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ABSTRACT

A property of term rewriting systems is called modular if it is preserved under disjoint
union. For unconditional term rewriting systems several modularity results are known. The
aim of this paper is to analyze and extend these results to conditional term rewriting sys-
tems. It turns out that conditional term rewriting is much more complicated than uncondi-
tional rewriting from a modularity point of view. For instance, we will show that the
modularity of weak normalization for unconditional term rewriting systems does not
extend to conditional term rewriting systems. On the positive side, we mention the exten-
sion of Toyama’s confluence result for disjoint unions of term rewriting systems to condi-
tional term rewriting systems.
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Introduction

Conditional term rewriting systems arise naturally in the algebraic specification of abstract data
types. They have been studied by Bergstra and Klop [1], Kaplan [15], Kaplan and Rémy [17] and
Zhang and Rémy [32] from this point of view. Conditional term rewriting systems are also important
for integrating the functional and logic programming paradigms. Several authors recognized that con-
ditional term rewriting provides a natural computational mechanism for this integration, see
Dershowitz and Plaisted [8, 9], Fribourg [12] and Goguen and Meseguer [13]. In both uses of condi-
tional term rewriting systems, establishing properties like confluence and strong normalization is of
great importance. '

Several methods are known for inferring properties of term rewriting systems like confluence
and strong normalization. Generally speaking we may say that these methods have the greatest chance
of succeeding if the concerned term rewriting system has few rewrite rules. For ascertaining properties
of term rewriting systems with many rewrite rules it is of obvious importance to have results at our
disposal which state that a term rewriting system has a certain property P if that system can be parti-
tioned into smaller term rewriting systems which all have the property P. For ‘disjoint’ decomposi-
tions of term rewriting systems several positive results have been obtained. A property which is
preserved under disjoint union is called modular. In this paper we perform a comprehensive study of
conditional term rewriting systems from a modularity point of view.

The paper is organized as follows. Section 1 contains a concise introduction to conditional term
rewriting. In Section 2 we pave the way for a systematic study of modularity. We give an overview of
previous work on disjoint unions of term rewriting systems and we introduce the necessary technical
definitions and notations for dealing with disjoint unions of conditional term rewriting systems. The
research on modularity originated with Toyama [28] who showed that confluence is a modular pro-
perty of term rewriting systems. In Section 3 we extend his result to join and semi-equational condi-
tional term rewriting systems, two well-known types of conditional term rewriting systems. We also
observe that local confluence is not a modular property of conditional term rewriting systems, notwith-
standing the modularity of local confluence for unconditional term rewriting systems. In [29] Toyama
refuted the modularity of strong normalization. His counterexample inspired Rusinowitch [27] to the
formulation of sufficient conditions for the strong normalization of the disjoint union of two strongly
normalizing term rewriting systems ® ; and R, in terms of the distribution of collapsing and dupli-
cating rules among R 1 and R ,. More precisely, he showed that the disjoint union of two strongly
normalizing term rewriting systems K 1 and R 3 is strongly normalizing if neither ® ; nor R 2 con-
tains collapsing rules or both systems lack duplicating rules. Middeldorp [22] showed that the disjoint
union of two strongly normalizing term rewriting systems is also strongly normalizing if one of the
systems contains neither collapsing nor duplicating rules. For conditional term rewriting systems the
situation is much more complicated as will become apparent in Section 4. We show that only one of
the three sufficient conditions remains valid for conditional term rewriting systems. In order to retrieve
the other two conditions we will show that it is sufficient to require confluence. In Section 5 we show
that the modularity of weak normalization for term rewriting systems does not extend to conditional
term rewriting systems. We present several sufficient conditions for the modularity of weak normali-
zation for conditional term rewriting systems. Section 6 is devoted to the modularity of unique normal
Jorms. In [21] we proved that having unique normal forms is a modular property of term rewriting sys-
tems by showing that every term rewriting system with unique normal forms can be conservatively
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extended to a confluent term rewriting system with the same ncrmal forms. We give a simple proof of
this observation which facilitates the extension of the modularity of unique normal forms to semi-
equational conditional term rewriting systems and we explain why this method does not work for join
conditional term rewriting systems. Suggestions for further research are given in Section 7.

1. Preliminaries

Before introducing conditional term rewriting, we review the basic notions of unconditional term
rewriting. Term rewriting is surveyed in Klop [18] and Dershowitz and Jouannaud [4].

A signature is a set F of function symbols. Associated with every F € F is a natural number
denoting its arity. Function symbols of arity O are called constants. The set T(F,V ) of terms built
from a signature ¥ and a countably infinite set of variables V with F NV = O is the smallest set such
that V< T(F,V ) and if F € F has arity n and t{, ..., t, € T(F, V) then F(t1, ..., tn) €T (F,V ). We
write C instead of C () whenever C is a constant. The set of variables occurring in a term ¢t € 7 (¥, v)
is denoted by V (t). Terms not containing variables are called ground or closed terms. The subset of
T (F,V) containing all ground terms is denoted by 7 (). Identity of terms is denoted by =.

A term rewriting system (TRS for short) is a pair (F, R.) consisting of a signature ¥ and a set
R T(F,V)XT(F,V) of rewrite rules or reduction rules. Every rewrite rule (/, r) is subject to the
following two constraints:

(1) the left-hand side / is not a variable,

(2) the variables which occur in the right-hand side r also occur in /.

Rewrite rules (/, ) will henceforth be written as / —r. We often present a TRS as a set of rewrite
rules, without making explicit its signature. A rewrite rule ! —r is left-linear if I does not contain
multiple occurrences of the same variable. A left-linear TRS only contains left-linear rewrite rules. A
rewrite rule  — r is collapsing if r is a variable and ! — r is duplicating if r contains more occurrences
of some variable than /.

A substitution o is a mapping from ¥ to T (F,V ) such that {x € ¥ | 6 (x) # x} is finite. This set
is called the domain of ¢ and will be denoted by D(c). Occasionally we present a substitution ¢ as
{x >0 (x) | x€D(c)}. The empty substitution will be denoted by € (here D (€)= ). Substitutions
are extended to morphisms from T(F, %) to T(F,V ), ie. c(F(t1, ..., tn)=F (6 (t1), ..., 6 (ty)) for
every n-ary function symbol F and terms ¢1, ..., t,. We call o (¢) an instance of t. We frequently write
t% instead of ¢ (¢). An instance of a left-hand side of a rewrite rule is a redex (reducible expression). If
§, t1, .., Iy are terms and Xy, ..., X, pairwise distinct variables then s[x; <—#; | 1<i<n] denotes the
result of simultaneously replacing every occurrence of x; in s by ¢; (i=1, ..., n).

Let O be a special constant symbol. A context C[,..., ] is a term in T(Fu{0O},V). If
C[,..., ]is a context with n occurrences of O and ?y, ..., #,, are terms then C[?y, ..., ;] is the result
of replacing from left to right the occurrences of O by ¢1, ..., ;. A context containing precisely one
occurrence of O is denoted by C[]. A term s is a subterm of a term ¢ if there exists a context C[ ]
such that t = C[s]. We abbreviate Z(Fu {0}, V) to C (F, V).

The rewrite rules of a TRS (F, R) define a rewrite relation —¢ on I (¥, 7)) as follows: s —gt
if there exists a rewrite rule / —7 in K, a substitution ¢ and a context C[ ] such that s = C[/°] and
t =C[r®]. We say that s rewrites to ¢ by contracting redex 1°. We call s —¢ t a rewrite step or
reduction step. The transitive-reflexive closure of —% is denoted by —»z. If s —»% ¢ we say that s
reduces to t and we call ¢ a reduct of s. We write 5§ ¢—g t if t =4 5; likewise for s «— #. The
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transitive closure of —¢ is denoted by —% and <>z denotes the symmetric closure of —g (so
g =g Uég). The transitive-reflexive closure of <% is called conversion and denoted by =g.
If s = tthen s and ¢ are convertible. Two terms 1, t, are joinable, notation # dg t2,if there exists a
term ¢3 such that 1 —»g 3 «—g t2. Such a term #3 is called a common reduct of t and t,.

A term s is a normal form if there is no term ¢ with s —% ¢. A term s has a normal form if
§ —»g t for some normal form ¢. The set of normal forms of a TRS (¥, R.) is denoted by NF(¥F, R).
When no confusion can arise, we simply write NF(R). A TRS (¥, R.) is weakly normalizing if every
term has a normal form. A TRS (¥, R) is strongly normalizing if there are no infinite reduction
sequences {1 —g t —g 13 —g .... In other words, every reduction sequence eventually ends in a
normal form. A TRS (¥, K)) is confluent or has the Church-Rosser property (CR) if for all terms
S, 11,8y with ;] «—g § —»g t; we have t; |z 5. A well-known equivalent formulation of
confluence is that every pair of convertible terms is joinable (1 =g t2 = 11 lg 12). ATRS (¥, R)
is locally confluent or weakly Church-Rosser (WCR) if for all terms s, #1, to with 1 g S gty we
have t; | g 2. A complete TRS is confluent and strongly normalizing. A semi-complete TRS is
confluent and weakly normalizing. A TRS (¥, R.) has unique normal forms (UN) if different normal
forms are not convertible (s =g tand s, t€ NF(F, R) = s =1). The next proposition presents some
of the relationships between the properties introduced so far. Part (1) is known as Newman’s Lemma
[26].

PROPOSITION 1.1.

(1)  Every strongly normalizing and locally confluent TRS is confluent.

(2) Every confluent TRS has unique normal forms.

(3) Every weakly normalizing TRS which has unique normal forms is semi-complete.
a

A conditional term rewriting system (CTRS for short) is a pair (¥, ) consisting of a signature
F and a set of conditional rewrite rules. Every conditional rewrite rule has the form

lore&s =t .., =t

with 1,7, 51, ...,8,,t1, ..., t, €T (F,V ). The equations s1 =11, ..., S, =1, are the conditions of the
rewrite rule. A rewrite rule without conditions (i.e. #=0) will be written as  — r. The restrictions we
impose on CTRS’s are the same as for unconditional TRS’s: if | 7 < s =1y, ..., S, =1, is a condi-
tional rewrite rule then / is not a single variable and variables occurring in r also occur in /. A CTRS
like

X<Xx — {true
x<S(x) — true
x<y —> true < x<z=true, z<y="true

with extra variables in the conditions of the rewrite rules is perfectly acceptable but due to severe
technical complications we do not consider CTRS’s like the following of Dershowitz, Okada and
Sivakumar [6]:

Fib(0) — (0,1)
Fib(S(x)) — (z,y+z) <& Fib(x)=(y, z).
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Depending on the interpretation of the equality sign in the conditions of the rewrite rules, different
rewrite relations can be associated with a given CTRS. In this paper we restrict ourselves to the three
most common interpretations.

(1) Inajoin CTRS R the equality sign in the conditions of the rewrite rules is interpreted as joinabil-
ity. Formally: s —g ¢ if there exists arewrite rule [ =7 <= 51 =11, ..., S, = I in R, a substitution
o and a context C[] such that s =C[I®],7=C[r®] and s¥ | { forall ie{1,...,n}. Rewrite
rules of a join CTRS will henceforth be written as

l>res ~Lt19 wes Sp J,tn.

(2) Semi-equational CTRS’s are obtained by interpreting the equality sign in the conditions as
conversion.

(3) In a normal CTRS R the rewrite rules are subject to the additional constraint that every #; is a
ground normal form with respect to the unconditional TRS obtained from R by omitting the con-
ditions. The rewrite relation associated with a normal CTRS is obtained by interpreting the equal-
ity sign in the conditions as reduction (—»). Rewrite rules of a normal CTRS will be presented as

l5r & sy, 0, Sp 1y

This classification originates essentially from Bergstra and Klop [1]. The nomenclature stems from
Dershowitz, Okada and Sivakumar [6]. Due to the positiveness of the conditions in the rewrite rules
of join, semi-equational and normal CTRS’s, the rewrite relation — ¢ is well-defined, notwithstanding
the circularity in its definition. Since the rewrite relation of a normal CTRS R coincides with the
rewrite relation of the join CTRS obtained from R by transforming every rewrite rule

l>r&s) D, .., 8 Dy
into
l——>r<==s1 J,tl,...,Sni,tn,

every normal CTRS can be viewed as a join CTRS.

