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The effect of introducing smoothing matrices into Runge-Kutta methods for solving semidiscrete partial
differential equations is investigated. In particular, the paper focusses on stability and accuracy. It is
shown that the stiffness of the initial-value problem can be removed by inserting simply structured
smoothing matrices that are designed for use on vector computers so that the increase of the
computational costs is rather modest. A number of explicitly given methods together with their
smoothing error and stability boundaries are given. Numerical examples illustrate the theoretical results.
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1. INTRODUCTION
Let the semidiscrete partial differential equation be given by the system of ordinary differential equations (ODEs)

ERVE O O

Such differential equations are usually very stiff, so that in most cases implicit integration methods are used in order to
avoid the rather restrictive stepsize condition associated with explicit methods when integrating stiff systems. However,
when using implicit methods, one is faced with the problem of solving implicit relations which may require a lot of
computational effort, particularly in the case of higher-dimensional problems. This motivated Wubs [9] to introduce
righthand side smoothing, that is, instead of integrating (1.1), he proposed to integrate the 'smoothed’ differential
equation

12) Q-dt@ = Sf(t,y(1)),

where S is a smoothing matrix which 'removes the stiffness from the the righthand side function', so that explicit
methods are now feasible for integrating (1.2). The resulting method will be called a righthand side smoothing method
or briefly RHS method.

One drawback of RHS methods is the introduction of smoothing errors causing a difference between the solutions
of the equations (1.1) and (1.2), and hence, a difference between the numerical solutions of (1.1) and (1.2). Since this
difference is larger as the matrix S removes more stiffness from f, we pay a high price for relaxing the stability
condition. For this reason, it was proposed in [4] to replace S by the smoothing matrix (2I - S)S. This smoothing
matrix does reduce the smoothing error, but it also halves the stability boundary of the method.

A second unsatisfactory aspect of RHS methods is that until now a rigorous stability analysis is based on
smoothing matrices that are polynomials of the normalized Jacobian of f, that is, S=P(J/p(J)), where p(J) denotes the
spectral radius of the Jacobian J (cf. [3]).

In this paper, we investigate whether the smoothing error can be reduced by inserting the smoothing matrix S
directly into the numerical method, rather than inserting S into the differential equation, with a minimal reduction of the
stability boundary. In particular, this will be done for Runge-Kutta methods (RK methods), and the resulting methods
will be called smoothed Runge-Kutta methods (SRK methods). Secondly, we present a rigorous stability analysis for
smoothing matrices S=P(D) where D is not required to be related to the Jacobian matrix J. -
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2.  SMOOTHED RUNGE-KUTTA METHODS
Consider the explicit m-stage RK method (see e.g. [1]):

m
(212)  yns1=Yn+h ) bif(ta +cih,Yy),

i=1
where the intermediate vectors Y; are defined by

i-1
@1b)  Yi=yn+h) ajjf(ta +chYyp, i=1,..,m.
j=1

The stability condition of (2.1) is of the form

(22 h< L

p() ’

where p(J) denotes the spectral radius of the Jacobian matrix J=0f/dy, and B is a usually small constant (stability
boundary) defined by the RK method. If (2.1) is applied to a semidiscrete partial differential equation, then p(J) is
usually extremely large, so that condition (2.2) prescribes stepsizes that are smaller than accuracy conditions require. In
order to relax the stability conditions of explicit RK methods, we replace the parameters ajj and bj by polynomials Aj;
and B; of a matrix S, i.e., Ajj=Ajj(S), Bi=Bi(S), to obtain the SRK method:

m
(23a)  ypn+1=Yynth 'EiBi(S) f(tn + cih,Yj),
1=
i-1
23b)  Yi=yn+h 3 Ay(S) f(tn + cjhYj), i=1,..,m,
=1
i-1
23¢)  ci= XA, i=1,..,m.
=1

Methods of the form (2.3) fit into the class of generalized Runge-Kutta methods studied in van der Houwen [2], and
into the class of adaptive Runge-Kutta methods studied in Strehmel [7]. These papers almost exclusively deal with the
case where the matrix S is some approximation to the matrix hJ. From a computational point of view, the matrix hJ
. may be rather expensive, so that we shall look for matrices S that are more effective with respect to the computational
effort involved. ‘

In this paper, we shall identify S with a smoothing matrix which causes a damping of the high frequencies
occurring in the Fourier expansion of the grid function to which it is applied. Since the usually severe time step
restriction associated with the application of explicit methods to semidiscrete partial differential equations stems from
the high frequencies occurring in the righthand side function f, we expect that removing the high frequencies from f
stabilizes the method and therefore relaxes the stability condition.

~

2.1. Smoothing matrices

As observed above, the matrix S will be chosen such that it removes the high frequencies from the Fourier
expansion of the grid function to which it is applied. Smoothing matrices have been constructed in, e.g., [5], [6] and
[8]. More recently, smoothing matrices based on Chebyshev polynomials were constructed in [9], [3] and [4]. In this
paper, we shall use the Chebyshev-polynomials-based smoothing matrices. An outline of their construction is given
below.

