of them whereas X + Y has to choose between X and y. The equations below regard terminal signal
insertion.
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Xy, u) = xy, u) TS1
X +Y, u)y=(X, uy+y,u TS2
{x, u), v) = (X, U U V) TS3
X, D) =x TS4
X, uyy =x[u, y] TRS1
{[u, x], v) = [u, (X, V)] TRS2

TABLE 6. Remaining axioms of BPAS.

The deadlock constant can be added without problems to the above axioms.

X+0=X A6
X =29 A7
O, u=35 TS6

TABLE 7. Signals and deadlock.

An interesting identity that follows with the introduction of § is the following:
[u, x] =[u, 8] + x.
This equation is indeed very useful for writing efficient process specifications mainly because it allows to a
large extent to work with process algebra expressions that are not cluttered with signal insertions.
If we add conditionals over an arbitrary finite Boolean algebra, we need the following extra axioms.

[u, x]<OD>[v, ¥] = [u<d>V, X<1O>Y]
b > (X, U) = (b > X, U)

TABLE 8. Signal insertion and guarded command.

We formulate the second law of table 8 in terms of the binary operator, since the obvious law for the ternary
operator, viz. (X, Uy<I¢D>(y, V) = (X16>y, u<1op>V), is not valid, since the validity of ¢ may change during
the execution of the process. A variant for the ternary operator that does work, is the following:

X, WOy, V) = (X<1>3, U) + (3d>Y, V)
As an example, we give a calculation:
[u,a]<a>(b, v) = [u,a]<o>[D, (b, V)] = [u<d>T, a<d>(P, VY] =[¢p :> u, (¢ :—> @) + (—d :— (b, V))] =
=[¢: > u, (¢ :> a) + (—d > b, V))].

2.4 SIGNAL FILTERING AND GLOBAL SIGNAL INSERTION.
The signal filtering operation M allows to reduce the number of visible signals by filtering them all with a fixed
signal. The advantage of the use of signal filtering is to obtain a much simpler signal structure, which can then

be specified quite precisely. So if it is hard to find a correct expression for X it may be workable to determine u
M X for some appropriate signal U.

una=a F1
unxX+y)=Uunx)+(uny) F2
uNn(xy)=unx)uny) F3
unfv,x]=[unv,unx] F4
uNnd, v)={UnNx, unv) F5

TABLE 9. Signal filtering.
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Similarly, it is useful to extend U over arbitrary processes. The appropriate name for this operation is global
signal insertion. .

uua=I[u, @, u)] GSI1
uuX+y)=(Uuux)+(uuy) GSI2
uu (xy)=(uux)(uuy) GSI3
uulv,x]=uuv,uux] GS14
UuUX, V) =UuUX UUV) GSI5

TABLE 10. Global signal insertion.

The extra axioms needed for conditionals are equally straightforward.

u N (X<o>y) = (U N X)<p>(u Ny)
u U (X<1op>y) = (U U X)<o>(u U Y)
TABLE 11. Signal filtering, insertion and conditionals.

We give an overview of the signature elements introduced in sections 2.3 and 2.4 in figure 4.

FIGURE 4.

An important application of signals is in the specification of reactive systems. The virtue of the signal
mechanism is that it allows to express an asymmetry between action and reaction in the case of reactive
systems. The action is an atomic act performed on the initiative of the external environment of a reactive system
S. The effect of this action is to change the state of the system and to leave it in a stable resulting state from
which it may show one or more signals. The environment can decide itself when to observe these signals, if at
all. In the next section we will present a series of examples of process definitions involving signals. Most of
these systems may be viewed as (parts of) reactive systems.

Processes with signals constitute a novel concept, at least as seen from the point of view of process
algebra. Of course there is nothing new in the intuitions, the novelty lies entirely in the aspect that these matters
are wrapped in an algebraic framework. Moreover it turns out that processes with signals allow a natural
version of bisimulation semantics. We will exploit the possibilities that are opened by the introduction of
signals in processes within the context of process algebra. Processes with signals constitute first and for all a
meaningful semantic category. Only secondary is the algebraic treatment of these processes in a specific setting
of operators. Nevertheless we hope to have found an algebraic form for the subject that is sufficiently flexible
and powerful to be both of technical and conceptual relevance.

2.5 ROOT SIGNAL OPERATOR.
It is useful to extend the system with operators S and P. The operator S determines the root signal of a
process. If S(x) = & we say that X has a trivial root signal, otherwise X has a non-trivial root signal. Processes
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that were studied until now in the context of process algebra always have a trivial root signal. The operator P
removes the root signal from its argument, thus obtaining a process with a trivial root signal.

S(a)=9 S1
S(x +y) = S(x) U S(y) S2
S(x-y) = S(x) S3
S([u, X]) = u U S(x) S4
P(a) =a P1
P(x +y) =P(x) + P(y) P2
P(x-y) = P(x)'y P3
P([u, x]) = P(x) P4
P(x, W) = (P(x), u) P5

TABLE 12. Root signal operator, root signal deletion operator.

Notice that the equation S((X, u)) = S(x) is derivable from the axioms in table 12:
S((x, u)) = S((x, uyy) = S(x[u, y]) = S(x).
Also x = [S(x), P(x)] will now be derivable for finite closed process expressions. As a rewrite rule it is useless,
however, because it will immediately introduce an infinite loop.
The extra axioms needed for conditionals are straightforward.

S(x<19>y) = S(x)<1o>S(y)
P(x<19>y) = P(x)<1¢>P(y)

TABLE 13. Root signals and conditionals.

We can extend the normal form theorem of section 2.2 to BPAS as follows: if t is a term over BPAS, write tin
the form [S(t), P(1)]. Then S(t) can be written as shown in the lemma in section 2.2, and we can extend the
theorem to cover also processes with signals, provided no signals occur in the root, and we also allow terms of

the form iEZK(d)i = (bi, up)

2.6 EXAMPLES.

(i) A traffic light that changes color from green via yellow to red and back to green. As names for the traffic
lights one may simply use the natural numbers. For the traffic light with number n, the signals are then
green(n) , yellow(n) and red(n), the only action is change(n).

TL(n) = [{green(n)}, change(n)] - [{yellow(n)}, change(n)] - [{red(n)}, change(n)] - TL(n).

There are various alternatives to this definition which are interesting to display explicitly. For instance one may
introduce a data type COLORS = {green, yellow, red} with a function next that permutes the colors as
follows: green — yellow — red — green. Then the process TL can be parametrised by a color and one
obtains one of the following four recursion equations. In this case we remove the numbers of the traffic lights
for brevity. '

TL(x) = [{x}, change]-TL(next(x))
TL(x) = [{x}, change-TL(next(x))]
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TL(x) = [{x}, 8] + change-TL(next(x))
TL(x) = ([{x}, 8] + change)-TL(next(x))

(ii) An electric lamp with power switch. In the equations the names for signals and actions speak for
themselves. We will assume that the lamp is indexed by a name n from
NAMES = {hall1, hall2, hall3, kitchen1, kitchen2,
living1, living2, living3, living4, staircase, garage, cellar}.

The lamp is parametrised by two additional parameters: L(n, X, y), where

x € SWITCH = {on, off}, y e STATUS = {defect, functioning}.
The function SW permutes the elements of SWITCH and the actions switch(n) correspond to switching on or
off lamp n. For each n € NAMES there are two signals: light(n) and dark(n). Together these signals
constitute the atomic signals. It must be noticed that the combined signal {light(n), dark(n)} will not occur in
any process describing a physically meaningful setting.

A recursion equation for the behavior of the lamp with name n is then as follows. Notice that we use a
conditional statement on signals, and a guarded command on processes, as discussed in 2.2.

L(n,x,y) = [{light(n)<(x=on & y=functioning)t>dark(n)}, 8] +
switch(n)-L(n,sw(x), y) +
(y=functioning) :— defect(n)-L(n, x, defect) +
get_new_lamp(n)-L(n, x, functioning)

We return to this example in sections 3.2 and 3.5.

(iii) A further example is a single lamp with double switch, and the status of the lamp can be controlled from
both switches. In these equations the intended meaning of the actions is as follows:

ui = put switch i in upward position (i=1,2)

di = put switch i in downward position (i=1,2)

Lo,o = [{dark}, utl-Ly o + [{dark}, u2]-Lg 4
L1,0 = [{light}, d1]Lg o + [{light}, u2]-L4 4
Lot = [light}, u1]-Lq 1 + [{light}, d2]Lo,
Lq.¢ = [{dark}, d1]-Lq 1 + [{dark}, d2]-Lq .

(iv) A system of two lifts seen from an intermediate floor, say floor 2, has two signals: the signal sur (signal
upwards request) indicates that somebody wants (or wanted) to travel in the upward direction, the signal sdr
(signal downwards request) indicates that a downward travel has been requested. The signals disappear as
soon as a lift has departed in the requested direction. Both lifts move all the way from bottom floor to top floor
and back all the time, be it that a request is needed to trigger their action. The actions that can be performed or
observed by users at floor 2 are as follows:

up_request (asking for an upward travel),

down_request (asking for a downward travel),

arrive_j_b, (lift j arrives from below),

arrive_j_a (lift j arrives from above),
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leave_j_up (lift j leaves in upward direction),
leave_j_down (lift j leaves in downward direction).
Only the leave actions will influence the signals. In the following specification, the movement of the lifts is
taken into account, be it that the internal logic of the lifts is not modeled. For instance, it can happen that lift 1
leaves in upwards direction twice without having left for the opposite direction in between, whereas all the time
the signal sdr was present and lift 2 has not departed in downward direction either. This course of events is not
allowed by most lift systems. Let u < {sdr, sur}.
LLy= [u, 8] +
(up_request, uu{surp)-LLy sur +
(down_request, uu{sdr})-LLy qsdn +
{(leave_1_up + leave_2_up), u—{sur})-LLyfsur} +
((leave_1_down + leave_2_down), u—{sdr})-LLy_{sdr} +
((arrive_1_b + arrive_1_a + arrive_2_b + arrive_2_a), u)-Ly.