All notions previously defined for TRS’s extend to CTRS’s in the obvious way. Conditional
term rewriting is inherently more complicated than ordinary term rewriting, see Bergstra and Klop [1]
and Kaplan [15]. Several well-known results for TRS’s have been shown not to hold for CTRS’s.
Sufficient conditions for strong normalization of CTRS’s were given by Kaplan [16], Jouannaud and
Waldmann [14] and Dershowitz, Okada and Sivakumar [7]. Sufficient conditions for confluence can
be found in Bergstra and Klop [1] and Dershowitz, Okada and Sivakumar [6].

EXAMPLE 1.2. The semi-equational CTRS

a > b
Ri=9a = c
b - ¢ & b=c

is easily shown to be confluent. So conversion in R ; coincides with joinability. However, the
corresponding join CTRS



a > b
Ra2=ya — ¢
b > c¢c & blc

is not confluent: the reduction step from b to ¢ is no longer allowed.
The following inductive definition of —5 is fundamental for establishing properties of CTRS’s.

DEFINITION 1.3. Let R be a join, semi-equational or normal CTRS. We inductively define TRS’s & ;
for i 20 as follows (O denotes |, = or —»):

Ro={l->r|l-regk}
Rit1={1°>r° | l>re<s 0ty .., 5y Oty eRand s§ Og, 1f for j=1,...,n}.

Observe that R ; € K ;+1 for all i 20. We have s — 4 ¢ if and only if s —g; t for some i 20. The depth
of a rewrite step s —g ¢ is defined as the minimum i such that s — 4, ¢. Depths of conversions s =gt
and ‘valleys’ s | ¢ f are similarly defined.

EXAMPLE 1.4. Consider the normal CTRS
(
even (0) — ftrue

even(S(x)) — odd(x)
K= odd (x) — true & even(x) —» false
odd (x) — false << even(x) —» true.

-

We have even (S (0)) — odd (0) by application of the second rule. The term odd (0) can be further
reduced to false by application of the last rule, using the first rule to satisfy the condition
even (0) —» true. The depth of the rewrite step even (0) — true is 0, the depth of even (S (0)) — false is
1 and, more generally, the depth of the reduction sequence from even (S”(0)) to normal form equals
for all n 20.

In the sequel we make extensive use of multiset orderings.

DEFINITION 1.5.

(1) A multiset over a set S is an unordered collection of elements of S in which elements may have
multiple occurrences. To distinguish between sets and multisets we use brackets instead of braces
for the latter. The set of all finite multisets over S is denoted by M(S).

(2) The multiset extension >> of a binary relation > on a set S is a binary relation on M(S) defined as
follows: M1 > M if there exist multisets X, Y € M(S) such that
- [#XcM;,
- My=M;-X)VY,
- VyeYdxeXsuchthatx>y.
Occasionally we write >™ instead of >>.
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THEOREM 1.6 (Dershowitz and Manna [5]). A relation > on a set S is well-founded if and only if the
multiset extension >> of > is well-founded on M(S). O

2. Modular Properties

It is of obvious importance when by partitioning a CTRS into smaller systems the validity of a
certain property for the given system can be inferred from the validity of that property for the smaller
systems. This divide and conquer approach to establish properties of CTRS’s is the subject of this
paper. It is very desirable when results of this kind can be obtained without imposing restrictions on
the way in which systems are partitioned into smaller systems. In other words, the most useful results
state that a property of CTRS’s is preserved under union. Unfortunately, all interesting properties lack
this behaviour. For unconditional TRS’s several positive results have been obtained by imposing the
disjointness requirement.

DEFINITION 2.1. Let (F1, R.1) and (F2, R.2) be CTRS’s with disjoint alphabets (i.e. F1 N F2 = D).
The disjoint union R 1 @ R 2 of (F1, R1) and (F2, R2) is the CTRS (F1 U F2, R1 VR 2).

DEFINITION 2.2. A property P of CTRS’s is called modular if for all disjoint CTRS’s (¥1, R.1),
(F2, R 2) the following equivalence holds:

R_.1 ® R 3 has the property P
=

both (F1, R.1) and (F2, R 2) have the property .

In the remainder of this section we recall some of the modularity results that have been obtained
for TRS’s. A comprehensive survey can be found in Middeldorp [24]. We also give the necessary
technical definitions and notations for dealing with disjoint unions of CTRS’s.

The research on modularity originated with Toyama [28] who showed the modularity of
confluence. In the next section we extend this result to CTRS’s.

THEOREM 2.3 (Toyama [28]). Confluence is a modular property of TRS’s. [

The modularity of local confluence is an easy consequence of the famous Critical Pair Lemma,
see [24]. In the next section we show that local confluence is not a modular property of CTRS’s.

THEOREM 2.4. Local confluence is a modular property of TRS’s. [

In [29] Toyama refuted the modularity of strong normalization by means of the following coun-
terexample.

EXAMPLE 2.5. Let R ={F(0,1,x)>F (x, x, x)} and
{or(x, y) = x
2=

or(x,y) — y.

Both systems are strongly normalizing, but R ; @ R ; admits the following cyclic reduction:
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F (or (0, 1), or (0, 1), 0r (0, 1)) -zg,0%, F(O,0r(0,1),0r(0,1))
-r, 0%, FO,1,0r(0,1))
—z,@x, F(or(0,1),0r(0,1),or(0,1)).

Notice that R 1 contains a duplicating rule and K , consists of two collapsing rules. Observe further-
more that X ; is not confluent.

The next theorem states sufficient conditions for the strong normalization of R ; @ R 5 in terms
of the distribution of collapsing and duplicating rules among X ; and K 3. The first two conditions
were independently obtained by Rusinowitch [27] and Drosten [10]. The sufficiency of the third con-
dition is a positive answer by the present author [22] to a question raised in Rusinowitch [27]. In Sec-
tion 4 the sufficiency of these conditions is extensively analyzed with respect to CTRS’s.

THEOREM 2.6. Suppose K| and R ; are strongly normalizing TRS's.

(1) If neither Ry nor R 5 contains collapsing rules then R ; ® R 2 is strongly normalizing.

(2) If neither R nor R 3 contains duplicating rules then R.1© R 3 is strongly normalizing.

(3) If one of the systems R 1, R 5 contains neither collapsing nor duplicating rules then R 1 ® R 5 is
strongly normalizing.

O

In view of Example 2.5, Toyama conjectured the modularity of completeness, but Barendregt
and Klop constructed a counterexample involving a non-left-linear TRS, see [29]. A simpler coun-
terexample can be found in Drosten [10]. Toyama, Klop and Barendregt [31] gave an extremely com-
plicated proof showing the modularity of completeness for the restricted class of left-linear TRS’s.
For a discussion of the next two theorems we refer to Sections 5 and 6, respectively.

THEOREM 2.7. Weak normalization is a modular property of TRS’s. [
THEOREM 2.8 (Middeldorp [21]). UN is a modular property of TRS’s. [0

The modularity of semi-completeness is an immediate consequence of Theorems 2.3 and 2.7.
We now introduce several concepts and notations for dealing with disjoint unions of CTRS’s. Most of
them originate from Toyama [28]. Let (%1, 1) and (F2, R.2) be CTRS’s with disjoint alphabets.
Every term € T (¥1 U F2, %) can be viewed as an alternation of F 1-parts and F,-parts. This layered
structure is formalized in Definition 2.9, see Figure 1.

NOTATION. We abbreviate F1 U F, to Fg and T'(F, ®, V) is further abbreviated to 7, ®. We write T;
instead of 7 (¥;,9) for i=1, 2. We often omit the subscript R 1 ® Rz in =g, @x,, Iz, ©%, and

PRI DR,

DEFINITION 2.9.
(1) The root symbol of a term t € Tg, notation root (2), is defined by



F  ift=F(1,...t)
root (t) =
t ifted.

2) Lett=C[t],...,ta] With C[, ..., 1# O. We write t =C[ ¢y, ..., a1 i C [, ..., 1€ C (F4,V) and
root (t1), ..., root (t,) € Fp for some a, b€ {1,2} with a #b. The t;’s are the principal subterms
of t.

(3) The rank of a term t € Tg is defined by

1 ifteT; LTy,

rank(t) =
1+ max {rank(t;) | 1<i<n} ift=Cl1ty,..., a1

(4) The multiset S (¢) of special subterms of a term ¢ € T is defined as follows:
S1(®)=1t],

[1 if rank(t)=1,

Sp+1(0) =
Spt))V..USy(ty)  ift=CLt1,....thm],

S@t)= U Si).
izl

(5) The topmost homogeneous part of a term t € Tg, notation top (t), is the result of replacing all
principal subterms of ¢ by O, i.e.

t if rank (t)=1,

top (1) =
Cl,..,] ift=C[ty,....t4n]1

t <«— root(t) S1)=[ i. ] S20)=1[ éi ) %]

rank(t) =4 S3(=I A A A ] Sa®=1 /\'1

FIGURE 1.

NOTATION. The set {t € Tg | rank(t)=n} is abbreviated to T and T, o " denotes the set of all terms

with rank less than n. We will use S-1(?) as a shorthand for U S;(z).
i>1
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Proposition 2.10 states some frequently used properties of special subterms. The trivial proofs
are omitted.

PROPOSITION 2.10. Lett ET@.

1) Sp,@)=[1 & n>rank(®).

@ S®O=S10VS>10).

(3) Ifs€S,(t) then rank(s)<rank(t)—n+1.
(4) se€S82(t) & sisaprincipal subterm of t.
O

To achieve better readability we will call the function symbols of ¥ black and those of F. 2
white. Variables have no colour. A black (white) term does not contain white (black) function sym-
bols, but may contain variables. A top black (top white) term has a black (white) root symbol. In
examples, black symbols will be printed as capitals and white symbols in lower case.

DEFINI’HONZ 11. Let s — ¢ by application of a rewrite rule [ —r &=S81=11,..,5,=1,. We write

s — tif the rewrite rule is being applied in one of the principal subterms of s and we write s —° ¢ oth-
erwise. The relation —' is called inner reduction and —° is called outer reduction.

& f
&

FIGURE 2.

Notice that the inner reduction step in Figure 2 uses a collapsing rule from X ; and the outer
reduction step uses a duplicating rule from R ;.

DEFINITION 2.12. We say that a rewrite step s — ¢ is destructive at level 1 if the root symbols of s and
t have different colours. The rewrite step s —t is destructive at level n+l if s=
Clsy, ..., Sjs s Snll —i Cls1, ..y Ljs ..., Sp]l=t with §j >t destructive at level n. Clearly, if a
rewrite step is destructive then the applied rewrite rule is collapsing.

Notice that s — ¢ is destructive at level 1 if and only if s — ¢ and either ¢ € V(top(s))ortis a
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principal subterm of s. It should be stressed that destructive rewrite steps at a level greater than 1
change essentially the layered structure of terms. This explains why the presence of collapsing rules is
problematic from a modularity point of view.

The next definition introduces special notations for ‘degenerate’ cases of 1 =C[7y,..., #,1.
Although it might give the impression of making mountains of molehills, it actually is very useful for
cutting down the number of cases to consider in many proofs in subsequent sections.

DEFINITION 2.13. First we extend the notion of context as defined in Section 1. We write C(, ..., ) for
a term containing zero or more occurrences of O and C{, ..., } denotes a term different from O
itself, containing zero or more occurrences of 0. If t € Tg and ¢y, ..., I, are the (possibly zero) princi-
pal subterms of ¢ (from left to right), then we write t = C{{ty, ..., #, }} provided ¢ =C{t1,...,1n}. We
write t = C{11, ..., tp) if t = C{t1, ..., 1) and either C(, ..., ) # O and ¢y, ..., ,, are the principal sub-
terms of tor C{, ..., )= O and t € {1y, ..., 1y }.

The next proposition is heavily used in the sequel although this is rarely made explicit.

PROPOSITION 2.14.

(1) If s 5°t then s=C{{sy, ..., S, )} and tEC*«Sil,...,Sim» for some contexts C{,..., } and
C*( s ey ), indices iy, ...,im€{1,..,n} and terms s1, ..., sp€Tg. If s —? t is not destructive
then we may write t = c* {{siys s Siyy 3.