Let D be a difference matrix with a complete eigensystem {ej} and eigenvalues H; and let the vector v to be
smoothed be expanded with respect to the eigensystem of D:

(24) v =E ajej.
j
Typically, the frequency of the eigenvectors of D is proportional to the magnitude of the corresponding eigenvalue. In

such cases, we can develop smoothing matrices S=P(D) by constructing a polynomial P(z) whose magnitude becomes
smaller if eigenvalues of D of larger magnitude are substituted. Since,

(2.5) P(D)v =z P(p.j)ajej,
]



we see that the higher frequencies are increasingly stronger damped.

For efficiency reasons, it is desirable that D is independent of the righthand side function f. On the other hand, we
experienced that, for accuracy reasons, D should resemble (to some extent) the normalized Jacobian J/p(J) of f. It turns
out that for sufficiently smooth righthand sides f originating from one-dimensional Dirichlet problems defined on a
uniform grid of width A, asuitable difference matrix D is given by

0 0
1|1 21
(2.6) D=Z ..
121
0 0

Notice that this matrix is identical with the normalized Jacobian associated with the standard symmetric
semidiscretization of the Dirichlet problem for the equation ui=uxx.

The most simple polynomial P(z) defining the smoothing matrix S=P(D) is given by P(z)=1+z. In the case of
(2.6) this leads to the smoothing matrix

4 0
1 121
2.7 S=P(D)=Z R
121
0 4

which is easily recognized as an averaging matrix. In the case of the difference matrix defined in (2.6), the eigenvalues
of D are in the interval [-1,0], so that P(D) has eigenvalues in the interval [0,1].

Let us consider more closely smoothing matrices based on difference matrices D with eigenvalues in [-1,0]. There
are, of course, many possibilities to define polynomials P(z) which generate smoothing matrices with the required
spectral properties. For example, a rather effective smoother is defined by the polynomial (cf. [3])

Ty(1422) - 1

28)  P@)=—t——,

Tk(cos0) := cos(kb).

In actual computation, there are various options for implementing the smoothing matrix S=P(D). The most
straightforward way consists of computing the elements of the matrix P(D) in advance. This is feasible for a simply
structured D in one spatial dimension, but in more dimensions it is not recommendable. However, what one might do
in higher-dimensional problems, is the application of the one-dimensional smoothing matrices successively in the
spatial directions, or, alternatively, the use of the recursive relations satisfied by Chebyshev polynomials. If k is the
degree of the polynomial P(z), then the generation of a smoothed vector w=P(D)v requires k matrix-vector
multiplications with the matrix D. This implementation is simple and applies to any matrix D in any number of spatial
dimensions, but can be rather time-consuming when run on a computer. A third possibility is offered by the
factorization property of the polynomial (2.8) which allows a nice factorization of the corresponding smoothing
matrices:

Theorem 2.1. Let the factors Fj(z) be generated by
Fi(z) = 1+2, F@):=[1-2F,21%,j22,

and let k=29, then the polynomial (2.8) can be obtained by the factorization formula
P@) = Fq(z)F 1@ ...F1®@. 0

Thus the matrix P(D) can be obtained as the product of the factor matrices Fj(D). Based on this factorization
property, an extremely efficient algorithm can be constructed. Notlcc that by computmg the factor matrices Fj(D) in
advance, the generation of the smoothed vector P(D)v requires only log(k) matrix-vector multiplications.

The reduced number of matrix-vector multiplications when using an implementation based on Theorem 2.1 is only
an advantage if the factor matrices F;(D) have relatively few nonzero elements in each row, otherwise, it may be cheaper
to compute in advance the smoothing matrix S itself. In one-dimensional problems, many difference matrices (for
example, the matrix D defined by (2.6)) do lead to simple factor matrices and their precomputation is certainly feasible
from a computational point of view. In higher-dimensional problems, matters are different. One possibility is based on
the approach of applying one-dimensional matrices in the successive spatial directions. For example, in two-
dimensional problems we associate with the two spatial directions the smoothing matrices S1=P(D1) and Sy=P(D3),
where P is defined by (2.8) and Dy and D3 are of the type (2.6). Then S may be defined by S=S1S».
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2.2. The stability polynomial

The (linear) stability of SRK methods of the form (2.3) is governed by its stability polynomial. In order to derive
this polynomial, the method is applied to the linear test equation y'=Jy, where J is a constant matrix. In this paper, we
shall concentrate on the special case where the polynomials Ajj(x) and Bj(x) all have a zero at x=0, i.e.

