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In this paper a two-grid algorithm is discussed for the mixed finite element discretization of Poisson’s equa-
tion. The algorithm is based on a Vanka-type relaxation; the grid transfer operators are selected in accor-
dance with the discretization. Local mode analysis is used to show that Vanka-type relaxation is an efficient
smoother indeed. By studying the Fourier transform of the error amplification matrix we find that the canon-
ical grid transfer operators are sufficiently accurate for grid independent convergence. However, this con-
clusion depends on the relaxation operator used.
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1. INTRODUCTION

The Mixed Finite Element (MFE) method is widely used for the discretization of second order elliptic
systems. For the iterative solution of the discrete systems of equations multigrid methods are pro-
posed. In [1] we presented a multigrid method for the MFE-discretization of the stationary semicon-
ductor equations. This multigrid method employs a symmetric block Gauss-Seidel relaxation, as pro-
posed by Vanka [2], which seems to be an efficient smoother. The prolongation and restriction in this
multigrid algorithm are the canonical choice for the lowest order Raviart-Thomas elements that are
used in the discretization. However, a priori it is not clear whether these canonical grid transfer opera-
tors are accurate enough to ensure grid independent convergence of the multigrid algorithm. There-
fore we study two-grid algorithms for the model equation

div(gradu) =0, on, an
u =0 onf :

For ease of notation we first treat the case  CR. The Poisson equation (1.1) is discretized by the
MFE-method (section 2). As the discretization is not stable if a sourceterm is present in (1.1) a qua-
drature rule is used which lumps the equations (cf. [3]). A two-grid algorithm for the discrete system is
presented in section 3. We study the convergence behavior of this two-grid algorithm by Fourier
analysis. The Fourier representations of the different operators in the two-grid algorithm are derived
in section 4. By local mode analysis we show that Vanka-type relaxation is an efficient smoother for
the discrete system (section 5). In our analysis we include the use of a relaxation parameter as well as
different relaxation patterns: lexicographical and red-black. In section 6 we study the error
amplification matrix of the two-grid algorithm. Surprisingly we find that the required accuracy of the
grid transfer operators is not only determined by the order of the differential equations (cf. [4,5]), but
also depends on the relaxation pattern used. In section 7 we extend our discussion of the accuracy of
grid transfer operators to the case 2 CR?, that is of practical importance. Our conclusions are sum-
marized in the final section.

Report NM-R9102
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands



2

2. DISCRETIZATION
To discretize the second order differential equation (1.1) by the mixed finite element method, we
rewrite it as a system of two first order equations,

o—gradu = 0, o . Co - (2.1a)
dive = 0, (2.1b)
u@©) = u(l) = 0. : 2.1¢)

Let L2(2) be the Hilbert space of square integrable functions on 2 CR with inner product
(u,t) = fut dQ,
a

and let H (div, ) be the Hilbert space defined by
H (div, Q) = {o|loeL*Q), divocL*(Q))}
with norm
NollF a2y = llollZo, + lldivellfz g

By introduction of the product space A({2) = H (div, SZ)XL (2) the weak formulation of (2.1) is:
find (o,u) e A(2), such that

[ordQ+ fudivrd = 0, VreH(div,Q), (2.2a)
Q Q , .
[tdivadQ = 0, VieL’@). : (2.2b)
S .
To discretize (2.2) we decompose the domain'Q into a set €, of N uniform cells 2},
Qi = {i%l ﬂ i=1,...,, | | 2.3)

of size h =—

On this mesh lowest order Raviart-Thomas elements are defined, which span the subspace
Ay () CA@). On each cell 2 the indicator function e}, e L2(Q) is defined by

i 1: x Eﬂh» ' 2.4
€h(x) = 0, xe&. 249
For every edge Ej at x = jh of an interval ©}, a piecewise linear function €} € H (div, @) is defined by
¢ (Ef) = 8y, k=0,...,N, 25)
where 8 ; denotes the Kronecker delta. The discrete apprommahon (o4,u,) of solution (o,u) is
Oy — 2 0’%6%,
j=0N
P (2.6)
U, = 2 Upéep.
i =1,N