Q) Ifs —'t then s =CIsy, -5 5 w8yl and t =C[sq, ..., t, | for some context C[, ..., ],
index j€(1,...,n} and terms 51, ..., Sp, tj €T With s; > t;. If s —' t is not destructive at level
2 then we may writet =C[ sy, ..., Ljs s Snl.

PROOF. Straightforward. [J

The following proposition is very useful in proofs by induction on the rank of terms. If rewrite
rules were allowed to introduce new variables, this proposition no longer holds.

PROPOSITION 2.15. If s —» t then rank (s) 2rank (¢).

PROOF. Suppose s — ¢. Using Proposition 2.14 we obtain rank(s)2rank(t) by a straightforward
induction on rank (s). The proposition now follows by induction on the length of s —» . [

EXAMPLE 2.16. Consider the TRS’s

F(x,y) - G)
176A4) - B

and

e(x) - X
R2=) fax) > e

In the reduction sequence
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F(G(e(A)),F(e(GB)),f (), e(G©)))
—'F(G(A),F(e(G®B)); f (e(A), e(GC)))
—°F(G(A),G(e(G(B)))

- F(G(A),G(G(B))
-2 G(GA))

we have the ranks 4, 4, 3, 1 and 1 respectively. The first and third step of this sequence are destructive
at level 2.

DEFINITION 2.17. Let 51, ..., Sp, 1, .., ty € Ty. We WIite <87, ..., Sp> o< <fq, ..., 8> if t; =1; when-
ever s;=s;, for all 1<i<j<n. The combination of <sq,...,s,> e <ty,..,1;> and
<I1s e, Ip> o< <81, ..., 8,> is abbreviated to <S5y, ..., 8,> o <f1,...,,>. This notation is used to
code principal subterms by variables.

* *
PROPOSITION 2.18. If C{{sy, ..., $n} =% C €8i,, ..., 8, ) then C{t1,...,1,} =° C (tiys ety for
all terms ty, ..., tn With <s1, ..., 8p> o< <ty, ..., t,>. Furthermore, if the applied rewrite rule is left-
linear then the restriction <si, ..., $p> o< <11, ..., t,> can be omitted.

PROOF. Routine. []

DEFINITION 2.19. A term ¢ is root preserved if the root symbols of 7 and ¢’ have the same colour for
every term ¢’ with t — t’. A term ¢ is preserved if t is root preserved and every principal subterm of ¢
is preserved. In other words,  is preserved if all special subterms of  are root preserved.

DEFINITION 2.20. Suppose ¢ and 7 are substitutions. We write 6 < Tif x® =y implies x* = y* for all
x, y € V. Notice that ¢ o< € if and only if o is injective. We write ¢ —» 1 if x® —» x* for all x € V.
Clearly t® —» ¢* whenever 6 —» 1, for all € Tg.

DEFINITION 2.21. A substitution ¢ is preserved if x© is preserved for every x € D(o).

DEFINITION 2.22. A substitution ¢ is black (white) if x© is a black (white) term for every x € D(o)
and ¢ is fop black (top white) if x° is top black (top white) for every x € D (o).

PROPOSITION 2.23. Every substitution c can be decomposed into 07 01 such that oy is black (white),
O is top white (top black) and o, < €.

PROOF. Let {11, ..., #,} be the set of all maximal subterms of x© for x € D (o) with white root. Choose

distinct fresh variables zi,...,z, and define the substitution oy by 02 = {z; >1t; | 1<i<n}. Let

x € D(c). We define o1 (x) by case analysis (see Figure 3).

(1) Ifx€ is top white then x® =1; for some i € {1, ..., n}. In this case we define o1(x)=z.

(2) Ifx€ is a black term then we take o (x) = x©.

(3) In the remaining case we can write x° = Clt,, -, t;, ] for some 1<iy, ..., ix <n and we define
ox)=C [zi}5 ..., zi, 1.

By construction we have o, o €, 6 is black and o, is top white. [J
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FIGURE 3.

In the sequel we only state propositions for a single colour situation (usually: ... black term ... top
white substitution ...) without mentioning the reverse situation between parentheses.

3. Confluence’

In this section we first show that confluence is a modular property of join CTRS’s. To this end,
we assume that (F1, R 1) and (F2, R 2) are disjoint confluent join CTRS’s. The fundamental property
of the disjoint union of two TRS’s (¥, R1) and (F2, R.2), that is to say s —x , @ g, ¢ implies either

§ =g, tors —g, t,is not true for (join) CTRS’s, as can be seen from the next example.

EXAMPLE3.1. Let R ={F(x,y)=»Gx)<=x]y} and R,={a—b}. We have F(a,b)
-, &R, C(a)because a J,gh ® R, b, but neither F (a, b) —g, G(a)nor F(a, b) =g, G(a).

The problem is that when a rule of one of the systems is being applied, rules of the other system
may be needed in order to satisfy the conditions. So the question arises how the rewrite relation
-, @R, isrelated to -z, and —g, . In the above example we have

F(a, b) >, F (b, b) >z, G(b) <z, G(a).

This suggests that —¢, @ g, corresponds to joinability with respect to the union of -z, and —g,.
However, —g, U—g, is not an entirely satisfactory relation from a technical viewpoint. For
instance, confluence of —g 6 U—g, is not easily proved. We will define two more manageable
rewrite relations —; and —5 such that:

(1) their union is confluent (Lemma 3.6),

(2) reduction in R ; @ R ; corresponds to joinability with respect to —1 U —5 (Lemma 3.7).

From these two properties the modularity of confluence for join CTRS’s is easily inferred. The proof
of the first property is a more or less straightforward reduction to Theorem 2.3. The proof of the

T Part of the material presented in this section originates from Middeldorp [23].
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second property is rather technical but we believe that the underlying ideas are simple. Contrary to
usual mathematical practice we present certain parts of our proof in a top-down fashion in order to
facilitate the accessibility to its structure. Figure 4 exhibits the dependencies between the various
results.

FIGURE 4.

DEFINITION 3.2. The rewrite relation —; is defined as follows: s —>1 t if there exists a rewrite rule
I->resydty, . sndty in Ry, acontext C[ ] and a substitution o such that s = C[1°], t = CI[r°]
and s7 |§ 17 for i=1,..., n, where the superscript o in s¢ |¢ t¥ means that s® and t{ are joinable
using only outer —1-reduction steps. The relation —, is defined similarly.

EXAMPLE 3.3. Let

_ F,y) > G&x) & xly
R1=14 — B

and suppose X contains a unary function symbol g- We have F(g(A), g(B)) — g, G(g(A)) but not
F(g(A), g(B)) =1 G(g(A)) because g(A) and g(B) are different normal forms with respect to —9.
The terms F (g (A), g (B)) and G (g (A)) are joinable with respect to —p:

F(g(A),g(B)) -1 F(g(B),8(B)) =1 G(g(B)) 1 G(g(A)).
NOTATION. The union of —; and —, is denoted by —1,2-

PROPOSITION 3.4. Ifs —1,2 tthens —t.
PROOF. Trivial. ]
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The next proposition states a desirable property of —{-reduction. The proof however is more
complicated than the analogical statement for TRS’s (cf. Proposition 2.18).

PROPOSITION 3.5. Let s,t be black terms and suppose o is a top white substitution such that
§% =% 1. If v is a substitution with o< t then s* —{ t*.

PROOF. We prove the statement by induction on the depth of s© —9 ®. The case of zero depth is
straightforward. If the depth of s° -9 I equals n+1 (n 20) then there exist a context C[ ], a substi-
tution p and a rewrite rule | =7 <51 Lt1,...,Sm L tm in R 1 such that s®=C[p ()], t° =C[p ()]
and p (s;) L p(#;) for i=1, ..., m with depth less than or equal to n. Proposition 2.23 yields a decom-
position p, op; of p such that p; is black, p, is top white and p, o €. The situation is illustrated in
Figure 5. We define the substitution p* by p*(x)=y" for every x € D(p,) and y € D(o) satisfying

A

A4

FIGURE 5.
p2(x) = y©. Notice that p* is well-defined by the assumption ¢ < 1. We have p, «< p* since p, o< € and
€ o< p*. Combined with py(p1(s;)) 1§ p2(p1 (%)), the induction hypothesis and the observation that if
po(u1) > uy and u;y is a black term then u, =p,(u3) for some black term u3, we obtain
p*(P1G)) L] p*(P1(:)) by a straightforward induction on the length of the conversion
p2(P1(5)) 1§ p2lp1(®)) for i=1, ..., m, see Figure 6. Hence p*(p; (1)) >¢ p*(p1 (r)). Let C*[ ] be the

P2

P2(P1(8))) —— Uy —— Uy <«—— pa(p1(%))

= = = = observation

P2(P1(5;)) ———— p2(v1) —— p2(v2) «<— palp1(%)

induction
hypothesis

P*(P1(5)) — p* (V1)) ———— p*(v2) ——— P*(P1(®)

-0

FIGURE 6.
context obtained from C[] by replacing every principal subterm, which has the form x€ for some
variable x € D(c), by the corresponding x7. It is not difficult to see that s =C *[p*(p;(I))] and
t¥ =C*[p*(p;(r))]. Hence s* —¢ ¢*. O
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LEMMA 3.6. The relation —1 ; is confluent. v
PROOF. We define TRS’s (¥, $1) and (¥, $2) by (i=1,2)

Si={s—>t|s teT;ands —; t}.

With some effort we can show that the restrictions of — s;» =i and —g. to T; X T; are the same’ .
Therefore (1, 51) and (F3, S2) are confluent TRS’s. Theorem 2.3 yields the confluence of §; @ .5,.
We will show that the relations —; and —; coincide on Tg X Tg. Without loss of generality we only
consider the case i =1.

€ Ifs —, ¢ then there exists a rewrite rule / —r €51, a substitution ¢ and a context C [ ] such that

s=C[I%]and t = C[r°]. By definition / —; 7, from which we immediately obtain s —; 7.

D Ifs — 7 then there exists a rewrite rule / =7 ¢= 51 [#], ..., 8, Lty in R 1, a substitution ¢ and a
context C[ ] such that s = C[I°],r=C[r®] and s¢ [$¢f fori=1,...,n. According to Proposi-
tion 2.23 we can decompose ¢ into 65 ooy such that o; is black, oy is top white and oy < €.
Induction on the number of rewrite steps in s¥ | t? together with Proposition 3.5 and the obser-
vation made in the proof of Proposition 3.5 yields o; (s;) 4§ 61@;) for i=1,...,n. Hence
01(l) =1 61(r). Because o1(/) and o;(r) are black terms, 61(!) = o1(r) is a rewrite rule of S;.
Therefore s = C[o2(01(1))] — s Cloa(o1(r)]=1.

Now we have =, @5, = 5, U —s, =1 Y2 = 7 and hence - 5 is confluent. []

LEMMA 3.7. Ifs — tthens |1 t.

PROOF. We use induction on the depth of s — r. The case of zero depth is trivial. Suppose the depth
of s — t equals n+1 (n 20). By definition there exist a context C[ ], a substitution ¢ and a rewrite rule
I>re&silty, o smltm in Ry © R such that s =C[1%], 1= C[r°] and 5¥ Lif fori=1,....m
with depth less than or equal to n. Using the induction hypothesis and Lemma 3.6, we obtain
sf L1,21f fori=1, ..., m, see Figure 7 where (1) is obtained from the induction hypothesis and (2)

o(s;) o S0— > >0 0 ()
N /7 AN Ve N 4 AN /7
@ . . W@

N e N Ve N 7 N 7/
N N N N
Y O W oo W o W
\\ // /, //
N Ve 7 4
Tyl 4 2
*:f ,// //,
N , ,
N , ,
N Vi ’
\\A L’/ //
heg L’
A Vs
N 7
A Y Ve
A V4
N, L Z e e S W)
FIGURE 7.

signals an application of Lemma 3.6. Without loss of generality we assume that the applied rewrite

T A minor technical complication is caused by rewrite rules containing extra variables in the conditions.
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rule stems from R® ;. Proposition 3.13 yields a substitution © such that 6 —»1 2 T and s7 | ] for
i=1, ..., m. The next conversion shows that s |1 2 ¢:

s=C[I°1—»12 C[I"] -1 CIrf 1«12 C[r°]=t.