29 Ajj(x) = xAij(x), Bj(x) = xB;(x).

We observe that such SRK methods may also be interpreted as the general SRK method (2.3) apphed to the 'smoothed'
differential equation (1.2). Furthermore, if AIJ and B; are constants, then the SRK method is equivalent with a
conventional RK method with scalar coefficients applied to (1.2). A related class of righthand-side-smoothing methods
is obtained by setting

(29)  Ajj®) = (2-x)xAjj, Bij(x) =(2- x)xB;,

where Al and B; are constants. The corresponding methods are equivalent to applying a conventional RK method with
scalar coefﬁcxents to the 'smoothed’ equation (cf. [4])

(2.10) %Q = (2 - S)Sf(t,y(1)).

If the SRK method is applied to the test equation y'=Jy and if (2.9) is satisfied, then we obtain the recursion
¥n+1 = R(hSJ.S) yn,

where R(hSJ,S) is the amplification matrix associated with the SRK method and R is the stability polynomial which
can be shown to be of the form

(2.11)  R(zx):=det[I-zA(x) + zebT(x)].

Here e is the m-vector with unit entries, A(x) is the matrix with entries A;j(x), and b(x) is the vector with entries B;(x).

If we assume that SJ and S share the same eigensystem, then a particular eigenvector in the expansion of yp is
multiplied by the scalar R(hA(SJ),A(S)), where A(SJ) and A(S) denote the eigenvalues of SJ and S, respectively. This
justifies to define the stability region associated with R(z,x) by the set S of points in the (z,x)-space where R(z,x) is
bounded by 1 (compare a similar definition in conventional RK methods). Denoting the spectrum of a matrix M by
A(M), the stability condition becomes

hA(ST) x A(S) in S.

In this paper, it is always assumed that S has its eigenvalues in the interval [0,1], so that the range of the variable
x can be restricted to [0,1]. For example, this is the case if the polynomial P is defined by (2.8) and if the matrix D has
its eigenvalues in the interval [-1,0] (e.g., the matrix D defined by (2.6) has this property).

We shall discuss methods for parabolic and hyperbolic equations. In order to determine the parabolic and hyperbolic
stability region we define for each fixed x in [0,1] the real (or parabolic) stability boundary Brea1(x) and the imaginary
(or hyperbolic) stability boundary Bimag(x) of the polynomial R(z,x). The parabolic stability region is defined by

Rpar = {(z.%): - Breal(x) £2<0,0<x<1},
and the hyperbolic stability region is defined by
Rpyp := {(zX): z =iy, - Bimag(X) <y < Bimag(x), 0< x < 1}.
In these cases, the corresponding condition on the stepsize h assumes the form (cf. condition (2.2))

(212) h< L

p(sy)

where B is the minimal value of Breal(x) or B,mag(x) for x in [0,1], respectively. We shall call B the SRK stability
boundary respectwely for parabolic and hyperbolic problems.

It is our aim to construct methods with large SRK stability boundaries. In order to compare these boundaries of
the various methods, we define scaled SRK boundaries. Suppose that the SRK method requires m evaluations of the
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righthand side function f and m* applications of the smoothing matrix S. Then we define the scaled SRK stability.
boundaries '

8=

Br:=—1, Bs :=%-

Finally, we remark that the application of conventional RK methods requires an estimate of the spectral radius of
J, whereas the application of SRK methods requires information on the magnitude of the spectral radius of SJ. In
practice, these estimates are usually obtained by a normal mode analysis. In the following examples this will be
illustrated for a parabolic and hyperbolic model problem in the case where S is defined by {(2.6),(2.8)}.

Example 2.1. Consider the diffusion problem

g‘t‘ d(u,,t)82+s(xt) duxp>0, 0<t<1l, 0<x<1,

with Dirichlet boundary conditions. Standard symmetric finite difference discretization of the spatial derivatives on a
uniform grid with mesh size A leads to a system of ODEs given by

dyj

d(yjjA.n
=T 0341 - 295+ i) + SGAD, =1, ., ML M=

L

A 2

where yg=a(t) and yp=b(t) are given boundary functions. In the implementation of SRK methods it is convenient to
define differential equations at the boundary points. Therefore, we add the equations

dyo a (), dYM_b.(t).

Suppose that the diffusion coefficient d(u,x,t) equals 1, then the Jacobian matrix J of the system of differential
equations equals 4D/A2 and applying a local mode analysis, it can be verified that

_4 )»(D) T (1+42A(D)) - 1 11 __jnA .
A = , MS) = _————Zk(D)k2 , MD) = ) cos(§), €= —-]—1 + oA 1= 0,1,.., M
so that
_ T (1+2A(D)) - 1 _ T (1+2A(D)) - 1 _ cos(€) - 1
(2.13) ASDH = _——2X(D)k2 A= 2 A2 = A2

From this expression we find that

4
PO =377
In the case where d(u,x,t)#1, we may use

4lld(®)lloo
PN =557 -

where d(t) has com gonents d(y;j»jA.t). Thus, when compared with p(J)~4IId(t)IL,°/A2 we have a reduction of the spectral
radius by a factor k<.