(v) This example again discusses a lift connecting three floors but now as seen from the inside. The number of
lifts involved in the system is of no importance for this specification. In this case the signals are the various sets
of requests for travel to floors 0, 1 and 2. These signals for requests are denoted with sr(0), sr(1) and sr(2).
Notice that the requests come either from inside the lift or from outside, but in both cases all requests are
signalled inside the lift, e.g. by lighted buttons. We see there are 8 possible signals, as there are 8 subsets of
the collection of atomic signals.

The actions are:

« req(j) to request transport to floor j for j = 0,1,2;

- move(0,1), move(1,0), move(1,2), move(2,1), move_past(1) denoting the movements of the lift;

« halt(j) denotes the halting of the lift at floor j;

i_open(j), i_close(j) are the actions of opening and closing the (inner) lift door

(these actions are controlled by the lift system);

0_open(j) and o_close(j) are the actions of opening and closing the outer lift door

(presumably controlled by the users).

There is no time-out mechanism that decides whether or not the outer lift door is going to be opened at all after
a halt has been made. The lift has 32 states while moving and 120 states while resting at a floor. The 32 states
between floors are organised as follows:

LM(0/1,up, V): the lift is moving between 0 and 1 traveling in an upward direction at the point where it
will either continue its travel further without halting at 1 or decide to halt at 1 (be it because of an internal or an
external request), moreover V is the signal (i.e. the set of atomic signals) that is visible.

Similarly there are states LM(0/1, down, V), LM(1/2, up, V) and LM(1/2, down,V). Starting from a
halted lift, not all moving states can be reached, as the following specification is such, that the lift will only
move in a certain direction if there is a request to go in that direction. Thus, only 20 travelling states will
actually occur.

The 120 resting states are organised as follows:
foreachje {0, 1, 2},
d e {closed1, inner_door_opent, outer_door_open, inner_door_open2, closed?2},
V < {sr(0), sr(1), sr(2)},
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the object (data structure) LR(j, d, V) is a state. Again, not all 120 states will actually occur, as the signal for a
given floor is not present when the lift is on that floor and the door is open. Thus, we see that only 84 states
can actually occur.

The meaning of these states is as follows: for instance L(2, inner_door_open2, {sr(0), sr(2)}) indicates that
the lift rests at floor 2, with its inner door open but its outer again closed and the request signals for floors 0
and 2 on.

Then one needs an equation for each of the 104 (or 152) states of the lift. We will present the whole
specification by means of two equations, making heavy use of the guarded command from section 2.2. This
model is much simpler than the real situation in most cases. For instance, after halting, the lift does not know
anymore in which direction it was travelling.

Letie {1,2},je {0, 1,2}, b e {up, down}, V c {sr(0), sr(1), sr(2)}, d e {closed1, inner_door_opent,
outer_door_open, inner_door_open2, closed2}. Then

L(i/i+1,b, V) =[V, §] +
req(0)-L(i/i+1, b, VU{sr(0)}) +
req(1)-L(i/i+1, b, VU{sr(1)}) +
req(2)-L(i/i+1, b, VU{sr(2)}) +
(sr(i)e V & b=down) :— halt(i)-LR(i, closed1, V) +
(sr(i+1)e V & b=up) :— halt(i+1)-LR(i+1, closed1, V) +
(i=0 & b=up & sr(1)e V) :— move_past(1)-L(1/2, up, V) +
(i=1 & b=down & sr(1)e V) :— move_past(1)-L(0/1, down, V).

LR(,d, V)=[V, 3] +

req(0)-(LR(j, d, VU{sr(0)}) < j=0 b

(d=closed1 :— LR(j, d, VU{sr(0}) +

de {inner_door_open1, outer_door_open}) :— LR(j, d, V) +

d=inner_door_open2 :— LR(j, inner_door_open1, V) +

d=closed2 :— (LR(0, closed1, {sr(0}) < V=@ > LR(j, d, VU{sr(0})))) +
req(1)-(LR(, d, Vu{sr(1)}) < j#1 >

(d=closed1 :— LR(j, d, Vu{sr(1}) +

de {inner_door_open1, outer_door_open}) :— LR(j, d, V) +

d=inner_door_open2 :— LR(j, inner_door_open1, V) +

d=closed?2 :— (LR(1, closed1, {sr(1}) <« V=@ > LR(j, d, Vu{sr(1})))) +
req(2)-(LR(j, d, VU{sr(2)}) < j#2 >

(d=closed1 :— LR(j, d, Vu{sr(2}) +

de {inner_door_open1, outer_door_open}) :— LR(j, d, V) +

d=inner_door_open2 :— LR(j, inner_door_open1, V) +

d=closed?2 :— (LR(2, closed1, {sr(2}) <« V=@ > LR(j, d, Vu{sr(2})))) +
(d=closed1) :— i_open(j)-LR(j, inner_door_openi, V—-{sr(j)}) +
(d=inner_door_open1) :— (o_open(j)-LR(j, outer_door_open, V) +

+ i_close(j)-LR(j, closed2, V)) +

(d=outer_door_open) :— o_close(j)-LR(j, inner_door_open2, V) +
(d=inner_door_open2) :— i_close(j).LR(j, closed2, V) +
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(d=closed2 & j=0 & (sr(1)e V or sr(2)e V)) :— move(0,1)-L(0/1, up, V) +
(d=closed2 & j=1 & sr(0)e V) :—» move(1,0)-L(0/1, down, V) +
(d=closed2 & j=1 & sr(2)e V) :— move(1,2):.L(1/2, up, V) +

(d=closed2 & j=2 & (sr(0)e V or sr(1)e V)) :— move(2,1)-L(1/2, down, V).

(vi) An alarm clock. In this example one needs a rather more substantial underlying data type than in the
previous examples. We will describe the data type in an informal way but given the data type the description of
the clock will be quite precise. Of course there are many formalisms that allow to present a precise description
of the data type as well. The atomic signals in this example are:

» The digital time indications measuring time in seconds, collected in the set TIMES. There is a successor
function next on TIMES which increases time with one second, counting modulo 24 hours.

« The alarm signal: alarm.

The actions are the following:

switch_off_alarm (takes no time),
tick (a tick of the clock occurs every second),
set_alarm(t) (this action takes 2 seconds).

The process has a state vector consisting of three attributes:

(a) an element time of TIME, the current time,

(b) a boolean alarm_set that indicates whether or not the alarm has been set

(c) an element a_time of TIME that indicates when (if at all) the alarm must start. The alarm will then be on
for two consecutive minutes unless it is switched off before.

Now the state of the clock is given by a record (frame, tuple):

CLOCK(time, alarm_set, a_time).
All actions result in a modification of the (values of the attributes) of the record, and the signals depend directly
on the record. In particular, the time signal is just the current value of the first attribute of CLOCK and the
signal alarm is on exactly if alarm_set = true and time e [a_time, a_time + 00.02.00 (modulo
24.00.00)].

Recursion equations for CLOCK are then as follows:
CLOCK = CLOCK(00.00.00, false, 00.00.00)
CLOCK(t, b, t') =1t, 8] +

tick-CLOCK(next(t), b, t') +
i %Mséet_alarm(r)-CLOCK(next(next(t)), true, r) +
€

switch_off_alarm-CLOCK(t, false, t') +
(b=true & t' <t < t' + 00.02.00 (modulo 24.00.00)) :— [{alarm}, §].
In the last line, we used the guarded command of 2.2.
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3. SIGNALS AND PARALLEL COMPOSITION.

3.1 FREE MERGE.

We can extend the system BPAS of section 2 to PAS—, including the free merge (parallel composition without
communication) and the left merge with the usual axioms and adding axioms that handle the interaction between
the signal insertion operators and the left merge. The superscript ~ indicates that there is no feature present that
allows the observation of signals, addition of that feature is the subject of section 4. (Of course the extension to
ACP will require a modification of the merge expansion axiom by adding an additional term for the
communication merge, this will be described in section 5.)

xlly=xLy+yl x M1
all x=ax M2
axlLy=a(xIy)

x+y)Lz=xlLz+yl z M4
[ux]ly=[uxlLy] MSI1
@,uwl x=a(uux) MSI2
TABLE 14. PAS—.

3.2 EXAMPLES.
(i) Simple examples for the application of the free merge can be produced on the basis of the previous series of
examples. The simultaneous behavior of traffic lights (see example 2.6.i) with names in {1,...,4} is found by
simply merging their process descriptions:

TL(1-4) = TL(1) Il [{red(2)}, change(2)]-TL(2) Il TL(3) Il [{red(4)}, change(4)]- TL(4).
In an intersection where lights 1 and 3 are in the east-west direction, and lights 2 and 4 are in the north-south
direction, this system starts out correctly, but as there is no communication between the different traffic lights,
the coordination will soon disappear. Some communication mechanism is needed to describe this system
correctly. We will return to this example in section 3.5.

(ii) This example refers to the previous example 2.6.ii that introduced a collection of lamps in a private house.
The simultaneous behavior of the collection of lamps in the living room is appropriately described by
L(living) = L(living1) Il L(living2) Il L(living(3) Il L(living4).
For the kitchen one obtains: L(kitchen) = L(kitchen1) Il L(kitchen2).
For the hall we have L(hall) = L(hall1) Il L(hall2). Composing these one obtains:
L(living/kitchen/hall) = L(kitchen) Il L(living) Il L(hall).