Combining Proposition 3.4 and Lemma’s 3.6 and 3.7 yields the following result.
PROPOSITION 3.8. The relations = and |1 2 coincide. [1

Assume [ —r < 51 L1, ..., Sy Lty is a rewrite rule of R | and suppose ¢ is a substitution such
that s¥ |1 2 7 for i=1,...,n. We have to show the existence of a substitution © with the properties
o -—»12vand sf [{ ¢] fori=1, ..., n. First we show that ¢ can be transformed into a —1 »-preserved
substitution ¢’, meaning that ¢” (x) is a —; ,-preserved term for every x € D(c’).

DEFINITION 3.9. We write s —, ¢ if there exists a context C[ ] and terms 57, #; such that s =C[s1],
t=C[t], 51 is a special subterm of s, s; —»; 2 #1 and the root symbols of s; and #; have different
colours. This relation —, is called collapsing reduction and s is a collapsing redex. The relation —,
is extended to substitutions in the obvious way, i.e. 6 =, Tif x® —, x" for some x € V.

PROPOSITION 3.10.
(1) Ifs > tthens —»1 7t
(2) A term is — 2-preserved if and only if it contains no collapsing redexes.

PROOF. Straightforward. [1

EXAMPLE 3.11. Let

JF&y) =y = xlGO)
176y - C

and R , = {e (x) > x]}. Starting from ¢ = F (C, e (F (e (C), G (e (C))))) we have the following collapsing
reduction sequence:
t = F(C,eF(C,G(E(C)))
—c e(F(C,G ()
¢ F(C,G(e(C))
—: F(C, G(C)).

PROPOSITION 3.12. Collapsing reduction is strongly normalizing.

PROOF. Assign to every term f the multiset ||| = [rank(s) | s €S (z)]. Suppose that ¢ —. ¢’. Using
Proposition 2.15, one easily shows that ||¢]| > ||#’||. Theorem 1.6 yields the strong normalization of
—>¢ for terms. Combining this with the finiteness of the domain of substitutions yields the strong nor-
malization of — for substitutions. []
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PROPOSITION 3.13. Let 51, ..., Sy, 1, ..., Iy, be black terms. For every substitution ¢ with s¢ di,z2¢t
Jori=1, ..., nthere exists a substitution t such that ¢ —»12tandst {1} fori=1,..,n.

PROOF. Let ¢” be a normal form of ¢ with respect to —,. From Proposition 3.10(1) and Lemma 3.6
we obtain 6" (s;) 1,2 6" (#;) for i=1, ..., n. Proposition 2.23 yields a decomposition of ¢’ into 03 007
such that 61 is black and o is top white. Notice that o, is —1,2-preserved. Using Proposition 3.14 we
obtain a substitution ¢* with 6, —»1 5 6™ such that 6*(c1(s;)) 1§ 6*(01(t;)) for i=1, ..., n. Let T be
the restriction of 6* o6 to D(oy). It is easy to show that ¢ —»1,2 T. Hence 7 satisfies the require-
ments. []

PROPOSITION 3.14. Let 51, ..., 8,11, ..., 1, be black terms. If o is a top white and —; ,-preserved
substitution with s |1  t§ for i=1,...,n then there exists a substitution T such that ¢ —»1,2 T and
st ll et fori=1,..,n.

PROOF. Accordmg to Proposmon 3.15 we can construct a substitution T such that ¢ —»1,2 T and
x° 11,2 y° implies x* =y for all x, y € D(c). We will show that sy Ly #f fori=1,...,n. Fix i. By
definition there exists a term u; such that s? P12 Ui €12 t9. Let A ={ay,...,a,) be the set of all
maximal top white subterms occurring in this conversion. We define a mapping ¢ from A to
{x" | x e D(o)} as follows:

Let a€A. From Proposition 3.16 we know that there is a variable x € D(o) such that
x% —»1 5 a. Weput ¢ (a) =x".

We remark that ¢ is well-defined because if there exists another variable y € D(c) with y° = 24,

then x J,l 2 ¥° and hence x* =y". The result of replacing in a term f all maximal special subterms

a €A by the corresponding ¢ (@) is denoted by @ (¢). Let ¢ be any term such that s¢ —»1,2 t. We will

prove by induction on the length of the reduction from s to ¢ that D (s7) —»$ @ (¢). If the length is

zero then ¢ =57 and we have nothing to prove. Suppose s? —»1,2 1" —1,2 t. From the induction
hypothes1s we learn @ (s7) —»§ @ (¢"). By case analysis we will show that either @ (¢')=®(¢) or

D) -7 D).

(1) If the rewritten redex in the step ¢’ —; ,2 t occurs in a maximal top white subterm v of ¢’, then we
can write t'=C[v] and ¢t = C[v’] for some context C[] and term v’ with v — 2 V. Clearly v
and v’ (because o is —1,2-preserved) are elements of A. Therefore ¢ (v) and ¢ (v’) are defined and
since v —1 2 v/, ¢ (v) and ¢ (v”) are identical. We obtain ® =D @).

(2) In the previous case we covered —)’i, —>fz and —9% (when C[]= O). One possibility remains:
" —{ t. If ¢’ is a black term (and hence ¢ also is black) then D (t)=t' -9 t = D (). Otherwise
we can write

V=Clvy, ., vl =9¢ C*((vil,...,v,-k))st

for certain terms vy, ..., v, €A. Choose pairwise different fresh variables X1, ..., Xm and define
terms w =C[xy,...,xpl, w=C (x,l,. »X;,) and substitutions p={x; >v; | 1<i<m}, p’=
{xi—>6¢(;) | 1<i<m}. Clearly p < p’. Notice also that p and p’ are top white. We have
p(w')=1t"—{ t =p (w). Proposition 3.5 yields p’ (w’) —{ p’(w) and since ® (¢")=p’ (w’) and
@ (t) =p’ (w) we are done.
By the same argument we also have @ (:¥) —»1 @ (t) whenever 19 —»1,2 t. Putting everything
together, we obtain s = @ (s¥) [{ @ (¢:F) =1].
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PROPOSITION 3.15. For every substitution © there exists a substitution T such that ¢ —»1 3 © and if
x® |12 y° thenx™ =y" for all x, y € D(o). '

PROOF. Partition the set {x® | x€D(c)} into equivalence classes Cy,...,C, of —1 2-convertible
terms. Because C; is finite, we may associate with every class C; a ‘common reduct’ u; as suggested in
Figure 8. We define the substitution © by x* = ; if x® € C; for all x € D(c). The substitution t clearly
fulfills the requirements. []

S1 $2 §3 S4

Ci= {S15s2as39s4}

= 1,2

FIGURE 8.

PROPOSITION 3.16. Let t be a black term and suppose G is a top white and —1 -preserved substitu-
tion. If t® —»1 2 t” and s is a maximal top white subterm of t’ then there exists a variable x € D(0)
such that x® —»1 5 .

PROOF. Routine induction on the length of the reduction t® —»; 5 t". O

THEOREM 3.17. Confluence is a modular property of join CTRS's.

PROOF. Let (F1,R 1) and (F2, R2) be disjoint join CTRS’s. We have to show that X ; ® R is

confluent if and only if both (¥1, R 1) and (F2, R 2) are confluent.

= Trivial.

& Consider a conversion ¢; «— s —» t,. From Proposition 3.8 we obtain #; |12 #2 and repeated
application of Proposition 3.4 yields ¢; | 5.

O

The proof of the modularity of confluence for semi-equational CTRS’s has exactly the same
structure, apart from the proof of Proposition 3.5, which is more complicated because the observation
made in order to make the second induction hypothesis applicable is no longer sufficient. In addition
to the changed definitions and propositions, we will also give the modified proof of Proposition 3.5.
The number of the corresponding definition or proposition for join CTRS’s is given in parentheses.

DEFINITION 3.18 (3.2). We write s — ¢ if there exists a rewrite rule [ »r <51=1],..,5,=1, in
R .1, a context C[] and a substitution o such that s =C[I°], t=C[r®] and s¥ =§ ¢f fori=1,...,n.
The relation — is defined similarly.

PROPOSITION 3.19 (3.5). Let s, t be black terms and suppose G is a top white substitution such that
sS —9 . If tis a substitution with ¢ < © then s* —{ t".

PROOF. We prove the statement by induction (1) on the depth of s¢ —9 t9. The case of zero depth is
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straightforward. If the depth of s® —9 ¢ equals n+1 (n >0) then there exist a context C[ ], a substi-
tution p and a rewrite rule [ =7 < 51=11,..., Sy =14, in R such that s°=C[p ()], t°=C[p ()]
and p (5;) ={ p (#;) for i=1, ..., m with depth less than or equal to x. Proposition 2.23 yields a decom-
position py opy of p such that p; is black, p, is top white and p, o €. We define the substitution p* by
p*(x) =y for every x € D(p,) and y € D(o) satisfying p,(x) = y°. Notice that p* is well-defined by
the assumption 6 o T. We have pj o p™ since p; o € and € < p*. By induction (2) on the length of the
conversion py(p1(s;)) =1 p2(p1(#;)) we will show that p*(p;(s;)) =¢ p*(p1(t;)) for i=1, ..., m. Fix i.
The basis of the induction being trivial, we consider two cases for the induction step.

(1) Ipalpy(s:)) =T s"=F pa(p1 (%)) then we may write

P2(P1 (i) =C 1 {{uy, .., up} -7 Cofujy, ..., uj,y=s".

For every u’€ {uy, ..., up} there is a unique variable y (u") € D(p,) such that p,(y ")) = u’.
Hence s’=py(s”) with s”=Co{y(u;,), ..., v (), )) a black term. We obtain p*(p;(s;)) —¢
p*(s”) from induction hypothesis (1) and induction hypothesis (2) yields p*(s”) ={ p*(p1(%)).

() Ipa(p1(s)) <91 5" =1 p2(p1(2;)) then we may write

P2(P1(i) = Cofujy, oy uj y < Crlfuy, ..., Y} =5".

Let {vy, ..., v/} be the difference between the sets(!) {u, ..., up} and {u;, ..., uj, }. Choose dis-
tinct fresh variables x1, ..., x, and define a mapping y from {u, ..., Up} to D(pa) U {xy, ..., %}
as follows: if u’ € {uq, ..., Up} is an element of {uj1 o Uj, } then there exists an unique variable
V() €D(py) such that po(y (') =u’, otherwise u’=v; for some ke {1, ...,r} and we put
Y (u") =x;. We define the substitution p3 by p3 =p, U {x; > v; | 1<i<r}. By construction we
have py(p1(s:)) =p3(P1(s)), s"=p3(s”) with s”=C1{yu1),..,¥ ()} a black term and
P2(p1(t:)) = p3(p1 (#;)). Notice that p; is top white and p3 o p*. Just as in the preceding case, we
obtain p* (p1(s;)) ={ p*(p; (1;)) from both induction hypotheses.

Hence p*(p1 (1)) =9 p*(p1(r)). Let C *[ 1 be the context obtained from C[ ] by replacing every princi-

pal subterm, which has the form x© for some variable x € D(c), by the corresponding x*. A routine

argument shows that s ¥ = C*[p*(pl ()land:® =C*[p* (p1(r)]. We conclude that s* —¢ ¢*. [

PROPOSITION 3.20 (3.13). Let sy,...,8,,%1,...,t, be black terms. For every substitution ¢ with
sY =12 19 (i=1, ..., n) there exists a substitution T such that ¢ —»12tand s} =1} (i=1,..,n). O

PROPOSITION 3.21 (3.14). Let sy, ...,Sy, 11, ..., 1, be black terms. If ¢ is a top white and — 3-
preserved substitution with s7 =y 51§ (i=1,...,n) then there exists a substitution t such that
o —»atands} =7 tf (i=1,..,n). O
THEOREM 3.22 (3.17). Confluence is a modular property of semi-equational CTRS’s. [

Unlike confluence, local confluence is not a modular property of join CTRS’s. This shouldn’t
come as a surprise since Bergstra and Klop [1] showed that the Critical Pair Lemma (used in the proof

of the modularity of local confluence for TRS’s, cf. [24]) is not true for join CTRS’s.