6
Example 2.2. Consider the hyperbolic equation

%‘%: a(x,t,u) g—:—, a(x,t,u) <0, 0<t<1, 0<x<1,

with given boundary values b(t) at x=0. Semidiscretization by symmetric differences on a uniform grid {xj=jA} leads to
the system

d . a. ) . v 1
d)[, =§k()’j+1 - Yj-l), =1, ..., M-1; aj := a(]A,t,yj), M:= Z ,

where y is given. In order to compute yg and yp, we add the equations

dyo dYM

—=—=b'(D), (3YM 4yM-1 + YM-2)-

Suppose that the coefficient a(x,t,u) equals -1, then, ignoring the 'irregular’ equation for y), we find by standard
normal mode analysis

sm(&)

AQ) = , MD) = - L + —cos(&)

so that

T (1424(D)) - 1 T (142200 -1 [1+ MD
214 x(sj)z%a()él_wpii i( kzl(\ ) / _+m§)),

For large values of k, the extrema in the interval -1<A(D)<0 of this function are assumed at the point which is
approximately given by (cos(m/k)-1)/2. This leads to

2 1 4
k2A tan(m/2k)  kmA

pES)) =

In the case where a(x,t,u)#-1, we shall use

4Il lleo
-2

where a(t) has the components a(jA,tyj). Thus, in the hyperbolic case, we obtain, when compared with p(J)=lla(t)ll/A, a
reduction of the spectral radius by a factor krn/4.

2.3. The smoothing error
The smoothing error will be investigated by considering the error

(2.15) On+l = h'l[)’n+1 - vn+1l,

where vp 41 denotes the numerical solution obtained by (2.3) with S=I and y,=vy, that is, the numerical solution
obtained when in the nth step no smoothing is applied. In deriving an expression for 6,41 we shall assume that for
sufficiently smooth grid functions u=u(A) defined on a grid with mesh size A, the smoothed grid function Su(A)
converges to u as A tends to 0. Our goal is an expansion of the smoothing error in terms of powers of h and S-1.

From (2.3) it follows that

On+l = 2 [Bi(S) f(tn + cih, Y3 - Bi(D f(tn + cih,vp],

i=1
i-1 i-1
Yi=yn+h 2 Aij(S) f(tn + ¢jh,Yj), Vi=yn+h z Aji(D f(ty + ch, V), i=1,..,m.
j=1 j=1

For sufficiently differentiable righthand side functions we may write



i-1 i-1
Yi-Vi=h 2 [AyS)urcinY-AiDftatein, V)] = b X, [[A5S)- A0 m+ein.v) + O¥;-V) .
=1 =1

Introducing the Jacobian matrix Jp := %f(tn,yn), we may write

m
ons1 = 2 [Bi(S) fltn + cih,Vi + Yi - Vi) - Bi(D) f(tg + cih, Vi) ]

[[Bi(S) - BiD)] f(ta + cih, Vi) + Bi(S)n(Y; - Vi) + O(h(¥; - V) + (¥ - Vp)2) ]

i-1
= > [Bi(S) - B! (Ftnyn) + heifitnd) + hln X, Ay(D f(tn.y)
i=1 j=1
i-1
+h Bi(S)Jn Z [Ajj(S) - Aj;(D] f(tn,yn)] +O(h?).
j=1
By using (2.3c) and the relations
(2.16) ¥(tn) = ¥n, ¥'(tn) = f(tn,yn), ¥"(tn) = fi(tn,¥n) + Inf(tn.yn).
we obtain |
m i-1
@17) O = X, LBiS) - BiD] (¥(t) + heiy'(tn)) + h Bi(S)Tn 2, [Ai(S) - A1 y'(t)] + 00,
i=1 j=1
Thus, by defining the functions
m m m i-1
@18 o= Y, Bix-BiDL B =D, cilBix) - B, ¥xy) =, By 2, [Aj() - Aj(D],
i=1 i=1 i=1 j=1

the smoothing error can be represented in the compact form

(219)  One1 = a(S) ¥'(tn) + hB(S) ¥"(tn) +h¥(S.Jn) ¥'(tn) + OCH?).

We remark that in the case where the matrices J,, and S commute this expression can be written in the form

220)  Ony1 = a(S) ¥'(tn) + hB(S) ¥"(tn) +hY(S,1) Jny'(tn) + O(h?).

We shall analyse the magnitude of the smoothing error by applying a normal mode analysis, that is, we substitute
harmonic data for y'(t,) and y"(ty), and since the matrices J and S commute on the space spanned by harmonic data, we
may use (2.20) as our starting point.