To discretize the equation we proceed as usual and we replace A(2) in (2.2) by A,(R) and use (¢f, e},)
as the testfunctions. After division by & for proper scaling, the resulting algebraic system for (o, u,,) ,
i.e. the column vector of the coefficients {of, u}} is

A Dy | on] |0 ”7
Di 0 ||lu| |Of @7




The matrix elements in this system are

+ k=1,
: 1 g ) 3 d=k jE{ON),
Unj = 5 [debdd =) 3 (282)
3 =k jE{ON},
| 0, ,otherwise,
and
Py = 3y [ehdvefat =1 4 L0 5 (2.8b)
0, ,otherwise.

If a sourceterm is present in (1.1) this discretization is not stable in the sense that the matrix,
obtained after elimination of oy, is not necessarily a M-matrix. Therefore we change the discretization
by approximating the integral in (2.8a) by a repeated trapezoidal rule,

A =~ 5 3 (i) + e (i — Dh)er(E — Dh).
i=1L,N
By this quadrature A4, is approximated by a diagonal matrix; effectively the matrix 4, is lumped. If
oy is eliminated from the lumped system, we obtain a M-matrix indeed, even if a sourceterm is
present.
In this paper we analyze two-grid algorithms for the solution of the linear system (2.7), both for the
lumped and the non lumped case. In fact we treat the more general situation

K, lj —k|=1,
1— 2k, j=k j&{O,N},
(Ah)jk - % —K, J :k, jE{O,N}, (29)
0, otherwise,

1
which implies the lumped case (x=0) as well as exact integration (k= 7).

3. TWO-GRID ALGORITHM

In this section we discuss the different operators in a two-grid algorithm for the iterative solution of
the system of equations (2.7). The discrete fine grid operator L,: R?¥ *!'>R?¥*! s defined by the
system (2.7),

L, = @3.0)

A, Dy
D 0 |
The coarse grid is obtained by cellwise coarsening, i.e. by taking H =2h instead of h in (2.3). This
implies that the approximating subspaces are nested, Ay(§2) C A;(R2); hence the canonical grid transfer
operators are available. The canonical prolongation P,:RM*!—>R>*1 js defined on the space of
coefficient vectors (oy;,uy)7; the canonical restriction Rj;:R™ *!> R¥*! is the adjoint of P,. The
coarse grid operator is obtained by using the same discretization on the coarse grid £ as on the fine
grid §2,. If exact quadrature is used (k= -;—), we find that Ly is the Galerkin approximation of L,:



Ly = RyLyPy. 32)

As smoothing operator S;,:R* "' 5 R?*¥*1 we use symmetric block Gauss-Seidel relaxation. By this
method all cells are scanned in some determined order, and in each cell @} the three equations
corresponding to the testfunctions €€, and e}, are solved for o}, o}, and uj,. After each update a
next cell is visited. In this paper we consider both lexicographical (SBGS) and red-black "ordering
(SBRB) ordering of the cells.

Finally we define the two-grid error amplification matrix

M = ST, — Py(Ly)” 'Ry LSy, C

where I;,:R*¥ "' 5 R?M *1 denotes the identity operator and v1,v, the number of pre- and post relaxa-
tion sweeps, respectively.

4. FOURIER ANALYSIS: THE COARSE GRID CORRECTION

In order to derive Fourier representations of the different operators in the two-grid algorithm, we
extend the domain to =R and omit the boundary conditions. The coefficient vectors o, and u;, are
considered as gridfunctions defined on different discretization grids - B

Z,, = {(j—sh|jeL}, 4.1
with
0, for O,
5= l, for u,.
2 b

The space of discrete L,-functions on Z; ;, denoted by

Lys@ps) = {fnslfnst Zns=C; B3 f1s(( =)D} <0},
J

is a Hilbert space. The Fourier transform FT'(f}, J):]A",,_s: T,— C of a L, ;-function is defined by
h

Shs(@) = Se UThef (=), (42
T jeZ
with T, =(— %,1—7:]. The inverse transformation is given by
1 e
S(G—9h) = —= [ U™ f, (w)dw. 43
frsG v ) | s @3)