EXAMPLE 3.23. Let
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Fx,y) > x & xlz z\]y
ITVFxy) >y & xlz z0y

and

Ra= a<—0> c —>d
T —

It is easy to see that &, is locally confluent. Let R be the TRS consisting of the rewrite rule
F(x,x)—x. Clearly s —g t implies s —%, t. Conversely, if s —g, ¢ then we obtain s =¢ ¢ by a
straightforward induction on the depth of 5 —, 7. Because R is confluent, a routine argument now

shows that R ; is confluent and hence locally confluent. However, R 1 © R 3 is not locally confluent:
we have a g, @, F(a, d) >, 0%, dsince a lg, b and b |, d and the terms ¢ and d do not

have a common reduct.

Because semi-equational CTRS’s satisfy the Critical Pair Lemma (Dershowitz, Okada and
Sivakumar [7]), the refutation of the modularity of local confluence for semi-equational CTRS’s is
unexpected.

EXAMPLE 3.24. Let

Fx,y) > x & x=y
ITVFxy) » y & x=y

and let X , be the same as in the previous example. We obtain the confluence of & ; just as in the pre-
vious example. The refutation of the local confluence of R ; @ R 3 is also the same.

4, Strong Normalization

In this section we extend Theorem 2.6 to CTRS’s. We will show that part (1) of Theorem 2.6 is
also true for CTRS’s, but for the extension of parts (2) and (3) to CTRS’s we have to impose
confluence on R ; and R ;. We first show that strong normalization is a modular property of join
CTRS’s without collapsing rules. The proof is essentially the same as the one given in Rusinowitch
[27] for TRS’s. The only complication is the increased complexity of Proposition 4.3 below.

NOTATION. We abbreviate C (F1,V) U C (F2,V) to Tyyp. The restriction of g, to Ty, is denoted
by =; (i =1, 2) and = denotes the union of =; and =».

PROPOSITION 4.1. If (F1, R.1) and (F,, R ) are disjoint strongly normalizing join CTRS’s then = is
a strongly normalizing relation.

PROOF. If = is not strongly normalizing then there exists an infinite sequence
1=ty =>13=...

Without loss of generality we assume that 1 € C (¥1,%). In particular #; is in normal form with
respect to —g,. Therefore t] —g, t2 and it is easy to see that t5 € C (¥1,V). Continuing in this
way we obtain an infinite reduction sequence
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5] =g, 12 —g; I3 Ry e

contradicting the strong normalization of (F; U {O}, R 1). O
NOTATION. Let o be a substitution. The substitution {x — O | x € D(c)} is denoted by cU.

Until further notice we assume that (¥, R 1) and (F3, R ) are disjoint strongly normalizing
join CTRS’s without collapsing rules.

PROPOSITION 4.2. Let s and t be black terms with s & V. If ¢ is a top white substitution with s —° t°
then 6B (s) =1 cU (2).

PROOF. We use induction on the depth of s —? ¢°. The case of zero depth is straightforward. If the
depth of s¢ —° 1 equals n+1 (n 20) then there exists a context C[ ], a substitution p and a rewrite
rule [ 5r <yt Smltm in Ry such that s=C[p ()], t°=Clp(r)] and p(s;) | p(#;) for
i=1,...,m with depth less than or equal to n. Proposition 2.23 yields a decomposition ppop; of p
such that p; is black and p, is top white. Fix i. We will show the joinability of p2(p1(s;)) and
p5(p1(t;)) with respect to =; by distinguishing two cases.
(1) Suppose p;(s;) € V. If py (s;) & D(p,) then p2(p1(s;)) is a variable. Because R ; © R , contains no
collapsing rules, p, (p; (#;)) must be the same variable (otherwise p2(p1(51)) | p2(p1(2;)) cannot be
true). Hence

P21 =p1(s)=p1(1;) = 9%(!31 ().

If py(s;) € D(py) then py(py(s;)) is a top white term and therefore p2(p1(¢;)) must also be top
white. Hence p;(%;) € D (py) and p5(p; (5;)) = O = p5 (01 (1))

(2) Ifpi(s;) €7V then p;(;) ¢V by a similar argument as in the previous case. Using the induction
hypothesis and considerable effort we obtain the joinability of p3(p;(s;)) and p3(p1 () with
respect to =1 by induction on the length of the valley p,(p; (s;)) | p2(p1 (%)).

We have p5'(p1 (1)) =1 p5(p1(r)). Let C*[ ] be the context obtained from C[ ] by replacing all princi-

pal subterms by O0. (This is a slight abuse of notation since the resulting context contains in general

more than one occurrence of [.) Because 62 (s)=C"[p5(p;())] and o (t) = C*p5(p1(r)] we

obtain 6" (s) =1 6T (). O

PROPOSITION 4.3.

(1) Ifs —=° tis not destructive at level 1 then top (s) = top (2).

@ Ifs —' tis not destructive at level 2 then top (s) =top (¢).

PROOF.

(1) Because there are no collapsing rules, the step s —° ¢ is not destructive and according to Proposi-
tion 2.14(1) we may write

S=C{s1, s sn} ©° C {51, o, 5, W =t

Without loss of generality we assume that s and hence ¢ are top black. Choose distinct fresh vari-
ables x1, ..., x, and define terms s’ = C{xy, ...,x,} and t’ = C*{x,-1 » --» Xj, } and the substitution
o={x—s; | 1<i<n}. Clearly s =0 (s") »° 6 (') = 7. Applying Proposition 4.2 yields ¢ (s")
=1 o5 (¢") and because 6 (s") = top (s) and 62 (') = top (t) we are done.
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2) We have §=CI$1, ., 8}, 801 ' CLs1s.00stjs s Spll =t with 55— ¢;. Clearly top(s) =
Cl,..,1=top(t).
O

DEFINITION 4.4. We define a relation >{ on Tg as follows: s > tif
(1) rank(s)2rank(t),
(2) top(s)=top(t)or

top (s) =top (t) and So(s) >1 S2(1).

PROPOSITION 4.5. The relation >1 is strongly normalizing.
PROOF. We will show by induction on rank (¢1) the impossibility of an infinite sequence

t1>112>1t3>1 ...

If rank(t;)=1 then t; =t, =>t3 =>.. by definition, contradicting Proposition 4.1. Suppose
rank (t1)=n with n > 1. The induction hypothesis states that > is strongly normalizing on T é for all
i <n. Because s >1 t implies rank (s)2rank (t), the relation > is also strongly normalizing on Ts".
Theorem 1.6 yields the strong normalization of >>; on M (T, &"). From the definition of >; and Pro-
position 4.1 we know that there exists an index i such that

S2(t;) >1 S2(ti+1) >1 S2(ti2) >1 ...

We obtain a contradiction since S2(#;) € M(TS™ forall j=i. O

PROPOSITION 4.6. Ifs — t then s >1 t.

PROOF. Proposition 2.15 yields rank (s)2rank(t), so we only have to show that rop (s)=top(t) or
top (s) = top (¢) and S (s) > S2(¢). This will be established by induction on rank (s). If rank(s)=1
then top (s)=s = t =top (t). Let rank(s)=n with n > 1. If 5 —? ¢ then top (s) = top (t) by Proposi-
tion 4.3(1). If s —' ¢t then top(s)=top(t) by Proposition 4.3(2) and we may write §=
CLSs1s s Sjs s Sl = CLS 1, s By ooes sml=t with s;—1;. The induction hypothesis yields
§j>1tj. Hence

S2(8) =181 585 oo Sl >1 [81, st e Sml=S2().

a

THEOREM 4.7. Strong normalization is a modular property of join CTRS’s without collapsing rules.
PROOF. Immediate consequence of Propositions 4.5 and 4.6. [1

Surprisingly, parts (2) and (3) of Theorem 2.6 are not true for join CTRS’s. The following exam-
ple refutes both statements.

EXAMPLE4.8. Let R 1 ={F(x)>F(x)<=x A, x [/ B} and
or(x,y) — x

or(x,y) — Jy.
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Clearly —¢ , coincides with the empty relation and therefore & ; is strongly normalizing. The strong
normalization of X, is obvious. In R DR, the term F (or (A, B)) reduces to itself since
or(A, B) gz, Aand or (A, B) Iz, B. Notice that both systems do not contain duplicating rules. Furth-
ermore, X 1 lacks collapsing rules and £  is not confluent.

We proceed by showing that parts (2) and (3) of Theorem 2.6 are true for join CTRS’s under the
additional requirement of confluence. The following two propositions are illustrated in Figures 9 and
10.

PROPOSITION 4.9. If s —°t is a non-destructive rewrite step then the set inclusion
{ulueSr(®)) c{u | ueSy(s)} holds. If the applied rewrite rule is not duplicating, we even have
the multiset inclusion S,(t) < S5 (s).

PROOF. Straightforward. [J

Al

I - r is a duplicating rule

[AAA ] 2 [A@AA]

I —r is not a duplicating rule

FIGURE 9.
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PROPOSITION 4.10. If s =CI[s1, ..., Sj, oes Sl >ic [515 s tjs ey sp] =t is destructive at level 2 then
Sa(t)=82(s)—[s;1US2()).
PROOF. Routine. [

avan

FIGURE 10.

The proofs of parts (2) and (3) of Theorem 2.6 given in Rusinowitch [27] and Middeldorp [22]
use the observation that fop (s) = top (t) whenever s —° t is non-destructive. The next example
shows that in the presence of collapsing rules this observation is no longer true for join CTRS’s, even
if they are confluent.

EXAMPLE4.11. Let R;={F(x)>F@A)<x|B} and Ry={e(x)—>x}. The rewrite step
F (e (B)) —° F (A) is not destructive but clearly fop (F (¢ (B))) = F (O) is not =-reducible.

We now show that the observation “top (s) = top () whenever s —° ¢ is non-destructive” can be
retrieved by adding to fop (f) some of the information concealed in the inner parts of ¢, provided the
participating CTRS’s are confluent and strongly normalizing. So assume that (F1, R.1) and (F2, R.2)
are disjoint complete join CTRS’s.

PROPOSITION 4.12. The relation —|  is weakly normalizing.
PROOF. Like in the proof of Lemma 3.6 we define TRS’s (%1, 51) and (%2, $2) by (i=1,2)

Si={s—>t|s, teT;ands —; t}.

Because the restrictions of —,, —; and —g; to T; X I; are the same, both TRS’s are strongly nor-

malizing and hence also weakly normalizing. Theorem 2.7 yields the weak normalization of 51 @ 52.
In the proof of Lemma 3.6 we already observed that the relations —5, @5, and —; 3 coincide. There-

fore — 7 is weakly normalizing. [

Because —; 5 is also confluent (Lemma 3.6), every term ¢ has a unique normal form with
respect to —1 5. This normal form will be denoted by ™.
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DEFINITION 4.13. Let ¢ € Tgy. We define top () as follows:

t if rank(t)=1,
top~(t) =
top (CLt7, ..., 15°])  ift=C[tq,...,1,].

EXAMPLE 4.14. Consider again the CTRS’s of Example 4.11. We have
top”(F(e(B))=F(B) = F(A)=top ™ (F (A)).

PROPOSITION 4.15. If 5 and t are black terms and o is a top white —1,2-normalized substitution such
that s® |1 5 t%, then s® | 1.

PROOF. We use induction on the length of the valley s© 41,2 t®. The case of zero length is trivial. Let
5¢ >1251 11,21°. (The case s° |; 211 ¢1,21° is s1m11ar) Because ¢ is top white — 5-
normalized and s is a black term, this unphes that s ¢ and s© —{ 5;. It is not difficult to see that
there exists a black term s, such that s; = s§. The induction hypothesis yields s$ | #© and thus we
have s® |[$°. O

NOTATION. Let ¢ be a substitution. The substitution {x — o (x)™ | x€D(o)} is denoted by ¢7.
Clearly 6 —»1 2 67.

PROPOSITION 4.16. Let s and t be black terms with s ¢ V. If 6 is a top white substitution such that
§ =919 then 67 (s) ¢ 6™ ().