In this paper, we shall concentrate on SRK methods with smoothing matrices defined by {(2.6),(2.8)} and on
problems where the low frequencies in y'(tp) and y"(t,) dominate. As was already observed in Section 2.3, the
eigenvalues of such smoothing matrices lie in the interval [0,1]. Hence, the magnitude of the polynomials a(x), B(x)
and y(x,1) on the interval [0,1] determines the magnitude of the smoothing error 6n+1. Since, by substituting
harmonic data, it can be shown that the low frequencies correspond to eigenvalues of S close to 1, it follows that the
low frequencies can be removed from the smoothing error by choosing the polynomials a((x), B(x) and y(x,1) such that
they possess a high-order zero at x=1 (notice that, by virtue of definition (2.18), a(x), B(x) and ¥(x,1) already have a zero
of order 1 at x=1). However, for larger values of k there will also be low frequencies corresponding to zero eigenvalues
of S (see the discussion in Section 2.3). Thus, we should be prepared that the smoothing error will be substantial for
large values of k and that, in view of (1.2), it cannot be reduced by specific choices of the polynomials B; and Aj;.

Finally, we remark that in the two-dimensional case, where we set S=S1S7 with S1 and S respectively generated
by difference matrices D and Dy, similar results are obtained.



3. ONE-STAGE SRK METHODS ;
In this section we consider the case m=1, so that (2.3) reduces to

(3.1 Yn+1=Yn + h B1(S) f(tn.yn)-
Notice that these methods may also be considered as RHS methods generated by the Forward Euler method and

employing the smoothing matrix B1(S).
In view of (2.9) we write B1(x)=xB(x), so that

o(x) = xB(x) - B(1), B() =7(x,y) =0, R(z,x) =1+ zB(x).
Since A(S) is contained in [0,1], the variable x in these polynomials is restricted to the interval [0,1].
Evidently, the range of the complex variable z in R(z,x) is not allowed to contain purely imaginary values,
otherwise R cannot be bounded by 1. This excludes the case of hyperbolic equations which would lead to imaginary

values in the spectrum of J and therefore in the spectrum of hSJ. Therefore, our considerations will be restricted to the
construction of methods for parabolic equations.

3.1. Parabolic SRK methods .
Requiring that the unsmoothed method is consistent, we find that B1(1)=1. It is convenient to present B1(x) in the
form
Bi(x)=1-(1-x)P[1+xCxx)], p>1,

where C(x) is a polynomial such that B1(x)=0 in [0,1]. Evidently, B1(x) vanishes at x=0 and equals 1 at x=1 for all
polynomials C(x). From (2.20) we derive that the smoothing error of (3.1) is given by

3.2 on+1 = - (I-S)PII + SCS)ly'(tn) + O(h2), p>1.

In the real (z,x)-plane the stability polynomial of (3.1) has the stability region

For parabolic problems where A(SJ) is negative, the stability of the method is determined by

h< B ,
p(S)

[3:=min{ 1_3%()(35} B1)>0, 0<x<1.

Notice that the value of B can never exceed 2 (e.g., by setting x=1 we find that B<2).

Theorem 3.1. Let

(3.3) Bix)=1-(1-x)P[1+qx], p>1,

where q is a constant, then the SRK boundary 3 defined by (3.3) is maximal for q=p.

Proof. From (3.3) it easily follows that in the interval [0,1] the values of 2x/B1(x) are increasing functions of g. Hence,

the stability boundary is larger as q is larger. However, B1(x) should be nonnegative in [0,1], and since B1(0)=0, we
should require that q is such that B1'(0)=0. From

Bi'(x)=[p-q+q@+ Dx](1 - x)P1

it follows that the largest possible SRK boundary B is obtained for g=p, provided that the condition B1(x)>0 is satisfied
on 0<x<1. Since B1'(x)=0 in [0,1] for g=p, the assertion of the theorem is proved. [

Below, we present the methods generated by Forward Euler employing smoothing matrices S, (2I-S)S, and B1(S)
where By is defined by (3.3) with p=q=2 and p=q=3. For future reference, we also specify the corresponding stability
conditions (the smoothing errors can be derived from (3.2) by replacing C(S) with ).



(4)  Yns1=yn+ hSK(tnyn), h<——, B=Pr=Ps=2.

p(SI)
B _ _1
(35) )'n+1 = Yn + h(2I = S)Sf(tn,)'n)a h S;Eéj—), B = Bf_ 1’ BS - 2 .
(36  Yar1=ya+h (31-25) S2Hnyn). hs&%’ p=pr= 18, ps- 1S,
_ 2) 52 B g 88-5V10 _B
3.7 ¥n+1=¥n+h (61 - 88 + 352) S2(tn.yn), h<sny: P=Pr="36 145 Bs=7-

4. TWO-STAGEMETHODS
In this section, we consider the two-stage method

(4.12)  yn+1 =Yn + h B1(S) f(tn,yn) + h B2(S) f(tn + c2h,yn + hA21(S) f(tn.yn))s
with
(4.16)  B1(x) = x(b1 + bx), Ba(x) =x(b3 + bax), A21(x) = x(ay + a2%).
From (2.20) we obtain the smoothing error
“4.2) On+1 = [S-1[b1 + b2 + b3 +bs + (b2 + ba)S] y'(tn)

+ c2h[S - I][b3 + bg + b4S] y"(tn) + h[S - I]S[b3 + bgS1[aj + ag + a2S] Jny'(t) + O(h2).
We analyse in the following subsections SRK methods for both parabolic and hyperbolic equations.