By Parseval’s equality the Fourier transformation operator FT: L, ;— L,(T}) is an unitary operator.
Convolution or Toeplitz operators By: L, ,— L, ; are linear operators, generated by a gridfunction
b;,' 0 EL;,, 0 N

By frs((G—5)h) = X by o(kh) f1,5((j —k —5)h).

keZ

The Fourier transform FT (B,,):§,, of a Toeplitz operator By, is defined by
Bj(w) = by, o(w). (4.4)

For example, the matrices 4; and Dy in (2.7) are Toeplitz operators with Fourier transforms

(@) = 1—4xsin2(£22) “5)
and

5 oy = 2 g che

Dy(w) = ) sin( ) ) (4.6)
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In order to ubtain Fourier representations of the grid transfer operators we introduce the elemen-
tary prolongation P,, st Lys—Ly,

f H.s(('g' —s)h), j even,

(Psfus)G —5)h) = (CN))
0, j odd,
and the elementary restriction RY ,: L ;— Ly ,,
Rys[0)G —H) = f15(2] —$)h). 43
Using (4.2), (4. 3) and (4.8) we find that the Fourier transforms of f; ; and R?,_, s are related by
(RHsf )@ = e S eTPTS, (ot Py =), 4.9)

p=0,1

with weTy CT,. Notice that R s aliases two frequencies {w,w+ -;I-T-} €T, with one frequency weTy.
The frequencies we Ty are called low frequencies in T}, and the weT), /Ty are high frequencies. Now
every weT, can be written as a 2-vector (w+p1), p€{0,1} on Ty. Hence for f} ;€L,(T)) we may
also use the notation f; ;, where f; ; is a 2-vector with entries f hs(@+ p—) Consistent with this nota-
tion, we wnte the Fourier transform B,, s(w) of a Toeplitz operator as a 2X2-diagonal matrix B,, s(w)
with entries B,,,,(w+ p;). Any restriction operator Ry, that is defined by an unique stencil, can be
written as the combination of R?,,s and a Toeplitz operator B,. Hence the Fourier transform of Ry
is given by

A~ A 0 A

Ry (@) = Ry s(0)By(w), (4.10)

~ ~ 0 .
where Ry ((w) and Ry ;(w) are 1X2 matrices.
Analogous to the restriction we may write any prolongatlon P, ; as the combination of P,:,s and a
Toeplitz operator B,. The Fourier transforms of f;;; and P,, sfn,s are related by

T 1 —ish(w—p7) 2
(Pg,.\‘f w0t pi) = e " fi,5(@)- @4.11)
The Fourier transform of P, ,=B, P} is in matrix notation
A A A 0 i
Py s(@) = Bp(w)Pps(w), 4.12)

where IA’,,,S and 132'5 are 2X 1-matrices. Using (4.11) and (4.12) we compute the Fourier transform of
the canonical prolongation P, (see section 3) as

N

2 0
cos ) 0
Ao H 2£
. Pi(w) 0 sin 0
2
Py(w) = e | = ol (4.13)
0  Puw) 0 cos3
. 0
0 s1n2

with §=hw. The Fourier transform ﬁ,,(w) of the canonical restriction Ry is the transposed of f’,,(w).
The components of the Fourier transform of a grid transfer operator are trigoniometric functions of
6; this allows us to classify them according to their behavior in the case w fixed and A—0. Suppose
tp:%t the Fourier transforms of a prolongation and its adjoint restriction are given by IT, (w) and
IL; ;(w), respectively. The low frequency order m; of a grid transfer operator I, is the largest



number m; =0 such that

ﬁh,s(‘*’) = 14+0(@™), for h—0, weTy.

The high frequoncy order my; of II;  is the largest number my =0 for which

T(w+ i) = 0@™), for h—0, weTy.