PROOF. There exists a context C[], a substitution p and a rewrite rule / —7 < s 14t s snltn
(n20) in R such that s =C[p ()], t°=C[p(r)] and p(s;) L p ;) fori=1, ..., n. Proposition 2.23
yields a decomposition p; o py of p such that p; is black and p2 is top white. Fix i. We will show that
P2’ (P1(s)) 1{ P2’ (1 (). From Proposition 3.8 we obtain py(p;(s;) 41,2 P2(P1(%)). Because
P2 —»1,2 P2’ an application of Lemma 3.6 yields P2’ (P1(s:)) 11,2 P2 (P1(;)). According to Proposi-
tion 2.23 we may decompose p3” into p4 o p3 such that p3 is black and py is top white. Notice that p4
is —1,p-normalized. Proposition 4.15 yields p4(p3(p1())) L{ pa(p3(p1(1)). We have p3(p; (1))
—{p3>(p1 (r)). Let c* [ ] be the context obtained from C [ 1 by replacing all pnnc1pal subterms by
their respective —; ;-normal forms. Clearly 6™ (s)=C"[ p2> (P11 and 6 () =C ™[ P2 (P1 (M)
We conclude that 67 (s) -»¢ 6(r). O

PROPOSITION 4.17.

(1) Ifs ——) t is not destructive at level 1 then top = (s) = top  (¢).

(2) Ifs —' tis not destructive at level 2 then top ™ (s) = top > (¢).

PROOF.

(1) According to Proposition 2.14(1) we may write s =C{{s1,...,5,}} and tEC*{{s,-l,...,sim B.
Without loss of generality we assume that s and hence 7 are top black. Let xy, ..., x, be distinct
fresh variables and define the substitution 6= {x; =s; | 1<i<n} and terms s "=C{xy1, ..., %}
and t'=C" {%i;5 ..., x; }. Because o is top white we can apply Proposition 4.16. This gives us
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07 (s”) = 6 (¢"). Proposition 2.23 yields a decomposition 65 067 of 67> such that 67 is black
and o, is top white. Since o5 < 67 we obtain 65 (61(s")) —{ 6% (c1(¢")) from Proposition 3.5. It
is easy to see that 65 (51 (s")) = 63 (61(’)). We have

top™(s) =1top (C{57, ..., 5" }) = top (6 (s")) = top (62(01 (5"))) = 65 (01(s"))

where the last identity follows from the fact that ¢, (s”) ¢ V. Similarly top 7 (r) = 65 (o1(t")) and
therefore top = (s) = top — (¢).

(2) We have s =CI[sy, ..., ), e Snll —' CLs1, wesbjy ey Syl =1 with s; — ;. Lemma 3.7 yields
sj 11,2 tj and hence s; and ¢; have the same —1 >-normal form. Therefore

top~(s)=top (C ST, .., 8775 s S N =10 (C ST, -oes 17, s S D) =t0p” ().

With the above results in hand we can easily modify the proofs of parts (2) and (3) of Theorem
2.6 given in Rusinowitch [27] and Middeldorp [22]. First assume that (¥1, K1) and (¥2, K 2) are dis-
joint complete join CTRS’s without duplicating rules.

DEFINITION 4.18. Let t € Tgy. We define #1 as the cardinality of the multiset S (¢), provided ¢ is not a
variable. If 7 € ¥ then # ¢ =0.

Notice that #¢ denotes the number of black and white parts in ¢. The special treatment of vari-
ables enables a more concise formulation of the proof of Proposition 4.21 below.

NOTATION. The multiset [top ~(s) | s €S (t)] is denoted by A(?).

DEFINITION 4.19. We define a relation >, on Tg as follows: s>o¢t if #s>#¢t or #s=#t and
A(s) =™ AQ).

PROPOSITION 4.20. The relation >, is strongly normalizing.

PROOF. Suppose > is not strongly normalizing. It is easy to show that there exists an infinite
sequence

t1 >219 2213 >2 ...

in which all terms have the same number of black and white parts. Hence we have the infinite
sequence

A(t)) =™ A(ty) =™ A(t3) =™ ...
But this is impossible, since combining Proposition 4.1 and Theorem 1.6 yields the strong normaliza-

tion of =™. O

PROPOSITION 4.21. If s — t then s >3 t.

PROOF. We will show by induction on rarnk (s) that either #s >#t or #s=#1t and A(s) =™ A(t). First
assume that rank(s)=1. If s =t is destructive then #s=1>0=#¢ Otherwise #s=#t=1 and
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top (s)=s = t =top (t). Now let rank (s)=n with n > 1. We distinguish two cases.

(1) If s =%t is destructive then either 7€ V(top(s)) or t€S,(s). In both cases we clearly have
#s>#1. If s 5%t is not destructive then S,(f) < Sy(s) by Proposition 4.9 and therefore
Si(t) < Si(s) for all i 22. Proposition 4.17(1) yields top —(s) = top ~(t). Hence

A(s) =[top = (s)]Utop ™ (u) | u €S51(s)] =™
[top™(MO]V[top™ (u) | u €S51(0)] = A).

(2) If s 't is destructive at level 2 then we easily obtain #s>#¢. Otherwise we may write
s=C[sy, ..., Sjs s Sml i Clsy, ..., tj, ..., Smll =t with §j—> 1. The induction hypothesis
yields s;>2¢;. If #s; >#1; then #s > #1. If #s;=# tj and A(s;) =™ A(tj) then also #s=#t and
A(s) =™ A2).

O

THEOREM 4.22. Strong normalization is a modular property of confluent Join CTRS's without dupli-
cating rules.

PROOF. Immediate consequence of Propositions 4.20 and 4.21. [J

Finally we consider the case that (F1, R 1) and (¥, R,) are complete join CTRS’s such that
one of them contains neither collapsing nor duplicating rules. Without loss of generality we assume
that (¥, K1) contains neither collapsing nor duplicating rules. Our proof can be seen as an extension
of Theorem 4.7. We refine the relation >; of Definition 4.4 by associating with every term a quantity
which decreases when that term is reduced by a destructive rewrite step at level 1 or 2, and does not
increase otherwise.

DEFINITION 4.23. To each term t € Tgy we assign a weight ||¢ || as follows:

-

0 ifte?,
lel=3s X sl if ¢ is top black,
seSy()
1+ max |s]|  if7is top white.
seS,(t)

\

EXAMPLE 4.24. Let

F(x,y,2) - G(2) &= xly
171 6@) — F(A, B, A)

and

ex) - fxx)
2= fy — =x

In the reduction sequence
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e(F(f(G(A),B),G(A),e(B)) _
- fF(f(G(A),B),G(A),eB),F(f(G(A),B),G(A),e(B)))
- fF(G@A),GA),e®B)),F(f(G(A),B),G(A),eB))
—F(G(A),G(A),eB))
— G(e(B))
- G(f (B, B))
- G(B)

we have the weights 3, 3, 3, 1, 1, 1 and 0, respectively.

PROPOSITION 4.25. If s — t is destructive at level 1 then ||s || > ||¢].

PROOF. We either have s =C[sy,...,5,] = s; =t or s — x =t for some variable x €V (fop (5)). In
the former case we obtain

sl = 1+max {[ls;[| | 1<j<n}> |5l = |||

because s is top white and in the latter case we clearly have ||s|| >0=|¢||. O

PROPOSITION 4.26. If s —> t is destructive at level 2 then ||s || > ||¢||.

PROOF. We have s =C[[sy, ..., 8}, ..., sp ]l > Clsys s Ejy oo sp] =t with §j ot destructive at level
1. From Proposition 4.25 we obtain ||s;{| > ||#;]|. Notice that s and ¢ are top black. Hence

n
sl =2 lls: |
i=1

and

Il =lsl-lsil+ % Il

ueSs(t;)

by Proposition 4.10. We only have to show that
Isili > X full-

u €Sy(t))

Because s; — ¢; is destructive at level 1, we either have ;€ V (top (s;)) or t; €S52(s;). In the first case
we clearly have

sl >0="% [lul

uel]

and in the second case we obtain

Isill >lzll=" X ful

u GSz(tj)

since #; is top black. [
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The second step in the reduction sequence of Example 4.24 shows that the previous propositions

do not generalize to destructive rewrite steps at a level greater than 2.

PROPOSITION 4.27. If s — t then ||s|| 2 ||¢]|.

PROOF. Using Propositions 4.25 and 4.26 we may assume that s — 7 is not destructive at level 1 or 2.
We will use induction on rank(s). If rank(s)=1 then rank(t)=1 by Proposition 2.15. We have
lIs]l =0=[|¢]| if s and ¢ are top black and because ¢ is not a variable (otherwise s — # would be des-
tructive at level 1) we have ||s|| = 1= ||#|| if s and # are top white. Assume the statement is true for all
terms with rank less than n (n > 1) and let rank (s)=n. We distinguish two cases.

6]

@

O

If s % tthen {u | ueSy(t)} < (u | ueSy(s)} by Proposition 4.9. If the applied rewrite rule is
duplicating then s and ¢ are top white and

sl =1+ max [lu]| 21+ max [lu] =||.
ueSy(s) ueSy(r)

If the applied rewrite rule is not duplicating, we obtain the multiset inclusion S2(t) < Sa(s) from
Proposition 4.9. Therefore both

> lullz 3 |

u eSy(s) ueSy(t)
and

1+ max |lu| 21+ max |u],
ueSy(s) ueSy(t)

so we always have ||s|| = ||¢]|.
If s —»'t then s =C[sy,..., Sjs s Sml = CL81,5 ey tjy oo, Sl =t with §j — tj. The induction
hypothesis yields [[s; | 2 [|;]]. Clearly S2(r) = S (s)~[s;]U [¢;]. So again we have both

X ullz X ]

ueSy(s) ueSy(t)
and

1+ max [lu| 21+ max |u].
ueS,(s) ueS)(t)

Hence ||s|| 2 ||¢]].

DEFINITION 4.28. We define a relation >3 on 7, o as follows: s >3 ¢ if

€y
@

rank(s)2rank(t),

sl > llz]| o

ls || =t || and top = (s) = top = (¢) or

sl =1lz]l, 20p = (s) = top=(t) and S2(s) >3 S2(2).

PROPOSITION 4.29. The relation >3 is strongly normalizing.
PROOF. Similar to the proof of Proposition 4.5. [
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PROPOSITION 4.30. If s — tthen s >3 1.

PROOF. Since rank(s)=rank(t) by Proposition 2.15, we only have to show that ||s| > || or

lsl=l#|| and top = (s) = top () or ||s||=||t]|, top ”(s) =top ~(¢) and S2(s) >3 S2(¢). This will

be done using induction on rank(s). First we consider the case rank(s)=1. If s — ¢ is destructive at

level 1 then ||s|| > ||#]| by Proposition 4.25. Otherwise ||s||=||¢|| and top ™ (s) = top ~(¢) by Propo-

sition 4.17(1). We now assume that rank (s)=n with n > 1. Proposition 4.27 yields ||s || > ||¢||. We dis-.

tinguish two cases.

(1) If s —° t is destructive at level 1 then ||s|| > ||z|| by Proposition 4.25 and if s —° ¢ is not des-
tructive then top — (s) = top ~(t) by Proposition 4.17(1).

2) Is —' ¢ is destructive at level 2 then the result follows from Proposition 4.26. If s —' t is not
destructive at level 2 then top — (s) = top ~ (¢) by Proposition 4.17(2) and we may write

s=C[s1, ...,sj,...,sm]] —->Clsy, wes by s Smll=t
with s; — ;. From the induction hypothesis we obtain s; >3 #;. Therefore

S2(8)=[81s 5 8js ey Sml >3 [S1, s tjy ey Sml=S20).

O

THEOREM 4.31. If (F1, R1) and (F2, R.2) are disjoint complete join CTRS’s such that one of them
contains neither collapsing nor duplicating rules, then R.1 @ R 3 is strongly normalizing.

PROOF. Immediate consequence of Propositions 4.29 and 4.30. [J

For semi-equational CTRS’s the situation is the same: part (1) of Theorem 4.6 holds but parts (2)
and (3) require confluence. The next example is a slight simplification of the corresponding one for
join CTRS’s.

EXAMPLE4.32. Let R 1 ={F(x)>F(A)<x=B}and
or(x,y) - x
2 P—

or(x,y) — Y.

Both CTRS’s are strongly normalizing and F (A) —¢, @ g, F (A) because A <—¢, or (4, B) —¢, B.

THEOREM 4.33. Let (F1,R.1) and (F2,R2) be disjoint strongly normalizing semi-equational

CTRS's.

(1)  If both systems do not contain collapsing rules then R 1 © R 5 is strongly normalizing.

(2) If both systems are confluent and do not contain duplicating rules then R 1 © R 3 is strongly
normalizing.

(3)  If both systems are confluent and one of them contains neither collapsing nor duplicating rules
then R 1 ® R 3 is strongly normalizing.