(iii) Examples of derived identities in PAS—.
[u, 8l [v,8]=[uuv,3d),
[u,a] ll [v,b]=[uuv,allv,b] +[uuv, b][u, a],
[u, @, U] I [v, b, v =uuv, ] +av&u, b, u &Vv) +buuVv,(a u & V).

3.3 SIGNALS AND SYNCHRONOUS COMMUNICATION.

The axiom system ACPS— describes the addition of signals to processes with synchronous communication as
modeled by ACP. The superscript — indicates that there is no communication by means of observation of
signals. Addition of that feature will involve the addition of two more summands to the merge expansion
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axiom. The remaining axioms of ACPS— can now be added without leading to any inconsistency, but it is
necessary to add some equations that describe the interaction of left merge and communication merge with the
node labels. Notice that the axiom CM1 replaces the axiom M1, apart from this the family of axiom systems
increases in a monotonic way.

alb=bla C1
(@lb)ylc=al(blc) C2
alé=3% C3
xlly=xLy+ylLx+x1ly CcM1
all x=ax cM2
(ax)Ly=a(xlIy) M3
x+y)lLz=(xLz)+(ylL 2 CcM4
[ux]Ly=[u,xLy] MSI1
@uwly=a(uux) MSI2
al (b x)=(a | b)x CM5
(ax) | b=(a | b)x CM6
(@x) | (by)=(al b)(xlly) CM7
(x+y)| =(x12)+(y !l 2) CM8
L (y+2)=(xl y)+(x | 2) CM9
[u X]ly=[uxly] MSI3
X1 [u,yl=[uxly] MSI4
@uyl b=¢@ | b,u) MSI5
al({,uy=(@ | b,u) MSI6
@, uyl Pp,vy=(@ ! b,uuv) MSI7
@,uy | (b'x)=(a | b)(uux) MSI8
@x) | (b,uy=(a | b)-(uux) MSI9
dH(a) =a ifag H D1
oH(a) =3 ifae H D2
OH(X +Y) = 9H(X) + H(Y) D3
OH(XY) = IH(X)IH(Y) D4
OH([u,X]) = [u, IH(x)] DSI1
OH((X, W) = (IH(X), U DSI2

TABLE 15. ACPS—.

3.4 CONDITIONALS.

We can extend the results in chapter 2 about conditionals to a setting with parallel composition and
communication if we add the following axioms.

(x<1op>y)lLz = (xILz)<p>(ylLz)

(x<1o>y) l z=(x 1 z)<1o>(y | L2)

x| (y<o>z)=(x | y)<o>(x | z)

OH(X<19P>Y) = IH(X)<IO>IH(Y)

TABLE 16. Conditionals and parallel composition.
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3.5 EXAMPLES OF SYSTEM SPECIFICATIONS IN ACPS—.
(i) Consider the traffic light system of example 3.2.i. Within ACPS~ it is possible to introduce a control unit
that performs the switching of the lights. New actions are needed to deal with switching. In particular we will
need names for the switch actions as performed by the control unit. The actions set_to(color, number) have
an evident meaning. Because the traffic light knows to which color it is set the actions change(n) are still
useful. Having the color as an additional parameter is not strictly needed for programming the control unit
either but it serves to get a more readable specification. As new communications we will introduce:

change(n) | set_to(c,n) =c(n).
All other communications are 8. The encapsulation set H simply contains all actions that can engage in a
nontrivial communication (the change and the set_to actions). Here it is understood that the traffic lights are
numbered clockwise. The crossing that will be considered in more detail in this discussion is the one in the
direction 2 to 4. We will assume that this crossing is for pedestrians. A picture of the situation is as follows:

2
E (1o eI

FIGURE 5.

Pedestrians who want to cross from north to south (direction 2 to 4) will wait until the light at 2 is green. A
specification for the control unit might be as follows.

control =
(set_to(yellow, 1) Il set_to(yellow, 3))-waityellow(1, 3)-
(set_to(red, 1) Il set_to(red, 3))-waitred(1, 3)
(set_to(green, 2) Il set_to(green, 4))-waitgreen(2, 4):
(set_to(yellow, 2) Il set_to(yellow, 4))-waityellow(2, 4)-
(set_to(red, 2) Il set_to(red, 4))-waitred(2, 4)-
(set_to(green, 1) Il set_to(green, 3))-waitgreen(1, 3)

loop = control-loop

The entire system is obtained by means of an encapsulated merge of the traffic lights and the control unit:
SYSTEM = ox(loop Il TL(1-4)).

An interesting complication arises if one allows the control unit to receive requests for one of the directions.

For instance one may assume that an action read(request(2—4)) is needed to trigger the transition to a state

in which the 2 and 4 are green. The program may then look as follows:
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control2 = (read(request(2—4)) + read(request(4—2))-control
loop2 = control2-loop2

Of course this leads to

SYSTEM2 = oy(loop2 Il TL(1-4)).
The third step is to add agents on the scene that want to use the traffic lights. For instance one may consider a
pedestrian who wants to use the crossing in the north-south direction. If the pedestrian wants to cross from 2
to 4 (s)he will have to inspect the light at 2, and wait until it is green.
Here is a process describing this person:

ped(i) = arrive_at_2(i)-wait(i)-cross(2—4, i)
wait(i) = obs({green(2)}) + put(request(2—4))-wait(i)

The action obs({green(2)}) has no special meaning in this specification, be it that in an implementation one
would like this action to be implemented in correspondence with its intuitive meaning, namely the observation
of the green signal at light 2. In section 5 an observation mechanism will be introduced. Here we assume that
put(request(2—4)) and read(request (2—4)) communicate, resulting in an action request(2—4).

H is then extended by the actions read(request(2—4)), yielding H*. The partial order < says that
request(2—4) has higher priority than the action put(request(2—4). This order is used as a parameter for
the priority operator below. For information on the priority operator see [BBK 86]. For completeness sake we
list the axiom system, that makes use of an auxiliary operator < (unless). Unfortunately, this binary operator
shares a symbol with the ternary conditional operator of 2.2. Appropriate use of brackets is needed to avoid

ambiguities.
6(a)=a TH1
6(x"y) = 8(x)-6(y) TH2
0(x +y) = 6(x)y + 6(y)x TH3
adb =a if {a<b) P1
adb =96 ifa<b P2
x<(y-z) = x1y P3
x<(y + 2) = (xdy)dz P4
(x'y)dz = (xz)'y P5
(X +y)<z = xdz + yz P6
0([u, x]) = [u, 6(x)] THS1
0((x, u)) = (6(x), u) THS2
x4[u, y] = x<y PS1
x<(y, u) = x1y PS2
[u, x]dy = [u, xy] PS3
(X, uydy = (xqy, u) PS4
O(x<1Hp>y) = 6(X)<1d>6(y) THC
x(y<16p>z) = (xy) <> (x<z) PCl1
(x<1pP>y)dz = (x<12) o> (y<1z) PC2

TABLE 17. Priority operator.
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This use of the priority operator corresponds precisely to the put mechanism for synchronous but unreliable
message passing (see [BW90]). The aim is to allow arbitrarily many put(request(2—4)) actions and to let a
communication take place just if the put is a vital one in the sense that it conveys new information to the control
unit. A system with three pedestrians about to cross from 2 to 4 is then as follows:

composite_system = 8-(dn+(ped(1) Il ped(2) Il ped(3) | SYSTEM2)).

As was said before, the weakness of this combination is of course that the pedestrian takes no caution to
prevent crossing when the light is red. Notice that the action observe_green _at_2 (i) will not be blocked
when a green signal at 2 is absent. In the setting of ACPS~ that cannot be improved. This example is taken one
step further in section 5, however. There, a feature is introduced that allows a proper interaction between the
presence of the green signal at 2 and the proper execution of an action observe_green_at_ 2(i).

(ii) Consider once more the CLOCK of example 2.6.v. A plausible user of the clock can execute the following
process user = uset_alarm(07.28.00). We assume that uset_alarm(t) can communicate with the CLOCK
action set_alarm(t) to alarm(t). Let H = {uset_alarm(t), set_alarm(t) | t e TIMES } then

dH(user |l CLOCK)

describes the proper cooperation between user and CLOCK.

(i) Consider the example of a merge of light behaviours from example 3.2.ii. In this example a person is
added to the scene. The person is supposed to enter the house at night and under the assumption that all lights
are off. The actions that (s)he can perform are the actions pswitch(n) for n a name in {hall1, hall2, kitchen1,
kitchen2, living1, living2, living3, living4}. The communication function works as follows: pswitch(n) |
switch(n) =t.

Here t denotes some action that plays the role of an internal step of the system. The encapsulation set H
contains all switch and pswitch actions.The person can for instance execute the following process:

person = enter_front_door - pswitch(hall1) - enter_living -
(pswitch(living1) Il pswitch(living2)) - pswitch(living3) -
enter_kitchen - pswitch(kitchen1) - leave_kitchen -
pswitch(hall1) - enter_living

The combined actions of system and person are then represented by the process expression
person_in_house = dy(person |l L(living/kitchen/hall)).

Let w be the signal light(halll) & light(hall2) & light(living1) & light(living2) & light(living3) &
light(living4) & light(kitchen). Then the following identity can be shown:
W M d{get_new_lamp(n), defect(n) | n e NAMES}(Person_in_house) =
enter_front_door -
t .
({light(hall1)} U
(enter_living -
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((«t, {light(living1)}) + ¢, {light(living2)})) -
{t, {light(living1), light(living2)}) -
t- .
({light(living1), light(living2), light(living3)} L
enter_kitchen -
t.
({light(kitchen)} U
leave_kitchen

)
)
) .
t.
({light(kitchen), light(living1), light(living2), light(living3)} U
enter_living -
3
)-

4. PROCESSES WITH FREE MERGE AND OBSERVATION.

4.1 THE SIGNAL OBSERVATION FUNCTION.
In this section an observation mechanism is added to the features available in process algebra. In order to
simplify the discussion, the communication mechanism is first left out in order to be added later on, in section
5. It is assumed that some actions a are able to read the signals of processes that are put in parallel with the
process executing a.