For the canonical grid transfer operators we have: m§ =2, my=2, mi=2 and mj=1. To avoid
large amplification of high frequencies, the high frequency order my should be at least equal to the
order of the differential equation (cf. [4,5]). As we are considering a system of first order equations,
we conclude that the canonical grid transfer operators are sufficiently accurate. In fact, the Fourier

transform of the coarse grld correction operator MY is given by
20 el ’
+sin’ ) cos” - 0 0
—sin2 2 20
sin” < +cos® 5 0 0
00 h 0, _h .20 1.
M, (@) = () — v ) szj _‘2‘51110 ) (4.14)
2i sin— 2i sm——
2 2
h [ h [ 1. 0
— () T vu(z) —ysind cos’
.8 2 .0 2 2 2
2i cos>- 2i cos>

with v,.(6) = sin20(1— 12kcos?d) and y;(6) = cos?d(1— 12«sin®f) .

So, if it is assumed that inf,.z, || is bounded away from zero by the boundary conditions, we see
that all elements of MY (w) remain bounded for A—0. This implies that errors in (o;,u;) are not
blown up by the coarse grid correction if 7—0.

5. FOURIER ANALYSIS: RELAXATION

In this section we derive the Fourier representation of the smoothing operators SBGS and SBRB. We
start by treating the lexicographical ordering of the cells. In a single SBGS- ~sweep the of are updated
twice; s0 starting from initial values {of,u},} SBGS yields new values {o,,,u,,} using intermediate
values o7. If the cells are visited from left to right, we have in every cell 2,

_(01. =0,
. P y
xol 1+ (1—2K)0, + Koj, —(u'“—u;) =0, 5.1
~i — —i- i —i—1
ko, + (1—2k)o, gt Kop 2 ‘];'(l—lh‘uh )=0.
o1 i e
Starting with a Fourier mode of =ae?"* and u=be'V " we see that o, =ae’"*, ) =ae® and

by h w .. . ~ . .
u,, =pe'V™ D . After elimination of a from (5.1) we obtain a relation between the components before

and after relaxation,

[g] = §"@|3): (52)
with
0 —0- 1— i
14 2 e
A GS _ e'Z (l_e ) h
Sh (@) = 2—2K—(]—2K)e_'0 v -3

Kh(k+(1—0)e'®) e 2 (k+(1—r)e'?)



The spectral radius p(-) and the spectral norm -1y of éfs(w) are respectively

&GS 1—2i Kk sinf
S = - 5.4a
P @) = |5 20e T (5.42)
and
1
[lizsinz% +1—4k sin% +41<25inz-g1 i
A~ GS 1
Sk Wlls = (1+x*h?) . 5.4b
ISy (@lls = ( ) 22— (1-20¢ 7] (5.4b)
By using (5.4a), the smoothing factor pe = sup p(éfs(w)) is readﬂy calculated:
7 <loj<n
1
7 k=0,
pos = ) (5.5
(39)’ =%
297 62

independent of A. ~Gs

From (5.4b) we see that |IS, (w)|ls becomes unbounded for £—0. This is a consequence of the fact
that, starting from an initial iteranflcoh =0, we find errors in E,, of magnitude O(h ~1y for h—0 (cf.
5.3). From the boundedness of p(S; (w)) we conclude that only in the first relaxation sweeps the
errors in o, are blown up by SBGS. In order to obtain a measure of what happens in the first sweep,
we introduce the scaled norm || ||, which is defined by

IAL@lg = IH,Au@)ls, (5.6)

with H,: R¥+15R2V 1 3 scaling operator,

o ho

Un Un
From (5.6) it follows that the scaled norm || -l is not submultiplicative. With respect to this norm
we find for SBGS:

1
202

Y TR B o
(4 sin 2+1 4Ksm2+4x sin”>

IS @)l = (1+2h2) , G.7)

[2—2k—(1—2k)e Y|
which is bounded for #—0, indeed. .
Vanka proposes underrelaxation for o (cf. [2]) to improve the smoothing progerti;s of SBGS. This