4.1. Parabolic SRK methods
As a reference method, we give the RHS method generated by a two-stage RK method with maximal real stability

boundary:

\ 1 1
(4.3)  ¥yn+1 =yn + hSf(tg + gh,yn + ghSf(tn,yn)), h < £ B=8, Br=PBs=4.

pSI)
Its smoothing error is of the form
i) { 1 l " 1 1 } 2
@2) Oy =[S -1 ¥'(tn) + ghy'(tn) + FhSTay'(t) | + O(h?).

In this section we shall try to reduce the smoothing error of two-stage methods and, at the same time, to maximize
the real stability boundary. By setting

(4.4a) by +b2+b3+bg=1,
in (4.1), we achieve that we have first-order time accuracy, and by setting
(44b) ba+bg=-1,

the smoothing error assumes the form

@2 Ony1=-1S - 11{ (S - Dy(ta) - cohlb3 + by + b4S] y"(t) - hS[b3 + baSIlay + a2 + 225] Joy'(tn) } + O(h2),

where aj, ap, bz and by are free parameters. The stability polynomial corresponding to the condition (4.4) assumcs the
form
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(4.5)  R(zx)=1+[2-x]z+ (a1 +ax)(b3 + bgx)z2.

First of all we observe that for x=0 this polynomial reduces to R(z,x)=1+22+a1b322. It is easily shown that this
polynomial has optimal real stability boundary 4 which is achieved for ajb3=1/2. Hence, the parabolic SRK stability

boundary cannot exceed the value 4.
Let us write (4.5) in the form

(a1 + agx)(b3 + bgx)
2 -x)2

@45) R =1+12-xlz+c[2-x12]2, ckx):=
It is easily verified that for a fixed value of x the real stability boundary Brea1(x) of R is given by

1
Breal(x) = (2 - X)C(x) >
provided that c(x)=>1/8.
One possibility to get the maximal value 4 is choosing the free parameters aj, ap, bz and by such that the

coefficient function c(x) equals 1/8. Then, Brea1(x)=8/(2-x), so that the parabolic SRK stability boundary equals the
maximal value 4 indeed. It is easily verified that the condition c(x)=1/8 is satisfied if

1 1
a1 a = b1 =2- b3, b2=-5(2-b3), by =-=b3.

. =L
~ 2b3” 4b3’ 2

The corresponding method reads
Yael = ¥n + ShQI- S)S[[2 - B3]t yn) + b36(tn + ——h,yn + == (21 - $)SF(tn ¥m) ]
n+ n 2 T »J I n 4b3 Jn 4b3 11 > .
possessing the smoothing error
2{ ' 1 " 1 ' } 2
(4.6) On+1 = - [S -TI* 1 ¥'(ta) + ghy"(tn) + g 2L - S)ShIny'(tn) § + O(h)

for all nonzero values of the free parameter b3. The free parameter b3 cannot be used for a further reduction of the
smoothing error. Therefore, we chose in our experiments b3=2 to obtain

1 1
CN) ¥n+1 = ¥n + h(2I - S)SF(t, + 'S'h,Yn + gh(ZI - S)Sf(tn ,yn)), h < 'I;([;_J), B =4, ﬁf'—‘ 2, BS =1

Another possibility is the choice (2-x)c(x)=1/4, so that Brea1(X) equals 4 for all x. This leads to

1

1 1
a]= %;, ap=0, bj=2-b3, b2=-§'(2'b3), b4='2

b3,
to obtain the method
Ynt1 = ¥n + =hQl- $)S[[2 - b3ty ) + b3f(tn + 2=y + == SF(tn ,yn) ]
n n 2 T >, n 2b3 WJn 2b3 T »J 1. ’
with smoothing error
_ { ' 1 " 1 ' 2
(“48)  Ona1=-[S-T1(S-Dy )+ FhS-Ty" () - 7hSI2I - Slny'(ty) }+ O(2)

for all nonzero values of the free parameter b3. Again setting b3=2 the SRK method reduces to

(49)  Yn+1=yn+hQI- S)Sfty + Th,yn + ThSf(ty yn)), h < 5?[;7) =4, Br=2, Ps=%.
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4.2. Hyperbolic SRK methods
The RHS method generated by a two-stage RK method with maximal imaginary stability boundary is given by

B
p(sn) ’

1
(4.10) ¥n+1 = ¥n + hSf(ty + h,yn + hSf(ty,yn)), h < B=1, Br=Bs= 2

with smoothing error

@11) st =S - 0{ y'(tw) +hy"(tm) + hSTny'(tn) } + O(h2).