O
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5. Weak Normalization

Contrary to strong normalization, weak normalization is a modular property of TRS’s. This has

been independently observed by several authors (Bergstra, Klop and Middeldorp [2], Drosten [10],

Kurihara and Kaji [19], Toyama, Klop and Barendregt [31]). Two approaches can be identified in

establishing the weak normalization of the disjoint union ® ; ® R 2 of two weakly normalizing TRS’s

(F1, R 1) and (F2, R2):

(1) Every term ¢ € Tg can be normalized using ‘innermost’ rewriting, i.e. first the bottom layer of ¢ is
reduced to normal form, then the layer above the bottom layer is normalized and working steadily
upwards we eventually normalize ¢. This is the method of [2], [10] and [31].

(2) Atermt € Tg can also be normalized by the following recipe: First we normalize ¢ with respect
to R | with result, say, f;. The term ¢; is then normalized with respect to R o giving t5. Now we
use again X ; to normalize 7, and continuing in this manner we eventually arrive ata R 1 ® R ,-
normal form of ¢. The termination of this process is guaranteed by an interesting result of
Kurihara and Kaji [19].

Both methods rely on the equality of NF (R ; ® R.2) and NF (g, R.1) "NF (Fg, R.2), which is a

consequence of the equality of -4, ¢ ¢, and —g; Y=g, In Section 3 we observed that this equal-

ity does not hold for CTRS’s. The following example shows that weak normalization is not a modular
property of join CTRS’s.

EXAMPLE 5.1. Let

Fx,x) - C
IVFy) = Firy) < xlz 20y

and
a > b
Ra=14 5 @
One easily shows that & ; is confluent. From this we obtain the weak normalization of X ; by a rou-
tine argument. Clearly X ; is weakly normalizing. However, R | @ K 7 is not weakly normalizing: the

term F (b, ¢) reduces only to itself. Notice that the rewrite rule of K1 contains an extra variable (z) in
the conditions and R ; is not confluent.

The proof of the next theorem is based on method (1) for proving the modularity of weak nor-
malization for TRS’s. A proof based on method (2) is also possible (see [24] for details).

THEOREM 5.2. If (F1,R1) and (F 2, R2) are disjoint weakly normalizing join CTRS’s such that
NF(R1®R,)=NF(¥g, R1)NNF(Fg, R2), then R | ® R, is weakly normalizing.

PROOF. We will show by induction on rank (r) that every term 7 has a normal form with respect to
R1® Ry If rank (t)=1 then the result follows from the assumption that (1, R 1) and (F,, R 5) are
weakly normalizing. Let t = C[[ ¢4, ..., t,]. Without loss of generality we assume that ¢ is top black.
Applying the induction hypothesis to 71, ..., In yields normal forms ¢1, ..., t;, such that t; —» t] for
i=1,...,n. We clearly have C[t], ..., 1},] = C’{{sy, ..., S, )} for some context C’{, ..., } and top white
normal forms sy, ...,s,. Choose fresh variables X1y es X With <Sp,..,8,> 00 <xq, ... s X >
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Because rank (C’{x1, ..., X, })=1, the term C’{xy, ..., X, } has a normal form, say
C'{x1s s Xm} g, C*(x,-l, ,xip).

Hence we have the following reduction sequence:
t»g,ox, CUS1, s Smll %, C*((s,-l, - s,-P))E r.

Clearly t'eNF(Fg,R2). By construction we have t'€NF(—%,) and since s;,..., Si, €
NF(R 1D R,) we also have t"eNF(Fg, R.1). The assumption NF(R 1 ® R2)=NF(¥g,R1)N
NF (Fg, R 2) yields "€ NF(R_ ; @ R 7). We conclude that every term has a normal form with respect
toR1DR,. O '

Example 5.1 suggests two sufficient conditions for the equality of NF(X1®X2) and
NF (¥, R1)NNF(Fg, R 2), and hence for the modularity of weak normalization for join CTRS’s.

PROPOSITION 5.3. If (F1, R.1) and (F2, R 2) are disjoint join CTRS’s without extra variables in the
conditions then NF(R 1 ® R 2) =NF (¥ g, R1)NNF(Fg, R2).

PROOF.
c  Trivial.
2 If NF(Fg,R1)NNF(Fg, R,) is not a subset of NF(R ; © K 2) then there exists a smallest

term ¢ such that t eNF(Fg, R1)NNF(Fg, R 2) and t €NF(R; © R 3). Clearly t+ must be a
redex, so there is arewriterule [ —>r <51 | t1, ..., Sy 4 tn in R 1 @ R 2 and a substitution ¢ such
that 1 =1° and s | ¢ for i=1,...,n. Assume without loss of generality that the rewrite rule
stems from K ;. Because V(u)c V() for all ue{sy,...,Sy,%1,...,,} we may assume that
D(oc) < V(). Due to the minimality of ¢, x% eNF (R | ® R ,) for every x € D(c). Using this fact,
we can easily show that sf g t§ for i=1,..,n But then I° —g, r°, contradicting the
assumption t e NF(F g, R.1).
O

COROLLARY 5.4. Weak normalization is a modular property of join CTRS’s without extra variables
in the conditions of the rewrite rules. [J

The sufficiency of confluence for the equality of NF(R;®2R;) and NF(¥g,R1)N
NF (¥ g, R 2) makes use of results obtained in Section 3.

PROPOSITION 5.5. If (F¥1,R1) and (F2,R,) are disjoint confluent join CTRS’s then

NF(R1®R2)=NF(¥g, R1)NNF(Fg, R2).

PROOF.

< Trivial.

o If NF(¥g,R1)NNF(¥g, R,) is not a subset of NF(R ; ® R ;) then there exists a smallest
term ¢ such that t eNF(Fg, R1)NNF(Fg, R2) and t ¢NF(R ; ® R 3). Clearly ¢ must be a
redex, so there is a rewrite rule [ > r <51 | 1, ..., Sp L #; in R 1 ® R 7 and a substitution ¢ such
that t =€ and s{ | t§ fori=1, ..., n. Notice that x® e NF (R 1 @ R ) for every x e D(c) NV (I),
due to the minimality of . Without loss of generality we assume that the rewrite rule stems from
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R 1. We obtain 57 |1 3 1 fori=1, ..., n from Proposition 3.8 and Proposition 3.13 yields a sub-
stitution ¢ such that 6 —»1 5 7 and s7 |{ ¢f (i=1, ..., n). Because x* =x® for all xeV (l), we
have t =1° =1" —; r", which contradicts the assumption t e NF (¥, R ;).

0 v

THEOREM 5.6. Semi-completeness is a modular property of join CTRS's.
PROOF. Immediate consequence of Theorems 3.17 and 5.2 and Proposition 5.5. [

The non-left-linearity of % ; in Example 5.1 is not essential for the refutation of the modularity
of weak normalization for join CTRS’s. If we replace the first rule of R, 1 by

Fx,y) >C&xly,

we obtain a weakly normalizing join CTRS R; with the property that R’} ® R 2 is not weakly normal-
izing, as is again witnessed by the term F (b, c).

The following example shows that weak normalization is not a modular property of semi-
equational CTRS’s.

EXAMPLE 5.7. Let

Fx,x) » C
IFVFey) » Fr,y) & x=y

and

a > b
K2={

a — ¢c.

Because F (b, ¢) does not have a normal form, R.1 ® R is not weakly normalizing, notwithstanding
the weak normalization of both ® ; and & 5.

The proofs of the following results are very similar to the proofs of Theorem 5.2, Proposition 5.5
and Theorem 5.6.

THEOREM 5.8. If (F1,R.1) and (F,, R,) are disjoint weakly normalizing semi-equational CTRS’s
such that NF(R ; @ R 7) =NF (Fg, R1)NNF (Fo, R2), then R 1 ® R 5 is weakly normalizing. [

PROPOSITION 5.9. If (F1,R 1) and (F 2, R2) are disjoint confluent semi-equational CTRS’s then
NF(R.1®R2)=NF (¥g, R1)NNF(Fg, R2). O

THEOREM 5.10. Semi-completeness is a modular property of semi-equational CTRS’s. [

Example 5.7 shows that “no extra variables in the conditions” is not a sufficient condition for the
modularity of weak normalization for semi-equational CTRS’s. The modularity of weak normalization
for left-linear semi-equational CTRS’s cannot be refuted by adapting the first rule of & ; in Example
5.7. The next example however does the trick.
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EXAMPLE 5.11. Let

Fx) - Fx) & x=C
I1ZYF@EC) » D

and

gx) - x

gx) —> a
R2 ={

Because x =g, C implies x = C, R is weakly normalizing. The weak normalization of K7 is obvi-
ous. Both systems are left-linear, but the term F (a) reduces only to itself since a <, g(C) —¢, C.

6. Unique Normal Forms

In [21] we showed that UN is a modular property of TRS’s. The proof is based on the fact that
every TRS with unique normal forms can be conservatively extended to a confluent TRS with the
same normal forms. This observation does not hold for join CTRS’s, as is shown in the next example.

EXAMPLE 6.1. Let
A
&=/ '\
B C
O Uene

Clearly R has the property UN. However, there does not exist a confluent join CTRS R’ such that
R < R’ and the normal forms of R and R’ coincide: if such a R were to exist then B |z’ C and there-
fore C —%’ C which contradicts the equality of NF (%) and NF R).

It is an open problem whether the modularity of unique normal forms for join CTRS’s can be
obtained by some other method. In the remainder of this section we show that UN is a modular pro-
perty of semi-equational CTRS’s. First we show that every semi-equational CTRS with unique normal
forms can be extended to a confluent semi-equational CTRS with the same normal forms. Our con-
struction is a considerable simplification of the one in [21]. For instance, we will see that it is
sufficient to add at most one new constant whereas in [21] we employed infinitely many new function
symbols. In [24] we showed that this new construction enables a positive answer to a conjecture in
[21] stating that the normal form property is a modular property of left-linear TRS’s.

Let (¥, R) be a semi-equational CTRS with unique normal forms. First we consider the case
that F contains at least one constant symbol. We will show that every equivalence class C of conver-
tible terms contains a term ¢ which can be used as a ‘common reduct’ in order to obtain confluence
with respect to C.

DEFINITION 6.2.
(1) The set of equivalence classes of convertible terms is denoted by C:

C={Q@#C cT(F,7)|C isclosed under =g }.
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(2) The subset of C consisting of all equivalence classes without a normal form is denoted by C L
(3) IfC e then Vix(C) denotes the set of variables occurring in every term ¢ € C:

Vix(C)= N V().
ﬁx()tQC(t)

The next two propositions originate from [21]. For the sake of completeness, the proofs are
repeated here.

PROPOSITION 6.3. If teC € C and V()=Vi(C)={x1,..,x,) then t [x;¢~s; | 1<i<n]eC for all
terms s1,...,Sp €T (F, V).

PROOF. We first prove the statement for all terms s, ..., s, € 7 (F, V) with Visi)N{xi, ..,xp} =D
fori=1, ..., n. Define a sequence of terms ¢, ..., ¢, as follows:

t if i =0,
ti—1[x ¢ 55] if1<i<n.

We will show that #; =¢ ¢ by induction on i. The case i =0 is trivial. Suppose the statement is true for
all i <k (k>0). Because X € V5 (C) there exists a term u € C such that x; € V (u). The induction
hypothesis tells us that #;_; =g t. This implies that

h=tr-1lxk < spl=g ulxp —spl=u=¢ 1.

Thus 1, =t[x) ¢s1]...[Xp ¢=sp]=t[x; ;| 1Si<n]eC. Now let 5y, ..., s, be arbitrary terms of
T(F,V). Choose distinct fresh variables Y1s-+»Yn- By the above argument we have
t[xjy; | 1<i<n]eC and because

Vlx ey | 1Si<n)=Ve(C) = {y1, .., Y}

we obtain [ x; <—y; | 1Si<n][y;«s; | 1<i<n]l=t[x;«s; | 1<i<n]eC. O

PROPOSITION 6.4. If C € C contains a normal form t then Var(C) =V (2).