We start out with the observation function as a function p: Ag x AS — Ag. An action a € A such that
obs(a, p) =b forsome b € A, p € AS is called an observation action. The signal observation function satisfies
the following axioms:

p(d, p)=0o OBS1
p(p(a, p), q)) = p(p(a, ), p) OBS2
p(p(a,p),p)=p(a,p) OBS3

TABLE 18. Observation function for atomic signals.

Then, we extend the observation function to a function p: Ag x CS — Ag by means of the following additional
axioms:

p(a,D)=a OBS4
p(@, {p} v v) =p(p(a p), v) OBS5

TABLE 19. Observation function for composite signals.

From the observation function we will manufacture an additional operator on processes denoted with /. This
signal observation operator describes the inspection of a signal by a process. The inspection of a signal will
check whether or not some given atomic signal is contained in it. First, we give axioms for the signal
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observation operator on atomic actions, i.e. we consider /: As X CS — P. Notice that a/u is always 9, an

atomic action or a sum of atomic actions.

o/u=29 01

a/d=a 02

av= Y p(a,u) 03
Hgv

TABLE 20. Signal observation on atomic actions.

Notice that axioms O2 and O3 imply that a/v always contains a as a summand, and in case we have a trivial
observation function (p(a, p) = 8 foralla e A), we geta/v=aforallve CS.

Next we extend signal observation to a operator /: P x CS — P. The intuitive meaning of X/u is a process
that behaves like X be it that the first action of X is performed as an observation on the signal u.

(X +y)u=x/u+ylu o4
(x-y)u = (x/u)y o5
[u, X]/V = [u, x/V] 06
(X, UMV = (x/v, u) o7
(x<1d>y)/u = (x/u)<1o>(y/u) 08
x/(U<1HD>V) = (x/u)<1O>(X/V) o9

TABLE 21. Signal observation on processes.

Note again that X/v = X for all processes and signals in case of a trivial observation function.

4.2. PAS: SIGNAL OBSERVATION AND FREE MERGE.

The merge expansion equation M1 of 3.1 has to be modified, in order to obtain an equation for a merge
operator that takes signal observation into account as well. The following version of this axiom was suggested
in BROUWER [BR 90]. This completes the description of the axiom system PAS.

xly=(x/S(y) Ly + (y/S(x)) IL x oM
TABLE 22. Free merge with observation.

Notice that this equation reduces to the equation M1 in case of a trivial observation function.

In order to support the intuition for the observation mechanism we will now describe several examples of
observation functions.

4.3. EXAMPLES OF SIGNAL OBSERVATION FUNCTIONS.

In all examples below we specify the observation function p: A x AS — As. Thus, p,q denote elements of
AS.

i. The observation actions all have the form obs(p) with p an element of AS. These actions represent the
intention to observe a signal p. There is a special atomic action yes which is the result (confirmation) of a
successful observation. The action yes is not an observation action. The signal observation function then
works as follows.
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p(obs(p), p) = yes
p(obs(p), q) = & ifp#q
p(a,p)=39 for all actions a not of the form obs(p).

In connection with this observation function one will use a form of encapsulation which shields off all
observations except yes. In this way seen from outside the encapsulation context, only succesful observations
will be visible.

In this format it suffices to indicate which non-trivial observations exist and to omit the complementary
definition of the observations that lead to 6.

Notice that an unsuccessful observation cannot be affirmed by an atomic action: if we put p(obs(p), q) =
No in case p=q, we get obs(p) / {p,q} = yes + no, which is certainly counterintuitive.

ii. The second example takes the same sets of signals and observations as model (i) except for the addition of a
label p to the act of confirmation of successful observation, which thus becomes yes(p). The definition is as
follows.

p(obs(p), p) = yes(p)
p(obs(p), q) = 3 ifp=q

All other observations lead to 6 as in the previous example. This kind of observation allows one to keep track
of the observed signals after encapsulation. The advantage being that no abstraction through renaming is
involved and that a potential source of non-determinism is thereby removed. Notice that non-determinism in
specifications is generally due to the level of abstraction rather than to the intrinsic non-determinism. Almost
every system becomes non-deterministic when viewed at a sufficiently high level of abstraction.

iii. This example takes an element U of CS as the parameter of the observation actions. The observation test(u)
succeeds if some atomic signal p in u is present. In this case the observation function can be defined as
follows.

p(test(u), p) = yes ifpeu
p(test(u), q) =3 ifpe u.

iv. We consider the generalization of the format in (i) above to actions obs(u) with u an element of CS. These
actions represent the intention to observe all atomic signals in the composite signal u. The action obs(Q) will
occur when all signals in U have been observed.

p(obs(u), p) = obs(u—{p})

v. The last example generalizes (ii) as in the previous format. Action obs(u,v) expresses that signals in u still
have to be observed, and signals in v have been observed. We start with an action obs(u,@) and complete
success is then given by obs(@,u). We call this observation function the standard observation function. The
definition is as follows.
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p(obs(u,v), p) = obs(u—{p}, vu(unip})).

5. ACPS: SYNCHRONOUS COMMUNICATION AND OBSERVATION.

5.1. AXIOMS.

Now we will combine the above theories ACPS— and PAS to obtain ACPS (ACP with signals and signal
observation) by changing the axiom of the merge. The purpose of the following equations is to ensure that all
operators except +, *, [.,.] and {.,.) can be eliminated from finite process expressions by means of left to right
term rewriting. Notice that the original case of ACP can be viewed similarly with the understanding that all
operators except + and - can be eliminated in that case.

Besides taking the axioms for ACPS— and PAS together while taking the sum of their merge expansion
axioms, three axioms are needed that ensure that observation and communication will not interfere. The
purpose of these axioms is to guarantee that merge will be associative. It is possible that more general schemes
exist, but in any case having an observation that communicates at the same time seems to be a rather fancy
feature. In table 23,a,b e A,p e AS.

(3peAS p(a,p)#8) = alb=3§ OBS6
p(a,p)lb=3 OBS7
p(alb,p)=38 OBS8

TABLE 23. Observation and communication.

The new expansion axiom for merge with communication is then as follows:

| xlly=(x/S(y) Ly +(y/Sx))Lx+xly  OCM |
TABLE 24. Merge with observation and communication.

_In case of a trivial observation function, this expression reduces to axiom CM1 of 3.3 and the interaction
between processes works exactly as in ACP. ACP is therefore the special case of ACPS if the signal
observation function vanishes everywhere. Similarly PA is the special case of ACP if the communication
function vanishes everywhere. Obviously there is a situation where the communication function vanishes
everywhere but the signal observation function may assume non-trivial values. In such cases one may omit the
summand with the communication merge and we get PAS.

5.2. EXAMPLES.
(i) Let us reconsider the alarm clock of example 3.5.ii. We are now able to allow the user of the clock to
observe the alarm and to switch off the clock subsequently. Let the user be described by the following process:

useri = uset_alarm(07.00.00)-obs({alarm}, &)-uswitch_off_alarm

Here we assume that uswitch_off alarm communicates with switch_off_alarm to off_alarm. The standard
signal observation from section 4.3.v is used.

Finally the encapsulation set H contains all actions uset_alarm(t) as well as the action obs({alarm}, &).
Then the cooperation of user and clock is given by:
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oH(user1 || CLOCK).

The specification allows but does not require the user to observe the alarm. If it is essential that the user hears
the alarm a priority operator is needed that gives a higher priority to obs(<, {alarm}) than to tick. A second
step introduces a slightly more complex behavior for the user:

user2 = uset_alarm(07.00.00)-sleep-user2loop
user2loop = obs({alarm}, J)-uswitch_off alarm + wakeup-sleep-user2loop

A third step is to make the behavior of the user again more complex, for instance if the user wakes up before
the alarm has gone off (s)he may decide to sleep again without switching off the alarm provided t < 06.45.00.
Here we need an observation for the time signal. We again use the standard signal observation function.

A new version user3 of the user then turns into:

user3 = uset_alarm(07.00.00)-sleep-user3loop

user3loop = obs({alarm}, &)-uswitch_off_alarm +

k . b ,D)-sl -user3loo
waxeup (re{O0.00.0E..,OGA?.O%}({r} )ysleepu P *

obs({r},d)-uswitch_off_alarm)
re {06.45.0T,..,07.02.00}

Of course the observations obs({t}, &) must be added to the encapsulation set H. Then the cooperation between
user and alarm clock is again given by

JH(userd || CLOCK).
Of course substantially more involved types of user behavior can be modelled using the primitives of ACPS.

(i) Returning to the example of the traffic lights (3.5.i), using the signal observation function of 4.3.iv, one
adds the actions obs({green(k)}) to H. By simply working in the setting of ACPS the composite_system of
example (3.5.i) will now work properly.