-1 ~j—1
=@ —(-a); ),
respectively, where o denotes the relaxation parameter. For k=0 the smoothing factor of this damped
relaxation is easily derived and it is (independent of k) given by

p95(@) = max((5)", (1= )?) (5.8)

can be analyzed by replacing o and E{,_] in (5.1) by ;(&f,—(l —a)of) and

Fig. 5.1 shows a graph of p® () in the case k :% (no lumping). Numerically we find an optimal

smoothing rate u®(a,,,)=0.369 for a,, =0.4583.
The Fourier representation of SBRB relaxation is obtained by a similar method. As usual we write
SR as the product of the partial step operators S§ and S7,

$7 (@) = i @Sk



5100)  s5y(0+7m) s53(0)  s54(0+m)
52000 51(0+m) 5400  s3(0+m

I\R ‘ _
Sn(@) = ss(@) —iss(@+m) s,(0) —isg(@+m|
iss(0) s5(0+m) isg(6) s7(0+m)
~B i+ [aR
[Si@)], = v [8iew) 59)
y Y
with
) 2,
516) = /@) ? cos 2, $20) = —ixf@)e ?sin 2.,
s3(0) = Zi%lsinﬂcos—g—, s54(0) = Z-L}(z@—sinﬂsin%,
0 9
$10) = €' 2cos T +i(1=K)f (@) sind, s5(0) = e Zsin 2 +i(1-K)f () sind,
30
550 = LE 2 14 a-07 @),
and

—1 ‘
2—2k+re %0
We see that all elements of éf,m(w) remain bounded for #—0 and w fixed. By doing so, we only con-
sider the limit cases |§|—0, and |6|—>7. However, problems arise for #/—0 and @ fixed. Numerical
computation shows that the scaled norm of S;,” (w) remains bounded:

FO =

sup ISFE(w)lly<oo, for A—0.
O<jho|<w

As SBRB relaxation mixes low and high frequencies the smoothing factor u*? is defined by
A oRB
pR = sup p(QS; (w)), (5.10)

‘5<|hw|<vr

where Q denotes the operator that annihilates all low frequencies

0
Q= : .11)
0 .
1
If underrelaxation of ¢f is taken into account, we obtain for k=0
1
pF (@) = max(g,(1—a)?), (5.12)

independent of 4. A plot of u®?(a) for K:% is shown in Fig 5.2. In this case underrelaxation hardly
improves the smoothing factor; numerically we find p*?(a= 1)=0.127.
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Fig. 5.1. Smoothing factor p“® depending on Fig. 5.2. Smoothing factor p** depending on
the relaxation parameter o the relaxation parameter o

(P, Ry) (1'~J 1 Rar)

k=0 SBGS 0 0.346
SBRB 0.590 0.099
k=1/6 SBGS (a=1) o0 0.531
SBGS (a=a,,) o0 0.368
SBRB 0.628 0.339

TABLE 6.1. Scaled norm of the two-grid error amplification matrix, sup III\A’[,I,](w)II H-
o<loj<7

(Pu,Ryp) (Py,Ryp)
SBGS SBRB | SBGS SBRB

<

0.577 0500 | 0.343  0.096
0333 0.325 | 0.145 0.046
0.192 0259 | 0.088  0.031
0.111 0221 | 0.058  0.023

A WLWN -

TABLE 6.2. Two-level convergence factor A,, k=0.

(Py,Rpy) (i)h»I}H)
SBGS SBGS SBRB | SBGS SBGS SBRB
v (@=1) (a=ay) (@=1) (a=ag)

0.657 0.477 0.457 0.476 0.391 0.264
0.429 0.211 0.367 0.311 0.277 0.178
0.281 0.147 0.314 | 0.236 0.212 0.136
0.184 0.093 0.278 0.177 0.166 0.111

B W N =

1
TABLE 6.3. Two-level convergence factor A,, k=%
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6. FOURIER ANALYSIS: THE TWO-GRID ALGORITHM
In the previous sections we have shown that the scaled norm of the coarse grid correction operator
and the relaxation operator remain bounded in the limit case of vanishing meshsize. As the scaled
norm is not submultiplicative this does not imply that the scaled norm of the two-grid error
amplification matrix is bounded, and hence that the convergence rate of the two-grid algorithm is
mesh-independent. If k=0 both SBGS and SBRB relaxation without damping (a=1) eliminate o, so
we are solving a second order differential equation for u,. Therefore we may expect that the canonical
grid transfer operators P} and R} are not accurate enough.