As in the parabolic case, we impose condition (4.4) to ensure first-order accuracy and a smoothing error of the
form (4.2"). From the corresponding stability function (4.5) we deduce that for x=0 the imaginary stability boundary is
at most 1/2, so that the hyperbolic SRK stability boundary of two-stage methods is also limited by 1/2.

Proceeding as for parabolic equations, we first determine the imaginary stability boundary Bimag(x) for fixed x.
This yields

“]205){2 -1

Bimag(x) = 2-xck)
Requiring that Bimag(x)21/2 on 0<x<1, we find that
(4.12)  x(@ - x)c2(x) - 4(c(x) - )220, 0<x<1.
This inequality immediately shows that we should choose c(0)=1, i.e., 51b3=4. In order to simplify the derivations we
set ap=0, with the advantage that only three applications of S are involved. A simple calculation reveals that (4.12) can

be written as

4 -x

2
(a1bg)* <4 "

so that we should choose abg such that (a1b4)2 is less than or equal to 12. We shall use the freedom in choosing ajbg
for minimizing the second-order time error constant. By setting S=I in (4.1), this error constant is easily seen to be

1 7
Cy := (a1 + a2)(b3 + by) - 3=3 + ajbg.

This is justified by observing that in the case of hyperbolic problems the stability condition prescribes a timestep h of
0O(A), so that the total global discretization error is of O(h+A2+0) showing that the time discretization error is
dominating. From the expression for Cy it follows that the error constant C; assumes its minimal value 0.036 for
ajbg=-V12. The corresponding SRK method assumes the form

1
Yn+l = Yn + a—l-hS[(2a1 4+ (T2 -a1) S) ftn.yn) + @ - VIZS) f(tn + a1h,yn + a1hS f(tn,yn) ],
4.13)
B 1 1 1
hs—— ,B==>, Br=7, Bs=7¢.
0(S) B 2 Bf 4 BS 6
In our numerical experiments we always used the value aj=1/2.

The method (4.13) possesses for all nonzero values of a; a minimized local time error constant and smoothing
error

@14)  one1=- S -] (S - Dy(ts) - hid - VIZ - VIZS] y"(tn) - hS[4 - VIZ S] Jny'(tn) } + O(h).
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5. NUMERICAL EXPERIMENTS R

In this section we test the SRK methods constructed in the preceding sections. As in the Examples 2.1 and 2.2,
we use standard, symmetric semi-discretizations that are second-order accurate with respect to the spatial meshsize A for
generating the systems of ODEs. Hence, if the global time integration error equals p, then we can achieve a fully
discretized scheme of which the total global error, that is, the sum of the spatial discretization error, the time
discretization error and the smoothing error is given by O(hP+A2+c), where ¢ denotes an upper bound for all local
smoothing errors Gy, +1. For convenience, the smoothing error 6,41 and the stability boundaries for the various SRK
methods are summarized in Table 5.1.

Table 5.1. Smoothing errors and stability boundaries of SRK methods.

Problem Method On+l B Br Bs

Parabolic  (3.4) -(I- S)y'(ty) + O(h2) 2 )
3.5) -(I- 8)%y'(ty) + O(h2) 1 1 05
(3.6) - (- )21 + 2S]y'(tn) + O(h2) 1.78 1.78 0.59
(3.7) - (- S)3[I + 3S1y'(ty) + O(h2) 145 1.45 0.36
@.3) [S - 1] [y'(tn) + O(h)] + O(h2) 8 4 4
@.7 - [S - I2[y'(ty) + OCh)] + O(h2) 4 2 1
4.9 -[S-1] [(S - Dy'(ty) + O(h)] + O(h2) 4 2 133

Hyperbolic (410)  [S-T) [y'tty + O(hY] + OM2) 1 050 0.50

(4.13) -[S - [(S - Dy'(tn) + O(h)] + O(h?) 0.50 0.25 0.16

In our experiments, we choose the stepsize h of the SRK method as large as the stability condition (2.12) allows.
Setting k=29 and using the relation p(J )=k2p(SJ) for parabolic problems (see Example 2.1) and the relation
p)=kmp(SJ)/4 for hyperbolic problems (see Example 2.2), we obtain, respectively, the maximal stepsizes

B _ B4d_ B4aa? __B _ Bm29_ Bm29a
pSH M R MPT o6y T 4@ 4R

(5.1)  hpar=

where B is the SRK stability boundary and R is a constant determined by the problem to be solved. Hence, we find that
the total global error for parabolic and hyperbolic problems is respectively given by

\ 5.2) €par =0 + O(h) + 0(A2) =0+ 0(A2), €hyp =0 + O(h) + O(A) = 6 + O(A).