(iii) In this example we will elaborate once more on the example of the person in a house with various light
switches (see 3.5.iii). The point here is that the person may want to inspect whether or not a light that was
switched on indeed functions correctly. If not (s)he will replace the bulb by a new one. The actions that must
be introduced here are inspections of the signals of the various lamps. We use the standard observation
function. Recall that the atomic signals are in this case of the form light(n) and dark(n).
The action pswitch(n) can now be replaced, whenever it is assumed to switch the lamp on, by a more involved
non-atomic process as follows:

pswitch(n)-(obs({light(n)},&) + obs({dark(n)},&)-put_new_lamp(n))
Of course the communication function has to be extended. In particular one needs a communication for the new
lamp actions, for instance:

put_new_lamp(n) | get_new_lamp(n) = new_lamp(n)
A modification of the person process from (3.5.iii) to incorporate this additional feature is as follows:
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person* = enter_front_door - pswitch(hall1) -
(obs({light(hall1)},@) + obs({dark(hall1)},&)-put_new_lamp(hall1)) -
enter_living - v
(pswitch(living1) Il pswitch(living2)) - pswitch(living3) -

( (obs({light(living1)},&) + obs({dark(living1)},&)-put_new_lamp(living1)) Il
(obs({light(living2)},&) + obs({dark(living2)},&)-put_new_lamp(living2)) |l
(obs({light(living3)},&) + obs({dark(living3)},&)-put_new_lamp(living3)

) .

enter_kitchen - pswitch(kitchen1) -
(obs({light(kitchen)},&) + obs({dark(kitchen)},&)-put_new_lamp(kitchen)) -
leave_kitchen - pswitch(hall1) - enter_living

Composing this process person* with L(living/kitchen/hall) in the system ACPS will indeed produce a
process that shows appropriate interaction of the person with its environment. Notice however that there are
many different plausible behaviours of the person. Therc seems to be no universal generic behavior for person
even in this very simple case. Obviously other factors that bear no relation to the switching of light influence
the behavior of the person. Nevertheless it is a fair hypothesis to assume that the person behaves for some
short time as a process. Thus locally (in time) person (or person®) is a process in the sense of process
algebra, but globally a much more complex stucturing mechanism is needed. One can imagine, however, that it
is possible to formally incorporate in process algebra a small knowledge base which structures the decision
taking process of the person.

6. FURTHER EXTENSIONS OF ACPS.
Having the mechanisms of ACPS available it is natural to formulate many additional features on top of it which

will increase expressive power without leading to semantical difficulties. In this section some of such
mechanisms will be reviewed.

6.1. STATE OPERATORS THAT GENERATE SIGNALS.
Let us assume that a state operator in the sense of [BB 88] is given by a domain S and functions act: Ag x S —
Ag and eff: Ax S — S. The expression A¢(X) with s € S denotes process X working on the state space S with
the current state being s € S. |

We can assume that there is an additional function sig: S — CS which determines for each state the signal
that is produced by that state. The absence of signals is modeled by taking sig(s) = & of course. Now the six
equations for the state operator arc as shown below.

As(8) = [sig(s), 8] LS1
As(a) =[sig(s), act(a, s)] LS2
As(@ax) =[sig(s), act(a, s)Aeff(a, 5)(X)] LS3
As(X +Y) =Ag(X) + As(y) LS4
As([u, X]) = [u, A5(x)] LS5
As((x, W) = (Ag(x), U) LS6

TABLE 25. State operator gencrating signals.
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Using a state operator that generates signals one can define signaling processes in such a way that the recursion
equations need not contain any signal at all, thus considerably optimizing the notation. We will illustrate this in
two examples.

EXAMPLE 1.
Let D be a finite alphabet of data, and let ST(D) be the collection of finite sequences over D. The empty
sequence is denoted by & and adding an element d to the list X results in push(d, x). The atomic signals are as
follows:

top(d) forde D,

empty.
ST(D) will be the state space for a process that represents a stack over D. The signal function sig is de fined
by sig() = {empty}, sig(push(d, x)) = {top(d)}. The atomic actions are:

push_int(d), push(d) for d e D (the suffix int denotes an intended action),

pop_int, pop.
The functions act and eff are given by:

act(push_int(d), x) = push(d) (the act function transforms an intended action into an actual action),

act(pop_int, x) = pop,

eff(push_int(d), x) = push(d, x) (the eff function gives the resulting contents of the stack),

eff(pop_int, &) =,

eff(pop_int, push(d, x)) = x.
(For act only those cases are given where act will not lead to §.). The behavior of a stack over D is the given
by the following process definition.

stack(D) = Ax(ST_INT)
ST_INT = ( 3 push_int(d) + pop_int)- ST_INT.
€

EXAMPLE 2.

In this example two buffers A and B with data from the finite set D are maintained in the state. Both buffers
have length k > 1. The process to be defined allows to read data in both buffers in a concurrent mode. For both
buffers A and B there are two atomic signals: open_A indicates that there is still room in A, closed_A
indicates that A has been filled (likewisc for B). When both buffers have been loaded the action comp
compares the contents of the buffers. The comparison will send value true if the buffers were equal and false
otherwise. Thereafter the buffers are made empty again and the process restarts. We will describe the system in
a top-down fashion, first explaining the overall architecture and then completing the details. As a notational
convention we have adopted moreover that intended actions (which have not yet been processed by the state
operator but for which this is envisaged in the design) are marked with the suffix int.

SYSTEM = )\,<®,@>08H (X)
X = (int_A Il int_B)-X.

The state consists of a pair of buffers A and B. Initially both are empty. The signals produced by a state (0, B)
are as follows.
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sig_A(o, B)) =  -{open_A}
{closed_A}

sig_B((o, B)) = {open_B}
{closed_B}

sig(x) = sig_A(x) U sig_b(x).

The processes int_A and int_B are defined by:

int A= dZL_)read_int,A(d)'int_A +comp_int_A
€

int B= dZ,Dread_int_B(d)~int_B +comp_int_B
€

Communication is defined as follows:
comp_int_A | comp_int_B = comp_int,
H = {comp_int_A, comp_int_B}

27

if length(a) <k,
if length(o) = k.
if length(B) < k,
if length(B) = k.

The next step is to explain the effect function for those actions that pass the encapsulation operator:

eff(read_int_A(d), (o, B)) = o*d
o

eff(read_int_B(d), (o, B)) = B*d
B

eff(comp_int, (o, B)) = %)

Finally the action function must be specified:
act(read_int_A(d), (a, B)) = read_A(d)
o
read_B(d)
o
write(true)
write(false)
d

act(read_int_B(d), (o, B)) =

act(comp_int, (o, B)) =

if length(o) < k
otherwise
if length(B) < k
otherwise

if length(at) < k

otherwise

if length(B) < k

otherwise

if lenght(a) = k and o = B

if length(o) = length(B) = k and o # B,
otherwise.

The use of the state operator in this example is hard to avoid because of the parallel reading of data that must be
used simultaneously later on. This issue is worked out in [VE 90].

6.2. STATE OPERATOR WITH CONDITIONS.

In case we have conditions over an arbitrary Boolean algebra Bp with n generators, we need a function eval:
Bn X S — Bp (S the set of states) satisfying the following axioms. With the help of this function we can give

an axiom for the state operator on conditional cxpressions.

eval(s, true) = true El
eval(s, false) = false E2
eval(s, ¢ A y) = eval(s, 9) A eval(s, ) E3
eval(s, ¢ v y) = eval(s, ¢) v eval(s, y) E4
eval(s, —¢) = —eval(s, ¢) ES
Ag(x<19B>y) = Ag(x)<eval(9, s)>As(y) LC

TABLE 26. State operator and conditions.
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6.3 INFINITE NUMBER OF ATOMIC SIGNALS.

This extension is a rather plausible one. Indecd there is no particular reason why the set of atomic signals must
be finitc as long as all composite signals that are used in a process are finite combinations of atomic signals.
For instance let the natural numbers be written in unary form by means of 0 and a function S, act as atomic
signals. Then process count(k) for k € N can be defined as follows:

count(k) = [{Sk(0)}, t]-(count(k + 1) + stop).

Assume the presence of an observation action above(10) that allows the following observations (in the format
of 4.3.i): obs(above(10), Sk+10(0)) = yes.

Let the only non-trivial communication be stop | yes = end, then with H = {above(10), stop}, the process
dH(count(0) Il above(10)) denotes a process that will count until some value above 9 and then terminate.
Under the assumption that there are only finitcly many atomic actions, the use of these signals taken from an
arbitrary data type is only limited as far as process interaction within process algebra is concerned. \
Nevertheless, one can imagine that an external observer can indeed distinguish all signals so that the complex
signals are useful to model unintended external behavior.

6.4 AN ALTERNATIVE NOTATION FOR ROOT SIGNAL INSERTION.
An alternative to the use of the binary root signal insertion operator [.,.] is to introduce the unary deadlock signal
mapping 6(u) which is defined by 8(u) = [u, §].
In fact root signal insertion can be expressed using this operation:

[u, x] = x + &(u).
Because the deadlock signal mapping and root signal insertion are expressible with respect to one another it is
possible to provide an axiomatisation of the algebra of communicating processes with signals using §(.) rather
than [.,.]. In terms of the complexity of the signature that lcads to a substantial simplification, because a unary
operator is a simpler concept than a binary one. The main reason, however, not to use the deadlock signal
operator instead of root signal insertion is that it would lead to a set of axioms which is considerably harder to
read than the given equations.

7. BISIMULATION SEMANTICS FOR PROCESSES WITH SIGNALS.

7.1. PROCESS GRAPHS WITH NODE LABELS.

Many possible semantic worlds exist for ACP. It is impossible and unnecessary to review all models of
importance here. The bisimulation model being the initial algebra semantics of ACP stands out as the most
important model in our view, in spitc of its ignorance of the concept of truc concurrency and it not being fully
abstract. We will indicate how a bisimulation semantics can be obtained for processes with signals. This new
notion of bisimulation specialises to the original form in the case of processes with trivial signals only.

We assume that a finitc set A of atoms is given as well as a finite set AS of signals. We assume A and AS
to be disjoint. Outside A we have an additional constant 8. A process in the setting of this simple form of
bisimulation semantics is a finitely branching, dirccted, acyclic and rooted graph, with nodes labeled by a
signal in CS (a subset of AS) and edges labeled by actions in A. Terminal nodes in the graph may have an
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additional label & besides the signal label from CS. This indicates that the branch terminates in deadlock.
Absence of the label 8 at a terminal node implies proper and correct termination.