We show that this is the case indeed by studying the two-grid algorithm with SBGS relaxation for
k=0. If a single SBGS-sweep is used for pre- and post smoothing, the Fourier transform of M}' after
n cycles is given by

A1 e2i0 n{0 M™
M, ()" = l——m] , 6.1
4_e 0 Mlnl
with
.
—.l smz 0 1 0
neven: M = ih , M" = R
2 sl ' 0 1
ih 2
6.2)
0 ".2“005i 0 cot—
ih 2 2
nodd: M®™ = 5 g R MY =
< sin— tan— O
| sin > 0 an )

The two-grid algorithm exhibits a typical alternating convergence behavior. An initial high frequency
mode u;, of amplitude b, causes a low frequency mode of amplitude bcot—gj after a single two-grid

cycle; so if #—0 initial high frequency error modes in u;, are blown up. In the next cycle the large
low frequency mode u, is nicely removed by the coarse grid correction, although a small high fre-
quency error mode is introduced. This alternating behavior is reflected by the scaled norm of
M, (w))"; for h—0 we find

1
(3%)2, n even,
~ 11
sup (M, (@)'llg =
0<phal<y
o0, nodd

By numerical computation we observe a similar alternating convergence behavior for x=%, even
though the coarse grid operator Lj; satisfies Galerkin’s relation. -

The obvious cure is to use more accurate grid transfer operators. We introduce P}, the linear inter-
polation operator for u, and Ry its adjoint. The Fourier transforms of these more accurate grid
transfer operators are

-

20
cos ) 0
.o 50
N Py(w) O sin? 7 0
Py(w) = au = 0
0 Puw 0 cos? 3
0 sin*d
2)
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and
s Ry@ 0 s a1
Ry(w) = cu | = [Ph(«»],
0 Ry

so we have mf =2 and m¥% =3. Although it is not necessary to use P,, for keeping the scaled norm of
the error amplification matrix bounded, it is introduced to avoid similar problerps] with the
amplification operator of the residuals. In table 6.1 we show values for sup()sl,,wlg%HM,, (w)lly for

the different possible two-grid algorithms. If SBRB relaxation is used, the canonical grid transfer
operators (m} = 1) are sufficient: the high frequencies are so efficiently smoothed that they don’t cause
any problems. Here we see that the choice of the grid transfer operators is not only determined by
the order of the differential equations, but is also influenced by the relaxation scheme.

The scaled norm of M, (w) only indicates what happens in a single two-grid cycle; the convergence
rate after many cycles is estimated by the two-level convergence factor

A= sup p(Mh'“’),
0<|0|<

withv =v;+v,. In te_yble 6.2 we show A, for k=0 and for different values of v. The combination of
the transfer operators P;, and R;, and SBRB relaxation leads to a fast converging algorithm. In table

6.3 we show A, for k= % We see that the introduction of a damping parameter « in SBGS relaxation

indeed leads to faster convergence, but the best convergence factors are again obtained by using the
combination of SBRB relaxation and the transfer operators P, and Ry.

7. ACCURACY OF GRID TRANSFER OPERATORS: 2D PROBLEM
So far we discussed the accuracy of the grid transfer operators for the 1D Poisson equation; in this
section we study the 2D case. For simplicity we restrict our discussion of the 2D Poisson equation to
the practical important case (cf. [1]) that the equations are lumped (k=0).