The accuracy is measured by the number A of correct decimal digits at the end point of the integration interval,
i.e., by

(5.3) A := - log(llerror at the end point Il..),

and the computational costs are estimated by the total number of scalar righthand side evaluations. From the expressions
(5.1) for the timestep h it follows that, for a given (one-dimensional) problem, this number is given by

(5.4) Npar = _mC_ o —mC

’ N . >
aa3° TP T groga2

where C is a constant only depending on the problem at hand.

In order to achieve that the results produced by the various methods can be compared, we shall choose for each

method the spatial mesh such that N is roughly constant. To be more precise, a method with SRK stability boundary B
is applied with grid parameters

3 2
[ 44
55  Apaur=8 % hpar = B (ﬁgar)

in the case of parabolic problems, and with
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1 n29A
(.6) Ahyp"s‘\’ g M= me

in the hyperbolic case. In (5.5), 8 is the meshsize for parabolic SRK methods with stability boundary p=2 (e.g., the
RHS reference method (3.4)), and in (5.6) & is the meshsize for hyperbolic SRK methods with stability boundary B=1
(e.g., the RHS method (4.10)). Thus, d and q are the new parameters to control the accuracy and the computational
costs.

5.1. A nonlinear diffusion problem
Consider the diffusion problem

2
5.7 %—l:““%;% +u®"-1), 0<t<1, 0<x<1,

with exact solution u(x,t)=esin(3x). For this problem we have R=4e.

The errors obtained for a few values of the spatial gridsize 8 are listed in Table 5.2. The subsequent rows in Table
5.2 correspond to the methods specified in the first column. Each of the other columns contain results which are
roughly equally expensive (about the same Np,r value), facilitating an easy comparison (the most accurate results in
each column are indicated in bold).

Table 5.2. Numbers of correct decimal digits obtained for problem (5.7).

¢Lo | @3 @4 (584) (58,5) (116,5 (116,6)
(3.4) 193 135 201 137 2.03 1.38
(3.5) 243 165 327 172 3.28 1.74
(3.6) 260 157 323 161 3.19 1.62
3.7 290  2.00 281 210 267 213
@3) 243 190 261 195 2.66 1.96
@.7) 280 229 250 215 243 212
4.9) 321 261 274 2.46 2.63 2.40
Npar= | 2120 530 4240 1060 8480 2120

' This table clearly demonstrates that the smoothing error can be considerably reduced without increasing the
computational costs by using more sophisticated methods than the straightforward RHS method (3.4). In this example
the methods (3.5) and (4.9) produce the most accurate results.

5.2. A nonlinear convection problem
Consider the convection problem (cf. Example 2.2)

du 29u

(5.8) Friiail ax+g(t,x), 0<t<1, 0<x<1,

where g is such that the exact solution is given by u(x,t)=5+sin(t)cos(3nx). For this problem we have R=36.
Table 5.3 presents the analogue of Table 5.2. It shows that the accuracy of the RHS method (4.10) drops much
more when q is increased than the accuracy of the SRK method (4.13).

Table 5.3. Numbers of correct decimal digits obtained for problem (5.8).

©1l,q9 I (312) (3L3) 62,3) (624) (1244) (124.5)

4.10) 136  0.64 1.72  0.69 1.90 0.70
4.13) 1.09 098 161 1.28 1.83 1.37

Nhyp= | 22100 11050 44200 22100 88400 44200




14

REFERENCES

(1]
(2]
B3]
(4]

[3]
(6]

(7
(8]
9]

Butcher, J.C. (1987): The numerical analysis of ordinary differential equations, Runge-Kutta and general linear
methods, Wiley, New York.

Houwen, P.J. van der (1977): Construction of integration formulas for initial-value problems, North-Holland,
Amsterdam.

Houwen, P.J. van der, Boon, C. & Wubs, F.W. (1988): Analysis of smoothing matrices for the
preconditioning of elliptic difference equations, Z. Angew. Math. Mech. 68, 3-10.

Houwen, P.J. van der, Sommeijer, B.P. & Wubs, F.W. (1990): Analysis of smoothing operators in the solution
of partial differential equations by explicit difference schemes, Appl. Numer. Math. 6, 501-521.

Jameson, A. (1983): The evolution of computational methods in aerodynamics, J. Appl. Mech. 50, 1052-1076.
Lerat, A. (1979): Une class de schémas aux différence implicites pour les systemes hyperboliques de lois de
conservation, C.R. Acad. Sc. Paris, t. 288 (Serie A), 1033-1036.

Strehmel, K. (1981): Stability properties of adaptive Runge-Kutta methods (in German), Z. Angew. Math. Mech.
61, 253-260.

Turkel, E. (1985): Acceleration to a steady state for the Euler equations, in: Numerical methods for the Euler
equations of fluid dynamics, STAM Publications, Philadelphia, 218-311.

Wubs, F.W. (1986): Stabilization of explicit methods for hyperbolic partial differential equations, Int. J. Numer.
Methods Fluids 6, 641-657.