The interpretation of the operators is as follows.
«  J corresponds to the single node graph with two labels: & and 8
. The atomic action a corresponds to a graph with two nodes and one connecting edge. Both nodes are
labeled with & and the edge is labeled with a.
«  Given graphs g and h, their sum is obtained by identifying the root nodes and taking the union of the root
signals. Only if both roots have label §, the new root obtains a label 6 as well.
«  The product g°h of two graphs g and h is obtained from g by attaching a copy of h at each terminal node
of g that has no label 3. The signal labels of the terminal nodes of g in g-h are recomputed by taking the union
in cach case with the root signal of Q.
« The graph [u, g] is obtained from g by combining its root signal with u, and the graph (g, u) is found
from g by combining each signal label of a properly terminating node of g with u.
«  S(g) is the root signal of g and P(g) results from g by replacing the root signal of g by &.
«  The merge of process graphs g and h without communication corresponds to taking the cartesian product
of the two graphs. The signal of a pair (p, q) of nodes is just the combination of the signals of the individual
nodes. A transition (p, Q) % (p', q') exists il cither p £ p'and q=q orq 2, g' and p = p'. In the case of
communication the diagonal transitions (p, Q) N (P, q) are added whenever there is a non-trivial
communication C between actions @ and b such that p 2 p'and q b, qg'. The left merge is constructed by first
defining the merge and then removing all initial transitions that correspond to first move of the second argument
of the left merge. Similarly a communication merge is defined starting from the merge by removing al initial
transitions that are not communications. Of course both in the case of the left merge and in the case of the
merge there may result inaccessible parts of the graph after deletion of the relevant initial transitions. These
superfluous parts of the process graphs of course have to be removed afterwards.

Finally the presence of signal observations must be taken into account. The merge of two processes in the
case of ACPS starts with constructing their merge in the sense of ACPS~. The domain of the new graph is then
obtamed but more edges have to be addcd in order to [ance the succesful observatlons into account. If g =q', p
2, p' and a/S(q) =V, orp=p,q % g and a/S(p ) = <, then a transition (p, Q) b, (p', 9') is added.

Equally interesting and informative as these graph constructions is an operational semantics based on
actions and labeled transitions between cxpressions over the free syntax of ACPS. Such an operational
semantics is given in section 8.

7.2 BISIMULATION FOR PROCESS GRAPHS WITH NODE LABELS.

A bisimulation between graphs g and h is a bisimulation in the sense usual for process algebra with the
additional restriction that if a bisimulation R relates a pair (S, t) of states of g and h the labels of the nodes s
and t must coincide. In this way a model of BPAS is obtained. It can be shown that BPAS provides a complete
axiomatisation for bisimulation congruence on processes with signals. The proof uses the second canonical
form as described below and is postponed until after the discussion of these canonical forms. Without proof we
state the following propertics of bisimulation scmantics on processes with signals.

(i) In the initial algebra of ACPS the merge operator is associative.

(ii) The initial algebra of ACPS is an expansion of the initial algebra of ACP, whence ACPS is a conservative
enrichment of ACP (at least as far as identitics between finite closed process expressions are concerned).
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(ili)  The initial algebra of ACPS is isomorphic to the bisimulation model with appropriate definitions of all
operators other than + and .

(iv)  ACPS constitutes (on finite closed process expressions) a terminating and confluent term rewriting
system modulo its permutative identities for +.

(v) The notion of a regular process is defined just as in the case without signals. A process graph is regular if it
bisimulates with a finite graph. All regular processes with signals can be specified by means of finite linear
systems of equations. All operations on processes described in this paper transform regular processes into
regular processes. The algebra of regular processes exists just as well for ACPS as it does for ACP.

(vi)  ACPS allows a projective limit model in very much the same way as ACP does.

The equations of ACPS first and for all express an intuition. The virtue of these equations is to be consistent in
bisimulation semantics, secondly and not of less importance to allow the transformation of each finite process
expression in each of several canonical forms. These canonical forms are discussed below. Finally an aim is to
show the axioms complete with respect to bisimulation semantics, at least in the case of finite processes. A
third objective is to anticipate for guarded recursive definitions and to enforce that finite projections of
processes defined with guarded recursion can be transformed to finite process expressions without recursion.
These finite process expressions can then be translormed into one of the canonical forms.

7.3 CANONICAL FORMS FOR ACPS

The canonical forms for finite processes are Icss casily established in the presence of signals and observations.
First of all one observes that each process graph can be unfolded into a bisimilar tree. The canonical forms are
all derived from the tree representation. Consider the following classes of finite closed process expressions.

(i) CANPL1.
« ForuinCS, [u, d] is in CANP1.
+ Ifn,m,k=20with n+m+k>0,and ay,...,ap, by,....0m, C1,...,Ck are atomic actions different from §; if
moreover U, Uq,..., Uy are signals in CS and Xj,...,X,, are in CANP1 then
[uagXy +..+anXg + 01, U+ oee + Oy, Upy) + oo + C1 + ... +C]
is an expression in CANP1.

In CANP1 the number of occurrences of {.,.) is minimised. Moreover each node label is displayed at
exactly one position in the expression. Closing brackets of [.,.] are moved to the last possible position. This
type of canonical form arises from the most obvious translation of processes as labeled trees into process
expressions. These canonical forms are needed if one is to understand the equations for / above. CANP1
contains exactly the normal forms of expressions according to BPAS.

(ii) CANP2.
+ ForuinCS, [u, §] is in CANP2.
« Ifn,m,k20with n+m+k>0,and ay,...,an, by,....0m, C1,...,Ck are atomic actions different from 6; if
moreover U, Uq,..., U, are signals in CS and Xy,...,X, are in CANP2 then
[u,a4]'Xq + ... + [u, @] Xy, + [u, by, u)] + ... + [U, By U] + oo + [U, C4] + ... + [U, C

is an expression in CANP2.

The expressions in CANP2 have the disadvantage that the root label of each subexpression is duplicated
for every branch of the subexpression. The advantage of this kind of canonical form lies in the simple
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definition of finite projections and the corrcsponding option to consider infinite expressions as limits of finite
expressions and to manufacture a projective limit model in the style of [BK 84].

(iii) CANP3.
« ForuinCS, [u, §] is in CANP3.
« Ifn,m,k>0with n+m+k>0,and ay,...,4q, B1,---.Om> C1,--.,Ck are atomic actions different from &; if
moreover U, Vy,..., Vp, Uq,..., Uy, are signals in CS and Xy,...,X;, are in CANP3 such that for X; the root signal
is vj then
[u, @q,v1)]-Xq +... + [U, @n, Vel Xp + [U, (B1,up)] +ooe + [U, O U]+ + [U, C4] +oo + [u, ¢yl

is an expression in CANP3.

The expressions in CANP3 have the disadvantage that the root label and terminal label of each
subexpression is duplicated for every branch of the subexpression. The advantage is that this form is useful if
one is to translate the signal observation mechanism into the more primitive communication mechanism.

(iv) CANP4.
Let CANP4* be the following class of expressions:
« disin CANP4*,
« Ifn,m,k>0with n+m+k>0,and aj,...,an, By,--,bm, C1,-..,Ck are atomic actions different from ; if
mOreover Vy,..., Vp, Uq,..., Uy, are signals in CS and Xy,...,X;, are in CANP4* then

@y, V1) Xy + .. + @y V) Xp + (O1, Ug) + o + Oy Up) + oo + C1 + .. + Cg
is an expression in CANP4*,

Now CANP4 consists of all expressions of the form [u, X] with X an expression in CANP4*. Clearly

the point of CANP4 is to minimise the usc of [.,.].

(v) CANPS.
Ifn,m, k>0 and ay,...,an, D1,-..,0m, C1,...,Ck are atomic actions different from §; if moreover U, Uy,..., Uy
are signals in CS and Xj,...,X, are in CANPS5 then

[u, 8] + a4 Xy + ... +ApXp + O, U + oo + Om, Um) + .0 + C + . +Cg
is an expression in CANPS.
These normal forms depend entirely on the presence of 8. Clearly these forms are very simple and in particular
this form helps in the design of recursion equations for parametrised processes with signals. Of course this
canonical form cannot be used in absence of the deadlock constant.

7.4 COMPLETENESS OF THE AXIOMS FOR BISIMULATION IN THE CASE OF FINITE PROCESSES.

Using the third canonical form, a completeness proof for bisimulation congruence for processes with signals
can be given. We will consider the simplest case without deadlock. We also have to assume that the set of
atomic signals, AS, is finite. One introduces a new set of atomic actions, viz. for each atomic action a and
signals u, v we have [u, (@, V)] as a new atomic action. Let B be the alphabet of these new actions. Let CANP3
be the collection of process expressions over B that is in the third canonical form.

Let P and Q be two bisimilar process expressions with signals. Using the equations of BPAS both
expressions can be transformed into a CANP3 form, this results in P' and Q'. Now observe that two processes
in third canonical form bisimulate in the new sense if and only if they bisimulate as processes over B in the
usual sense. Therefore P' and Q' are bisimilar as processes over B. Because BPA is a complete axiomatisation
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for bisimulation semantics on finite processes P' and Q' can be proven equal by means of axioms of BPA an
considering them as processes over B. It turns out however that the axioms of BPA are just as valid for P' and
Q' seen as CANP3 expressions. Indeed the axioms of BPA when applied as rewriting rules to CANP3
expressions do not lead outside that class.