If no underrelaxation is used («=1), both SBGS and SBRB relaxation eliminate the variables
(ov, )) is a smgle sweep. From (2.7), (4.5) and (4.6) we see that, after a relaxation sweep, the Fourier
transform (0,4,0 § natiy) of (01,0 J;,,u,,) are related by

~ _ 2 . hxw.\' - PN
xh\®xsWy/) — h\®xs W y)— xhYh .
o0, w,) —;x—sm —Z——u(w w,) fD Yy, (7.1a)
and
. 2 rh‘yw.yu -
Oyh (w.\'y w y) h sin L 2 Up (w.\" w_y) =—D yh Uy (7 lb)
y J

where h =(h.h y) denotes the meshsizes in the two coordinate directions, and
(wx,w',,)eT (—— ——]2 the frequency. The matrix notation introduced in section 4 is easily
extended to the ZD case: every (w,,w, )eT? can be written as a 4-vector on T%4 with entries
(0, + px% @, + p}.%), where (py, p,)€{(0,0), (1,0), (0,1, (1,1)}.
Using the techniques developed in the previous sections we find that the Fourier transform of the
two-grid error amplification matrix for the canonical grid transfer operators is given by
0 0 —D M,
M, = [0 0 —D,M; |, (12)
00 M,,
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where .
M, = S, —Gp)S;, (13)
- af.f g,
Gy = ————2L—,  ji=1...,4, 7.4
Gl sin’f, +sin’0, J (7.42)
- X 0}' — 02 0.\' 2.2 0)‘
fi= cos—-cos—-, g = sin" + sin 5
6 [ 0,  .,0
f2 =sin—cos—*, g, = cos’ = +sin® =+,
2 2 2 2 (7.4b)
f3= cos 2= gin &2 = sl oot ) .
3 2 & 2 2
. 0x . 0y — 2 0—‘ 2 0)’
f4—smzsm2, g4—oosz+cos2,

I denotes the 4X4-identity matrix ,(0,,0,)=(hw,,h,»,), and é,, is the matrix representation of the
smoothing operator for the equations from which (0,,0,,) are eliminated. Using the trivial inequali-
ties - .

a?

. ab
a’+b?

<1 and
al+b?

<3, for (ab)eR?\{0,0},

we scc from (7.4) that only error modes in u, in the neighborhood of (4,,0,)=(70) and
(6,,6,)=(0,m) are blown up by the coarse grid correction.
We proceed to show that these high frequency error modes are removed by the relaxation operator.
The Fourier transform of SBGS relaxation is given by
R io, , i,
st(axvoy) = 4 £ te B 4 (7.5)

—i0, —i0,
—e —e %

so the error modes (7,0) and (0,7) are eliminated by SBGS indeed. SBRB relaxation mixes low and
high frequencies: its Fourier transform in matrix notation is

So(]+30) 0 0 “So(l+50)

~RB 1 0 —s,(l—s,) S|(1-S1) 0

S (0'"0‘V) 2 0 —s1(1+sy) s1(1+s)) 0 ’ (7.6
so(1—s9) 0 0 —s0(1—s0)

with
1
50(0x,0,) = 73 (cosb,+cosd,),
1
51(6y,0,) = 7 (cosf,—cosd)).

As SBGS, SBRB relaxation also eliminates the ‘dangerous’ errormodes (,0) and (0,7) without intro-
ducing them again. .l

Numerically we find that the scaled norm [[M;, ll;; of the two-grid error amplification matrix is also
bounded. In fact, we compute

L TJIII\AL],]H,, ~ 0800, for SBGS relaxation

and
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o 7l][M,, llg = 0515, for SBRB relaxation.
This guarantees that in the two-dimensional case neither for SBRB nor for SBGS relaxation the error-
modes in u, are blown up by the two-grid algorithm, as happens in the 1D case when SBGS relaxa-
tion is used. ( Notice that 2D problems with line symmetry are essentially different from 1D prob-
lems. )

8. CONCLUSIONS

By local mode analysis we have shown that Vanka-type relaxation is an efficient smoother indeed for
the mixed finite element discretization of Poisson’s equation. Although lumping of the discrete equa-
tions spoils the Galerkin property of the coarse grid operator, it generally leads to faster converging
two-grid algorithms. The Fourier transform of the two-grid error amplification operator shows that
the canonical grid transfer operators are insufficiently accurate in the 1D case if a lexicographical ord-
ering of the gridpoints is used in the relaxation procedure. However, they suffice if a red-black order-
ing is used. In the 2D case the canonical grid transfer operators can be used in combination w1th
either of the relaxation patterns.
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