PROOF. Let s € C. We will show that V (t) c V (s) by'induction on the length of the conversion s =g L.
The case of zero length is trivial. Let s <>g §1 =g t. From the induction hypothesis we obtain
V()< V(sy). If s >4 s then V(s1) < V(s) and we are done. Assume s <g 51. We have to show
that every variable of # occurs in s. Suppose to the contrary that there is a variable x € V (¢t) which does
not occur in 5. Choose a fresh variable y. Replacing every occurrence of x in the conversion §1 =g tby
Y yields a conversion 51 =g #’. Notice that ¢’ is a normal form of R different from ¢. Because x & V (s)
we obtain 5] —% 5. But now we have the following conversion between f and ¢”:

Z=KS1 =R S ('—g(.Si =5(.t,’

which is impossible since R has unique normal forms. %= conclude that Var(C)=V (). O

The following proposition is not true if # does not contain constant symbols.
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PROPOSITION 6.5. For everyC €C L there exists a term t € C such that Vi (C)=V ().

PROOF. Take an arbitrary term seC and suppose that V(s)—Vﬁx(C)={y1,...,ym}. Let t=
s[yi<—c | 1<i<m] where c is any ground term. Proposition 6.3 yields t€C and we have
V4x(C) =V (t) by construction. []

According to the previous propositions we can define a mapping ©: C — 7T (¥,7) with the fol-
lowing properties:
1) =w(C)eC,
(2) if C € C contains the normal form ¢ then T(C) =1,
(3) Va(C)=V®(C)).
The term 1t (C) will serve as a common reduct for C.

DEFINITION 6.6. The TRS (¥, R) is defined by R' =R U {t > n(C) |teCeCandt #n(C)}. Due
to the above properties of 7, X’ contains only legal rewrite rules.

The reader is invited to check that the proof of parts (1) and (2) of the next proposition fails for
join CTRS’s.

PROPOSITION 6.7.

(1) Forall termss, t € T(F,V ) we have s =¢ tif and only if s =g’ 1.

(2) NF(¥,R)=NF(¥,R).

(3) The TRS (F, R) is confluent.

PROOF.

(1) Ifs =g tthens =g tsince X’ is an extension of K. For the other direction it is sufficient to prove
that s —¢’ t implies s =g t. This will be done by induction on the depth of s — ¢. If the depth
equals zero then there exists an unconditional rewrite rule / —r € R/, a context C[ ] and a substi-
tution o such that s =C[I°] and t=C[r°®]. If I »>r e R then we clearly have s —¢ ¢. Other-
wise r =n(C) with / €C € C and we obtain [ =¢ r and hence s =g ¢. If the depth of s —g’ ¢
equals n+l (n=0) then there exists a context C[], a conditional rewrite rule
l>resy=ty,...,5y=tn€R and a substitution ¢ such that s=C[I°], t=C[r°] and
5§ =g 19 for i=1, ..., m with depth less than or equal to n. Notice that X'—R_ only contains
unconditional rewrite rules. A straightforward induction on the length of the conversion
5§ =g 17 yields s¥ =g ¥ fori=1, ..., m. Therefore I® —¢ r° and hence s —4 ¢.

(2) The inclusion NF (F, R’) < NF (¥, R) is evident. Suppose there exists a term ¢t € T (F,V ) such
that 1 eNF(F, R) and t ¢ NF(F, R”). One easily shows that 7 cannot be reducible with respect to
a rewrite rule of R’— R. Hence there exists a context C[], a substitution ¢ and a rewrite rule
l>resy=ty,..,sp=1, €R (n20) such that t =C[I®] and s =g’ 1§ fori=1, ..., n. Part (1)
shows that s¥ =g f for i=1, ..., n which implies t =g C[r°], contradicting the assumption
t eNF (F, R). We conclude that NF(F, R) =NF (¥, R)).

(3) Suppose s =g’ t. According to (1), s and ¢ belong to the same class C of K-convertible terms. By
definition, both terms rewrite in zero or one step to their common reduct 7 (C).
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We obtain the following result.

LEMMA 6.8. Every semi-equational CTRS (¥, R.) with unique normal forms can be extended to a
confluent CTRS (F’, R) such that:

(1) forallterms s, t € T(F',V) we have s =g tifandonly if s =g t,

(2) NF(¥,R)=NF(F’, R)).

PROOF. If ¥ contains a constant symbol then the preceding definitions and propositions yield the
desired result. So assume that F only contains function symbols with arity greater than 0. Let L be a
fresh constant symbol and define F; = F U {1}and R; =R U {L—1}. The normal forms of (F,R)
and (¥, R 1) clearly coincide. The equivalence of =g and =g, with respect to T (¥1,7) is also
easily proved. Hence (¥, R 1) has unique normal forms. Because F1 contains a constant symbol, we
know already the existence of a confluent semi-equational CTRS (¥1, K1) such that the relations =g,
and =g, coincide and NF (¥, R 1) =NF(¥, R1). Therefore s =g tif and only if s =g, tfor all terms

s, t€T(F1,V)and NF(F, R)=NF (¥, R}). O

The modularity of UN for TRS’s is also based on the following result: if (1, R 1) and (%3, R5)
are disjoint TRS’s and (F/, R;) is an extension of (¥i, R ;) with the same set of normal forms for
i=1,2 such that F{ N F} =, then NF(R; ®R,) = NF (R} @ R%). The next example shows that
this property is not true for semi-equational CTRS’s.

EXAMPLE6.9. Let 1 =F{={a,b,c}, Foa=F5={F,C),R = {a—=b},R1=R1U{a—c}and
R2=R2={F(x,y)—>C < x=y)}. The term F (b, c) belongs to NF (R 1 ® R ;) because b and c are
not convertible with respect to % { ® R 5. However, we have F (b, c) —R,eR, C since b <R,
a =R ¢. Therefore NF(R 1 @ R,) #NF (R} ® R%) even though both NF (¥, R 1) =NF(¥1{,R})
and NF (¥, R 2) = NF(F 3, R). Notice that R’ is not confluent.

Fortunately, we will see that it is sufficient to prove the above-mentioned property only for
confluent extensions.

PROPOSITION 6.10. Let (F1, R 1) and (F,, R.5) be semi-equational CTRS’s with the same set of nor-
mal forms. If (Fa,Rj,) is confluent and F' is a set of fresh function symbols then
NE(F1UF’, R1) cNF(FoUF’, Ry).

PROOF. If NF (¥ U ¥’, R 1) is not a subset of NF (F2 U F’, R 3) then there exists a smallest term #
such that teNF(¥;UF’,R;) and téNF(F,UF’,Ry). First we show that te
T(F1NF2)UF’, V). Suppose to the contrary that t =C[F(ty,...,1,)] for some n-ary function
symbol F € F1— F,. Let x1, ..., x,, be distinct fresh variables. The term F(x1, ..., x,) does not belong
to NF(¥3, R2) and because F (x, s X)) €T (F1,V) and NF (¥, R.1)=NF(¥3, R3), it must be
R 1-reducible. But then C[F(ty,...,1,)]¢NF(F;UF’, R ). Hence ¢ ET(FINFUF", V).
Combining this with the minimality of ¢ and the assumption that t ¢ NF(F, U F’, R ) yields a
rewrite rule  »r <= s1 =11, ..., 5,=t, € R, and a substitution o such that ¢ = I® and 59 =g, tf for
i=1, ..., n. In the remainder of the proof we consider the disjoint union of the semi-equational CTRS’s
(F2, R 2) and (F’, D). Because both systems are confluent we may use the results obtained in Section
3. We obtain s7 |5 ¢¥ for i=1, ..., n from Proposition 3.8 (rephrased to the semi-equational case).
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Proposition 3.20 yields a substitution T such that ¢ —», t and s =% ¢} for i=1,...,n. Due to the
minimality of £, x® eNF(F, U F ', R ) for all x e V (I). Hence x* =x© for all x eV (/) and thus t ="
—9 r". Proposition 2.23 yields a decomposition 1, o7; of T such that 7; is black, 7, is top white and
T, o €. (Remember that black corresponds to F, and white to #".) Applying Proposition 3.19 gives us
1)) »9 11(r) and since t;(1), 11 (r)€T(F2,V) we obtain t;(I)éNF(¥2, R2). Hence 1, e
NF(¥1, R 1) and thus ¢ =15(t1(!)) ¢NF (F; U F’, R 1), contradicting our assumption. We conclude
that NF(F1 U F’, R1) cNF(F,UF", Rp). O

PROPOSITION 6.11. Let (F1, R.1) and (F2, R 2) be disjoint semi-equational CTRS’s. If (¥{, R};) is a
confluent extension of (¥, R.;) with the same set of normal forms for i=1,2 and F{ N F3 = then
NF(R.1 ® R2)=NF(R1 ® R2).

PROOF. Because R ; U R is a subset of R’} UR% we have NF(R; ® R3) C NF(F 4, R1UR2)'.
It is not difficult to see that NF(F &, R 1 U R 2)=NF(R 1 ® R 7). For the other inclusion we assume
that t eNF(R 1 ® R 3). Clearly t eNF(Fg,R.1) and t eNF(Fg, R2). From Proposition 6.10 we
obtain t eNF(F] U Fo, R’;) and hence t eNF(F &, R1). Likewise t eNF(F g, R2). Therefore ¢ €
NF (R/1 ® R) by Proposition 5.9. [J

Putting all pieces together, we obtain the modularity of unique normal forms for semi-equational
CTRS’s.

THEOREM 6.12. UN is a modular prdperty of semi-equational CTRS's.

PROOF. Let (F1, R 1) and (F2, R2) be disjoint semi-equational CTRS’s. We have to show that

R 1 ® R 5 has unique normal forms if and only if both (¥, X 1) and (¥2, R.2) have unique normal

forms.

= Trivial.

& According to Lemma 6.8 we may extend (F;, R ;) to a confluent CTRS (¥/{, R;) with the same
set of normal forms for i =1, 2. Without loss of generality we assume that 71N F5=(. Let
S =g, ®g, t be a conversion between normal forms of X ; ® R 3. Clearly s =g, @ g/, t- Accord-
ing to Proposition 6.11 s and ¢ are also normal forms with respect to K1 @ X’. Theorem 3.22
now yields the desired s =+t.

O

7. Concluding Remarks

In this paper we studied the modular aspects of join and semi-equational CTRS’s, but we did not
pay attention to normal CTRS’s. Since every normal CTRS can be viewed as a join CTRS, all positive
results obtained for join CTRS’s also hold for normal CTRS’s. For instance, confluence and semi-
completeness are modular properties of normal CTRS’s. However, several counterexamples relating to
join CTRS’s involve a join CTRS which cannot be viewed as a normal CTRS. In particular, the modu-
larity of local confluence and weak normalization for normal CTRS’s should be investigated.

Another point which needs investigation is the syntactic restrictions imposed on the rewrite rules

+ F @ is an abbreviation of F{ U F 3.
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of CTRS’s. From a programming point of view the assumption of a rewrite rule
l>resy=ty,..., sy =1ty satisfying the requirement that  only contains variables occurring in /, is
too restrictive. The CTRS’s R we are interested in, can be characterized by the phrase “if s —¢ f then
s —t is a legal unconditional rewrite rule”. However, the proofs in the preceding sections cannot
easily be modified to cover these systems. For instance, Proposition 2.15 is no longer true.

In [22] we showed that the union of two strongly normalizing TRS’s is strongly normalizing if
one of the TRS’s contains neither collapsing nor duplicating rules (Theorem 2.6(3)) and in Example
4.8 we observed that join CTRS’s do not satisfy this property. By imposing confluence on both sys-
tems we were able to retrieve the result for join CTRS’s (Theorem 4.31). However, in Example 4.8
only the system with collapsing rules lacks confluence. Therefore we conjecture that the disjoint union
of two strongly normalizing join CTRS’s is strongly normalizing if one of them contains neither col-
lapsing nor duplicating rules and the other is confluent.

The applicability of the results obtained in the previous chapters is rather limited due to the dis-
jointness requirement. For combinations of TRS’s which possibly share function symbols some results
have been obtained, see Dershowitz [3], Geser [12], Kurihara and Ohuchi [20], Middeldorp and Toy-
ama [25] and Toyama [30]. It is worthwhile to consider also combinations of CTRS’s with shared
function symbols.
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paper and Roel de Vrijer for discussions leading to a better understanding of the problem of combin-
ing CTRS’s. The author thanks an anonymous referee for simplifying Examples 4.8 and 4.11 and sug-
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