7.5 REMARK.
Models in the presence of conditonal expressions can be given similarly, be it that transitions will be labeled by
pairs of actions and (enabling) conditions, and a notion of bisimulation must be adapted to that setting. As an
example, we would have ¢ :— (—y :— a:(b +C)) 20~y (b + c).

We will not do so at this point. Instead, we will provide a structural operational semantics involving signals
in 8.2.

8. AN OPERATIONAL SEMANTICS FOR ACPS

8.1 RULES FOR ACP AND ACPS

An operational semantics of ACP is nothing new and can be retrieved from several sources, such as [VGL 87].
We prefer the approach in which only the operators of ACP that genuinely represent program constructions are
provided with an operational semantics. The motivation for this style is the point of view that the auxiliary
opcrators are there to facilitate the algebra bul that the primary operators have an importance that far exceeds
that of the algebra. Therefore the operational scmantics of the syntax for process expressions should be
accessible also to readers who have no knowledge of the auxiliary operators and their sometimes not quite
straightforward role.

In the case of ACPS one assumes that the communication function is given as a partial function on the
atomic actions (i.e. not for 8) and that the signal observation function is given as a total operator on atomic
actions and atomic signals. Each of these opcrations must satisfy the required axioms.

In these circumstances the proper atomic actions and the operators +, *, [.,.], {.,.), Il, 0 represent
appropriate system description mechanisms, all others are auxiliary operators used to make the algebraic
specification possible or concise. We need the notation V(u) to indicate that a process terminates in a proper
terminal state with node label u. As an abbreviation for V(@) we use the simpler notation V. These expressions
are itself not a process expression and will not occur in complicated ways as a subexpression of large process
expression. In the rules below X and Y denote arbitrary process expressions.

a®
XL x X % V(u)
X+Y2a X X+Y % J(u)
YH oy Y & ()
X+YZ3oy X+Y % ()

TABLE 27. Rules for BPAS (first part).
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X% X X % V()
XY % XY XY 2 [u,Y]
X% x XS5 ()
K,u) 2 (XLu) X,u) = J(vou)
X x X % \(v)
X% X [uX] % V(v)

TABLE 27. Rules for BPAS (second part).

X2 X X 3 ()
Xy & x1y XY & uuy
YLy Y % ()
X1y 2 Xy XY 2 uux

TABLE 28. Additional rules for PAS—.

X3 X, Y25 v, alb=c X 25 Y(u), Y °— Y, alb=c
XY S X1y XY & uoy

X3 X, Y25 Ju),alb=c X3 Y(u), Y "= V(v),alb=c

XY & uux: XIY & (uwv)

X% X, agH X % J(u), agH

AH(X) *» H(X) amX) & V()
TABLE 29. Additional rules for ACPS—.

X 3 X, p(a,u)=b#5, ucS(Y) - X% (v), p(a,u)=bz3, ucS(Y)
X1y & Xy XIY % voy

Y 3 Y, p(a,u)=b=5, ucS(X) Y 2 V(v), p(a,u)=b=3, ucS(X)
X1y 2 xily: XIIY % vuX

TABLE 30. Additional rules for ACPS.

In the two next rules E is a (guarded) system of recursion equations that contains the equation X = s. (X | E)
denotes a process that is a solution for this cquation. (S | E) denotes a process as follows: s is a process

expression with some free variables in E, for these process variables the unique solution of these variables in E
is substituted.
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B3> Y 1B %~ )
X|B%-Y X E)? - ()

TABLE 31. Rules for recursion.

8.2 CONDITIONALS AND STATE OPERATOR.

In the presence of conditionals over an arbitrary finite Boolean algebra By, we will label the transitions with
pairs a,0, where a € A is an atomic action (so a#d) and ¢ a non-false expression over B (p=false). We
obtain the following rules.

a a,trug, N
X35 x X 2% ()
X+Y 3 x X+Y 2 o )
Y20, vy Y 205 ()
X+Y2 o v X+Y 2 - V)
X205 x X2 ()
XY 2 xuy XY 2% [u,Y]
X3 x X %= ()
Xy 2 o (X'u) Xy 2= Yvuu)
X2 x X2 (v)
[uXx ®® - [u,X [uX] 2= (v)
X 205 X', oayfalse X 2% (), oryzfalse
30NV, v 2,08y
X<ayp>Y v X X<ypY S5 (u)
Y 205 v, oamytalse Y 2% Y(u), oamyfalse
XaypY 2y X<y>Y *% (u)

TABLE 32. Rules for BPAS with conditionals.

Adding the rules for parallel composition is straightforward. It is interesting to look at the rules for the state
operator. This works as shown in table 33.

With this extended operational semantics involving conditions on the arrows comes a new definition for
bisimulation. Instead of just requiring matching actions, we also require matching conditions. The following
defintion starts from the set of valuations of the generators of the boolean algebra, i.e. all mappings V:
{61,...,6n} = BOOL. Each such mapping naturally extends to a mapping V: By — BOOL. Then we say that a
relation = on a transition system is a bisimulation when the following holds:

i. ifX =Y then S(X) = S(Y)



Process algebra with signals and conditions 35

X 2%_, X', act(a,s)=b=3, eval(s,p)=y=false
b ]
As(X) " Aefi(a,s)(X)

X 2%, y(u), act(a,s)=b=3, eval(s,0)=y#false
As(X) *¥ ()

TABLE 33. Rules for state operator.

i, ifX=YandX*% X', then for all valuations v with v(¢) = true, there is a condition y with v(y) = true
and an expression Y' such that Y Y, ¥ and X' = Y

i, if X=YandY % Y', then for all valuations v with v(¢) = true, there is a condition y with v(y) = true
and an expression X' such that X Y, X and X' = Y’

iv. if X=Y and X 2% V(u) then for all valuations v with v(¢) = true, there is a condition y with v(y) =
true such that Y % v(u) |

v. if X=Yand¥Y a0, V(u) then for all valuations v with v(¢) = true, there is a condition y with v(y) =
true such that X 2% (u).

We call two expressions X,Y bisimilar if there is a bisimulation relating X and Y. We claim that transition
systems modulo bisimulation form a model for our theory. It is an open question whether our axiomatization is
complete for this model.

8.3 STANDARD SIGNAL OBSERVATION FUNCTION.

In ACPS it is quite often convenient to have a fixed signal observation function in mind. This was already
mentioned in 4.3 and here, we give an operational semantics for some of the functions described there. First
the case 4.3.i. Then, the rules in table 30 specialize to the following form.

X °°S®) %, pe S(Y) x °°*® y(u), pe S(v)
XY YeS Xy XIY Y% uoy
v °*5®) v pes(X) Y °°*®) (), pe S(X)
X1y %S Xy XY %% uox

TABLE 34. Signal obscrvation function of 4.3.i.

As another example, we can consider the format 4.3.iv. This looks as follows.

X obs(y) X', weunS(Y) X obs(u) V(v), weunS(Y)
XIY %P5 xpy XY %0 vy

v °%5) vo weuns(X) y °P5(8) v), weuns(X)
X1y ®5UW xjy X1y 25U vox

TABLE 35. Signal obscrvation function of 4.3.iv.
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9. ABSTRACTION.

In this section, we will consider extensions of process algebra with signals to the case where internal, non-
observable actions (so-called T-actions) arc present. We will consider two semantics of such an extension:

i. branching bisimulation equivalence of [GW 89], [BW 90];

ii. weak bisimulation equivalence (or observational equivalence) of Milner [MI 80, MI 89], [BK 85].

In both cases, the constant T is the result of abstraction, as given by the abstraction operator T, that renames all
actions from I into 7. In the next table, ¢ A, a € Au{t} (so always T1(d) = J).

T(a)=a ifagl TI1
1(a) =1 ifael T2
(X +Y) =T1(X) + T1(y) TI3
Ti(Xy) = t(x) T(y) T4
T([u, x]) = [u, T1(x)] TSI1
(%, W) = (Tr(x), u) TSI2
T(X<O>Y) = Ti(X)<O>T1(y) TIC

TABLE 36. Abstraction operator.

9.1 BRANCHING BISIMULATION.

Graphs now have edges labeled by elements of Au{t}, and nodes labeled by an element of CS. Endnodes may
have an additional label 8. If S and t arc two nodes in a process graph g, then we put S = t if there is a
(possibly empty) path from S to t containing only T-cdges.

R: g ep h, relation R between nodes of g and nodes of h is a branching bisimulation between g and h iff

i. theroots of g and h arc related by R

ii. if R(s,t) and the atomic signal p is present in S, then there is anode t' in h and a path t = t' in h such that
R(s,t') and signal p is present in t'

iii. if R(s,t) and the atomic signal p is present in t, then there is anode s'in g and a path s = s' in g such that
R(s',t) and signal p is present in '

iv. if R(s,t)and s & s'isan edge in g, then either a=t and R(s',t), or there are nodes t*, t' in h and apath t =
t* 2 t in h such that R(s,t*) and R(s't))

v. if R(s,t)and t % tisan edge in h, then ¢ither a=T and R(s,t'), or there are nodes s*, 8'in g and a path s =
s*%g'in g such that R(s*,t) and R(s',t)

vi. if R(s,1) then s is an endnode in g iff t is an endnode in h.

We say graphs g and h are branching bisimilar, g «p h iff there is an R: g exp h.

A branching bisimulation R is called rooted iff in addition

vii. if root(g) % sisan edge in g (ae Au{t}), then there is a node t in h and an edge root(h) 25 tin h such
that R(s,t)

viii. if root(h) &) tis an edge in h (@ae AU{1}), then there is a node S in g and an edge root(g) 2 sin g such
that R(s,1).

We say graphs g and h are rooted branching bisimilar , g « p h iff there is a rooted R: g 2p h.
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Now we claim that the set of process graphs modulo rooted branching bisimulation forms a model for BPAS.
In this model, moreover the following T-law is valid (2 € Au{t}). This law is taken from [BW 90]. See also
[GW 891].

| a(t(x +y) +X) =a(x +y) BE |
TABLE 37. Branching bisimulation with signals.

We leave as an open problem whether BPAS + BE constitutes a complete axiomatization of this model. In
order to extend these results to theories with parallel composition, extra laws are not needed, since all laws that
hold for atomic actions also hold for the constant T. Thus, we can use the axiomatization of PAS~ in table 12,
ACPS— in table 14, PAS in tables 16-19 and ACPS in tables 20-21, with in all cases a,b,c € AU{3,t}. All we

need in addition is an extra requirement on the communication and observation function. In table 38, a € Ape
AS.

tla=9§ C4
p(t,p) =38 OBS4

TABLE 38. T with communication and observation function.

9.2 WEAK BISIMULATION.

We give the definition of weak bisimulation in the following.

R: g e+ h, relation R between nodes of g and nodes of h is a t-bisimulation between g and h iff

i. theroots of g and h are related by R

ii. if R(s,t) and the atomic signal p is prescnt in S, then there is a node t' in h and a path t = t'in h such that
R(s,t') and p is present in t'

iii. if R(s,t) and the atomic signal p is present in t, then there is anode 8’ in g and a path § = s' in g such that
R(s',t) and p is present in S'

iv. if R(s,t)and s % s'isan edge in g (a#T), then thereisanode t'inh and apatht = 2, = t' in h such that
R(s',t)

v. if R(s,t)and t ) t'is an edge in h (@#1), then there is a node §' in g and a path § = 2, = s'in g such that
R(s'.t)

vi. if R(s,t)and s T s'isan edge in @, then there is anode t' in h and a path t = t' in h such that R(s',t))

vii. if R(s,t) and t & t'is an edge in h, then there is a node ' in g and a path s = §' in g such that R(s',t')

viii. if R(s,t) then s is an endnode in g iff t is an endnode in h.

We say graphs g and h are 1T-bisimilar, g & h iff thereisan R: g ¢ h.

A 1-bisimulation R is called rooted iff in addition

ix. if root(g) = s is an edge in g, then there is a node t in h and a path root(h) % = tin h such that R(s,t)
x. ifroot(h) S tisan edge in h, then therc is a node S in g and a path root(g) S =sin g such that R(s,t).
We say graphs g and h are weakly bisimilar or rooted T-bisimilar, g « r¢ h iff there is a rooted R: g e+ h.

Now we claim that the set of process graphs modulo rooted T-bisimulation forms a model for BPAS. In this

model, moreover the following three T-laws are valid (2 € A). They are variants of the T-laws of Milner [MI
80].
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ucS(x) = afu,t]'x=ax TO1
ucS(x) = Tx+x=[u, TX] TO2
a(tx+y)=a(rx+y)+ax TO3

TABLE 39. Observational equivalence with signals (a=Tt).
We leave as an open problem whether BPAS + TO1-3 constitutes a complete axiomatization of this model.
Unfortunately, two of the earlier laws are not valid anymore, viz. the laws S3 and P3 of table 12 in 2.5.
They have to be replaced by the following laws (a € A).

S(ax)=J S3*
S(tx) = S(x) TS
P(ax) = ax P3*
P(tx) = 1-P(x) TP

TABLE 40. T and root signals.

In order to extend these results to theories with parallel composition, we need extra laws, as not all laws for
atomic actions will hold for 7. In order to obtain PAS— with internal action, we have the following obvious
laws (see also [BK 85]).

Tl x=1x T™M1
wxlLy=1(xlly) ™2
(t, WL x=1(uux) T™O

TABLE 41. 7 and frec merge.

Adding communication and encapsulation necessitates the following laws (see also [BK 85]).

Tl x=8 TC1
xlt=38 TC2
w™ly=xly TC3
x| ty=xly TC4
t,u)I x=3 TCO1
xI{t,uy=98 TCO2
dH(T) =1 DO

TABLE 42. T and communication.

Finally, adding observations leads to the following additional axioms.

T/u=29 OT1
TX/U = X/u Oo12

TABLE 43. T and observation.

10. EXAMPLES.

In this section we discuss a number of examples of the use of signals and observations.

10.1 QUEUE.

A specification of a (FIFO) queue can be given as follows.
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We have a given finite data set D, and the following specification has variables indexed by sequences over D. €
is the empty sequence, and concatenation of a sequence and an element is denoted by *. Signals are empty,
nonempty. '

Qg = [{empty}, dg;&enqueme'(d)~Od]
Qoxd = [{[nonempty}, dequeue(d)]-Qq + ez lS'enqueue(e)-Qe*(,*d .
€

10.2 BAG.
The bag is indexed by multi-sets. Signals are again empty, nonempty.

Bg = [{empty}, ¥ inbag(d)-Ba)]
V& = By =[{nonempty}, d}é‘, Doutbag(d)-Bv-{d}] + d%gnbag(d)'BVu{d}.

10.3 STACK.
We use conventions as above. We give a number of alternatives. First a stack without signals.

s! = ;‘b push(d)-S’,
€
1

1
Sevd = POP'Sg + top(d) S + 26 PUSN(€)"S Gugec-
ee

Next, we add a signal showing the top of the stack.

s2- ;‘b push(d)-S%
€

2 2 2
S5 =Pop S5 + 0P shOW(A)], SFud + 3 PUSHIE) S

ee

In the third specification, we add signals empty, nonempty, and also allow actions top, pop in case the stack
is empty. If this happens, an error signal is emitted, and no further action is possible.

s‘; = [{empty}, ;b push(d)-SSd] + (top, {error}) + (pop, {error})

3
82, = POpS3 + top-{{show(d)}, S5, + [{nonempty}, g push(e)-Sguel-
ee

The fourth specification has a state of underflow, when an empty stack is popped. A subsequent push leads out
of the error situation.

Sg = [{empty}, ;B push(d)'S‘L] + (top, {error}) + pop-U4
€
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U4 = [{underflow}, ?:B push(d)~84£] + (top, {error}) + pop-U4
€

4
Sfj*d = pop~Sf, + top-[{show(d)}, Sé*d] + [{nonempty}, 26 push(e) S g.gsel-
ee

The fifth stack keeps functioning, when a pop or top is executed on an empty stack.

S;r:’ = [{empty}, ;b push(d)-Ssd] + top-[{show(1)}, Sg] + pop-[{error}, si]

Sf,*d = pop.S‘:’, + top-[{show(d)}, S‘:;*d] + [{nonempty}, zb pUSh(e)'SE;*d*e]'
ee

In the sixth specification, a pop or top cxecuted on an empty stack leads to an irrecoverable error state, but
actions can still be executed.

S8 - [{empty}, ;‘b push(d)-S&] + top-ERROR + pop-ERROR
€
ERROR = [{error}, (top + pop + dEDoush(d))]EFiROF%
€

Sg*d = pop-Sg + top-[{show(d)}, Sg*d] + [{nonempty}, 2\5 push(e)-Sb;,*d*e].
ee

10.4 COMMUNICATING BUFFERS.

In this example we will give an example where both observation and communication play a role. We consider a
one element buffers, that always signals its contents on the output port. It receives a communication when the
contents are read out. On the input port, it trics to read an item. When it has succeeded in doing this, it sends a
communication acknowledging this. The buffer Bii has input port i and output port j. The signal Jd means that
message d is offered at port j.

Bil = [{iL}, 8] + obs(i.L)-Bii + ;b obs(id)-[{id}, si(ack)]-B

Bl = [{id}, 8] + r(ack) B,

Now we connect two buffers together. We have the communication ra(ack) | sp(ack) = ca(ack), and we use
the signal observation function of section 4.3.ii. We define

X = on(B121/B23),

where the encapsulation set is H = {obs(2.L), ra(ack), sa(ack)} u {obs(2d) : d € D}.
Some calculations result in the following rccursive specification:

X = [{2L, 31}, 8] + obs(1L)-X + ;b obs(1d)-X4

X9 = [{2d, 31}, 8] + s1(ack)-X3 + yes(2d)-[{2d, 3d}, s1(ack)]"X3
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X3 = [{2d, 31}, yes(2d)]-X$
X3 = [{2d, 3d}, co(ack)]-X§

X9 = [{2.L, 3d}, 5] + ra(ack)-X + obs(11)-X§ + 2‘5 obs(1e)-X&°
ee

X3¢ _ [{2e,3d}, §] + ra(ack)-X$ + s1(ack)][{2e,3d}, ra(ack)]-X 5.

Let us now abstract from the set of actions I = {obs(1L), s1(ack), ca(ack)} U {yes(2d) : d e D}. This leaves
only the input actions obs('d) and the output action r3(ack). We get the following specification for Y = 1(X):

Y = 1i(X) = [{2L, 31}, §] + ;\5 obs(1d)-Y4
Y{ = u(x§) =u(X§) = [{2d, 31}, Y$

g = 1(X9) = [{2d, 3dl}, 7-Y§

Y$ = (XS) = [{2.L, 3d}, 5] + ra(ack)"Y + zb obs(te)- Y
ee

Y88 - 1;(x€°) = [{2e,3d}, 8] + ra(ack)-Ys.

Having hidden the actions at port 2, we can proceed by also hiding the signals at port 2. We do this by means
of the signal filtering operator of 2.4. We put u = {3d : d € D} U {31}, and derive the following specification
forZ=unY:

Z=unY=untX) =31}, +§ obs(1d)-Z8
Z{=unY{=[B1.128

Z8-unY3=unY$=[{d) 8 + raack)Z +25 obs(1e)-z%
ee

788 = u ~ Y28 = [{3d}, 8] + ra(ack)-Z5.
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